首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
The binary mixtures involving tristearin (TS), stearyl stearate (SS) and stearic acid (SA) were studied by surface pressure-area (pi-A) measurements and by Brewster angle microscopy (BAM), at the air-water interface, and the Langmuir-Blodgett (LB) monolayers, transferred onto mica substrates, were analysed by AFM. The thermodynamic analysis indicated miscibility in the whole composition range for the system SA/TS, and partial miscibility for systems SA/SS and TS/SS. This behaviour was further confirmed by BAM observation and AFM analysis of LB films. The AFM imaging of collapsed monolayers revealed domains with a multilayered structure varying with system and composition. The layers thickness determined by cross section analysis are consistent with estimated molecular lengths and conformations proposed for the molecules, assuming nearly perpendicular or tilted orientations of the hydrocarbon chains to the interface.  相似文献   

2.
The behaviour of dipalmitoylphosphatidylcholine (DPPC), mixed with stearonitrile (SN), was investigated at the air-water interface by surface pressure-area (pi-A) measurements and by direct visualisation of monolayers by Brewster angle microscopy (BAM). The pi-A-X diagram of system DPPC/SN was compared with the corresponding diagrams of systems DPPC/stearic acid (SA) and DPPC/octadecanol (OD) at 20 degrees C. Monolayers of the three systems reach the closest packing of alkyl chains in the 0.4-0.6 range of XDPPC. Thermodynamic analysis indicates miscibility in the three binary systems with negative deviations from the ideal behaviour. Morphological features of system DPPC/SN change significantly with XDPPC and temperature in the range 10-30 degrees C. At 10 and 20 degrees C mixed monolayers form condensed states from low pi all over the composition range. At 30 degrees C, the liquid-expanded (LE)--liquid-condensed (LC) phase transition occurs at increasing pi with XDPPC. The shape and size of condensed domains change with XDPPC and pi. Contrarily to the behaviour of pure components, mixed monolayers of DPPC/SN exhibit orientational order in the 0.2-0.6 mol fraction range of DPPC. BAM observation confirmed the partial miscibility indicated by GE data in a limited range of compositions at 30 degrees C.  相似文献   

3.
The phase behavior of lipid mixtures containing 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0, 22:6 PC) with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied with bilayers using differential scanning calorimetry (DSC), and with monolayers monitoring pressure/area isotherms and surface elasticity, and lipid domain formation followed by epifluorescence microscopy. From DSC studies it is concluded that DPPC/18:0, 22:6 PC phase separates into DPPC-rich and 18:0, 22:6 PC-rich phases. In monolayers, phase separation is indicated by changes in pressure-area isotherms implying phase separation where 18:0, 22:6 PC is 'squeezed out' of the remaining DPPC monolayer. Phase separation into lipid domains in the mixed PC monolayer is quantified by epifluorescence microscopy using the fluorescently labeled phospholipid membrane probe, 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl). These results further describe the ability of docosahexaenoic acid to participate in lipid phase separations in membranes.  相似文献   

4.
Mixed monolayers of the surface-active lipopeptide surfactin-C(15) and of dipalmitoyl phosphatidylcholine (DPPC) were deposited on mica and their nanometer scale organization was investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). AFM topographic images revealed phase separation for mixed monolayers prepared at 0.1, 0.25, and 0.5 surfactin molar ratios. This was in agreement with the monolayer properties at the air-water interface indicating a tendency of the two compounds to form bidimensional domains in the mixed systems. The step height measured between the surfactin and the DPPC domains was 1.2 +/- 0.1 nm, pointing to a difference in molecular orientation: while DPPC had a vertical orientation, the large peptide ring of surfactin was lying on the mica surface. The N/C atom concentration ratios obtained by XPS for pure monolayers were compatible with two distinct geometric models: a random layer for surfactin and for DPPC, a layer of vertically-oriented molecules in which the polar headgroups are in contact with mica. XPS data for mixed systems were accounted for by a combination of the two pure monolayers, considering respective surface coverages that were in excellent agreement with those measured by AFM. These results illustrate the complementarity of AFM and XPS to directly probe the molecular organization of multicomponent monolayers.  相似文献   

5.
Increasing methylation of the headgroup in DPPE results in an increase of minimum area per molecule in highly compressed monolayers at the air-water interface. The shape of solid domains, as observed by epifluorescence microscopy, also exhibits marked changes upon increasing headgroup methylation. Branching domains are observed in DPPE and DP(Me)PE, whereas U-shaped or round domains are observed in DP(Me)2PE and DPPC under our experimental conditions. The domain shape is determined more by the headgroup methylatin than by the corresponding shift in critical temperatures, as shown by the study of PCs of different acyl chain moieties. In mixed lipid monolayers, PC (phosphatidylcholine) and PE (phosphatidylethanolamine) do not mix ideally, as indicated by the non-linear variation of the average area per molecule with composition, and by distinct domain shapes in LE/LC (liquid expanded/liquid condensed) coexisting phases representing PE-enriched or PC-enriched domains in those mixed monolayers.  相似文献   

