首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The DNA binding proteins ArgR and AhrC are essential for regulation of arginine metabolism in Escherichia coli and Bacillus subtilis, respectively. A unique property of these regulators is that they form hexameric protein complexes, mediating repression of arginine biosynthetic pathways as well as activation of arginine catabolic pathways. The gltS-argE operon of Lactococcus lactis encodes a putative glutamate or arginine transport protein and acetylornithine deacetylase, which catalyzes an important step in the arginine biosynthesis pathway. By random integration knockout screening we found that derepression mutants had ISS1 integrations in, among others, argR and ahrC. Single as well as double regulator deletion mutants were constructed from Lactococcus lactis subsp. cremoris MG1363. The three arginine biosynthetic operons argCJDBF, argGH, and gltS-argE were shown to be repressed by the products of argR and ahrC. Furthermore, the arginine catabolic arcABD1C1C2TD2 operon was activated by the product of ahrC but not by that of argR. Expression from the promoter of the argCJDBF operon reached similar levels in the single mutants and in the double mutant, suggesting that the regulators are interdependent and not able to complement each other. At the same time they also appear to have different functions, as only AhrC is involved in activation of arginine catabolism. This is the first study where two homologous arginine regulators are shown to be involved in arginine regulation in a prokaryote, representing an unusual mechanism of regulation.  相似文献   

3.
4.
The present study describes the distribution and properties of enzymes involved in arginine metabolism in Riftia pachyptila, a tubeworm living around deep sea hydrothermal vents and known to be engaged in a highly specific symbiotic association with a bacterium. The results obtained show that the arginine biosynthetic enzymes, carbamyl phosphate synthetase, ornithine transcarbamylase, and argininosuccinate synthetase are present in all of the tissues of the worm and in the bacteria. Thus, Riftia and its bacterial endosymbiont can assimilate nitrogen and carbon via this arginine biosynthetic pathway. The kinetic properties of ornithine transcarbamylase strongly suggest that neither Riftia nor the bacteria possess the catabolic form of this enzyme belonging to the arginine deiminase pathway, the absence of this pathway being confirmed by the lack of arginine deiminase activity. Arginine decarboxylase and ornithine decarboxylase are involved in the biosynthesis of polyamines such as putrescine and agmatine. These activities are present in the trophosome, the symbiont-harboring tissue, and are higher in the isolated bacteria than in the trophosome, indicating that these enzymes are of bacterial origin. This finding indicates that Riftia is dependent on its bacterial endosymbiont for the biosynthesis of polyamines that are important for its metabolism and physiology. These results emphasize a particular organization of the arginine metabolism and the exchanges of metabolites between the two partners of this symbiosis.  相似文献   

5.
6.
7.
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.  相似文献   

8.
Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Lu CD  Yang Z  Li W 《Journal of bacteriology》2004,186(12):3855-3861
  相似文献   

9.
10.
The total amount of Aspergillus nidulans secreted cellulases is affected by both the carbon and nitrogen source present in the medium, and is regulated directly and/or indirectly by the carbon metabolism regulators, CreA, CreB, and CreC, and the global nitrogen metabolism regulator, AreA. We have characterized two A. nidulans genes that encode exo-cellulases, and one gene that encodes an endo-cellulase which is additional to the previously described endo-cellulase encoding gene, eglA. The putative regulatory regions 5(') of all the genes