6.
In this article, we investigate the interaction of meso-tetraphenylporphyrin (TPP) with phospholipid monolayers. Pure TPP molecules form films at the air-water interface with large extension of aggregation, which is confirmed by UV-vis spectra of transferred monolayers. For mixed films of TPP with dipalmitoyl phosphatidyl choline (DPPC) or dipalmitoyl phosphatidyl glycerol (DPPG), on the other hand, aggregation is only significant at high surface pressures or high concentrations of TPP (above 0.1 molar ratio). This was observed via Brewster angle microscopy (BAM) for the Langmuir films and UV-vis spectroscopy for transferred layers onto solid substrates. TPP indeed causes the DPPC and DPPG monolayers to expand, especially at the liquid-expanded to liquid-condensed phase transition for DPPC. The effects from TPP cannot be explained using purely geometrical considerations, as the area per TPP molecule obtained from the isotherms is at least twice the expected value from the literature. Therefore, interaction between TPP and DPPC or DPPG should be cooperative, so that more phospholipid molecules are affected than just the first neighbors to a TPP molecule.  相似文献   

7.
Monolayers of oleanolic acid (OLA) mixed with stearic acid (SA) were studied at the air-water interface. The surface pressure-area (pi-A) isotherms, measured over the whole composition range, and BAM observations were used to investigate the phase behaviour and self-organization of these components in a two-dimensional structure. Pure OLA forms a very compressible monolayer, and BAM observation revealed the coexistence of large and irregular solid domains of different thickness dispersed in a gas matrix, compatible with the two most probable orientations of the OLA molecule at the interface. Mixtures of OLA/SA form condensed monolayers from low surface pressures and the thermodynamic analysis indicates that OLA molecules, in the presence of the long-chain SA, orient with the major axis almost perpendicular to the interface. Langmuir-Blodgett (LB) monolayers of pure SA and mixtures were further characterized by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). AFM images of LB mixed monolayers evidenced microphase separation, not observable by BAM. The SA rich domains are 4-6A thicker than those rich in OLA. The FTIR spectra of mixed LB films on CaF2 substrates showed that OLA does not perturb the all-trans conformation of the SA long alkyl chains, up to a mole fraction of 0.4. The carbonyl-stretching band of OLA suggests that the carboxylic groups of neighbour OLA molecules are involved in hydrogen bonds, forming dimers, as in pure solid phase OLA. These interactions seem to prevail over the OLA-water hydrogen bonds.  相似文献   

8.
The behaviour of binary mixtures involving dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB) and oleic acid (OA) was investigated at the air-water interface by surface pressure-area (pi-A) measurements and by Brewster angle microscopy (BAM). Thermodynamic analysis indicates for the system DPPC/DODAB miscibility with strong negative deviations from the ideal behaviour, from low to high surface pressures over all the composition range. For systems DODAB/OA and DPPC/OA, thermodynamic analysis and BAM observation indicate miscibility from low to intermediate surface pressures, and phase separation in a limited range of composition at high surface pressures. The interaction of nicotinic acid (NA) with pure lipids and with selected compositions of mixed systems was investigated. Significant positive deviations of pi-A isotherms in the presence of NA indicate attractive interactions between NA and the polar groups of DPPC and DODAB. NA easily penetrates in expanded regimes while it tends to be segregated from condensed regimes in mixed monolayers.  相似文献   

9.
Due to the inhalation of airborne particles containing bacterial lipopolysaccharide (LPS), these molecules might incorporate into the 1,2-dipalmitoylphosphatidylcholine (DPPC)-rich monolayer and interact with surfactant protein A (SP-A), the major surfactant protein component involved in host defense. In this study, epifluorescence microscopy combined with a surface balance was used to examine the interaction of SP-A with mixed monolayers of DPPC/rough LPS (Re-LPS). Binary monolayers of Re-LPS plus DPPC showed negative deviations from ideal behavior of the mean areas in the films consistent with partial miscibility and attractive interaction between the lipids. This interaction resulted in rearrangement and reduction of the size of DPPC-rich solid domains in DPPC/Re-LPS monolayers. The adsorption of SP-A to these monolayers caused expansion in the lipid molecular areas. SP-A interacted strongly with Re-LPS and promoted the formation of DPPC-rich solid domains. Fluorescently labeled Texas red-SP-A accumulated at the fluid-solid boundary regions and formed networks of interconnected filaments in the fluid phase of DPPC/Re-LPS monolayers in a Ca(2+)-independent manner. These lattice-like structures were also observed when TR-SP-A interacted with lipid A monolayers. These novel results deepen our understanding of the specific interaction of SP-A with the lipid A moiety of bacterial LPS.  相似文献   

10.
To determine if lateral phase separation occurs in films of pulmonary surfactant, we used epifluorescence microscopy and Brewster angle microscopy (BAM) to study spread films of calf lung surfactant extract (CLSE). Both microscopic methods demonstrated that compression produced domains of liquid-condensed lipids surrounded by a liquid-expanded film. The temperature dependence of the pressure at which domains first emerged for CLSE paralleled the behavior of its most prevalent component, dipalmitoyl phosphatidylcholine (DPPC), although the domains appeared at pressures 8-10 mN/m higher than for DPPC over the range of 20-37 degrees C. The total area occupied by the domains at room temperature increased to a maximum value at 35 mN/m during compression. The area of domains reached 25 +/- 5% of the interface, which corresponds to the predicted area of DPPC in the monolayer. At pressures above 35 mN/m, however, both epifluorescence and BAM showed that the area of the domains decreased dramatically. These studies therefore demonstrate a pressure-dependent gap in the miscibility of surfactant constituents. The monolayers separate into two phases during compression but remain largely miscible at higher and lower surface pressures.  相似文献   

11.
Crane JM  Putz G  Hall SB 《Biophysical journal》1999,77(6):3134-3143
Prior reports that the coexistence of the liquid-expanded (LE) and liquid-condensed (LC) phases in phospholipid monolayers terminates in a critical point have been compromised by experimental difficulties with Langmuir troughs at high surface pressures and temperatures. The studies reported here used the continuous interface of a captive bubble to minimize these problems during measurements of the phase behavior for monolayers containing the phosphatidylcholines with the four different possible combinations of palmitoyl and/or myristoyl acyl residues. Isothermal compression produced surface pressure-area curves for dipalmitoyl phosphatidylcholine (DPPC) that were indistinguishable from previously published data obtained with Langmuir troughs. During isobaric heating, a steep increase in molecular area corresponding to the main LC-LE phase transition persisted for all four compounds to 45 mN/m, at which collapse of the LE phase first occurred. No other discontinuities to suggest other phase transitions were apparent. Isobars for DPPC at higher pressures were complicated by collapse of the monolayer, but continued to show evidence up to 65 mN/m for at least the onset of the LC-LE transition. The persistence of the main phase transition to high surface pressures suggests that a critical point for these monolayers of disaturated phospholipids is either nonexistent or inaccessible at an air-water interface.  相似文献   

12.
Epifluorescence microscopy was used to study the structure and phase behavior of phospholipid films containing a human-sequence monomeric SP-B(1-25) synthetic peptide (mSP-B(1-25)). Measurements were done directly at the air-water (A/W) interface on films in a Langmuir-Whilhelmy balance coupled to a fluorescence microscope and real-time detection system to yield an approximate optical resolution of 1 mum. Fluorescence was achieved by laser excitation of 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-dodecanoyl)-1-hexadecanoyl-sn-glycero-3-PC (BODIPY-PC, concentration 相似文献   

13.
The interaction of the hepatitis G synthetic peptide E2(99-118) with cell membrane phospholipids of different characteristics such as dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) was studied by Langmuir isotherms. Epifluorescence microscopy and Atomic force microscopy (AFM) was also used to study interactions with DPPC. Compression isotherms of DPPC/E2(99-118) and DPPG/E2(99-118) mixed monolayers showed negative deviation from ideallity consistent with the existence of attractive interactions. The incorporation of the peptide in DPPC monolayer was also confirmed in epifluorescence microscopy and AFM studies. The peptide retarded the formation of DPPC domains and did not let the phospholipid get organized. No important differences in the interactions with DPPC (neutral) or DPPG (anionic) were found, thus suggesting that electrostatics forces do not have a predominant influence in these interactions.  相似文献   

14.
Interaction of the human antimicrobial peptide LL-37 with lipid monolayers has been investigated by a range of complementary techniques including pressure-area isotherms, insertion assay, epifluorescence microscopy, and synchrotron x-ray scattering, to analyze its mechanism of action. Lipid monolayers were formed at the air-liquid interface to mimic the surface of the bacterial cell wall and the outer leaflet of erythrocyte cell membrane by using phosphatidylglycerol (DPPG), phosphatidylcholine (DPPC), and phosphatidylethanolamine (DPPE) lipids. LL-37 is found to readily insert into DPPG monolayers, disrupting their structure and thus indicating bactericidal action. In contrast, DPPC and DPPE monolayers remained virtually unaffected by LL-37, demonstrating its nonhemolytic activity and lipid discrimination. Specular x-ray reflectivity data yielded considerable differences in layer thickness and electron-density profile after addition of the peptide to DPPG monolayers, but little change was seen after peptide injection when probing monolayers composed of DPPC and DPPE. Grazing incidence x-ray diffraction demonstrated significant peptide insertion and lateral packing order disruption of the DPPG monolayer by LL-37 insertion. Epifluorescence microscopy data support these findings.  相似文献   

15.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

16.
The thermodynamic behavior of representative short (UQ2), middle (UQ4 and UQ6) and long-chain (UQ10) ubiquinones (UQ) mixed with dipalmitoyl-phosphatidylcholine (DPPC) was studied in monolayers at the air-water interface. The influence of isoprenoid chain-length of UQ on miscibility of both lipids was investigated by analysis of surface pressure-area isotherms and using fluorescence microscopy. Analysis of excess areas (A(ex)) and free energies of mixing (DeltaGm), calculated from compression isotherms in the full range of ubiquinones concentrations, has given evidences for UQ-rich constant-size (UQ6, UQ10) or less growth limited (UQ2, UQ4) microdomains formation within mixed films. Fluorescence microscopy observation revealed that ubiquinones are preferentially soluble in the expanded phase. When lateral pressure increased, concomitant evolutions of A(ex) and DeltaGm parameters, and composition dependence of collapse surface pressures, argue for an evolution towards a total segregation, never reached due to expulsion of ubiquinones from the film. The possible significance of these observations is discussed in relation to ubiquinones organization and similar chain length effects in membranes.  相似文献   

17.
Monomolecular layers of whole myelin membrane can be formed at the air-water interface from vesicles or from solvent solution of myelin. The films appear microheterogeneous as seen by epifluorescence and Brewster angle microscopy. The pattern consists mainly of two coexisting liquid phases over the whole compression isotherm. The liquid nature of the phases is apparent from the fluorescent probe behavior, domain mobility, deformability and boundary relaxation due to the line tension of the surface domains. The monolayers were transferred to alkylated glass and fluorescently labeled against myelin components. The immunolabeling of two major proteins of myelin (myelin basic protein, proteolipid-DM20) and of 2',3'-cyclic nucleotide 3'-phosphodiesterase shows colocalization with probes partitioning preferentially in liquid-expanded lipid domains also containing ganglioside G(M1). A different phase showing an enrichment in cholesterol, galactocerebroside and phosphatidylserine markers is also found. The distribution of components is qualitatively independent of the lateral surface pressure and is generally constituted by one phase enriched in charged components in an expanded state coexisting with another phase enriched in non-charged constituents of lower compressibility. The domain immiscibility provides a physical basis for the microheterogeneity found in this membrane model system.  相似文献   

18.
《Biophysical journal》2021,120(21):4751-4762
A mesoscopic model with molecular resolution is presented for dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl oleoyl phosphatidylcholine (POPC) monolayer simulations at the air-water interface using many-body dissipative particle dynamics (MDPD). The parameterization scheme is rigorously based on reproducing the physical properties of water and alkane and the interfacial property of the phospholipid monolayer by comparison with experimental results. Using much less computing cost, these MDPD simulations yield a similar surface pressure-area isotherm as well as similar pressure-related morphologies as all-atom simulations and experiments. Moreover, the compressibility modulus, order parameter of lipid tails, and thickness of the phospholipid monolayer are quantitatively in line with the all-atom simulations and experiments. This model also captures the sensitive changes in the pressure-area isotherms of mixed DPPC/POPC monolayers with altered mixing ratios, indicating that the model is promising for applications with complex natural phospholipid monolayers. These results demonstrate a significant improvement of quantitative phospholipid monolayer simulations over previous coarse-grained models.  相似文献   

19.
We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface.  相似文献   

20.
A novel cellulose derivative, 6-O-dihydrophytylcellulose (DHPC), was first synthesized via a ring-opening polymerization and allowed to self-assemble onto an air-water interface. Langmuir-Blodgett (LB) films were characterized with atomic force microscope (AFM), UV-vis spectroscopy, and Fourier transform infrared spectroscopy. The surface pressure-area (pi-A) isotherms for DHPC and beta-carotene (betaC) mixture indicated strong interaction between these compounds to pack well. Thus, DHPC has the ability to anchor betaC in the monolayer. It was proved that a betaC-DHPC monolayer was transferred successfully onto a substrate, yielding Y-type LB films by UV spectroscopic analysis. The transmission and reflection-absorption IR spectra (RAS) indicated that the dihydrophytyl chains had almost trans-zigzag conformation and were oriented nearly perpendicular to the substrate. AFM section analysis revealed the thickness per layer to be 2.32 nm. Consequently, DHPC was found to be an appropriate matrix to fabricate the mixed LB films containing betaC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号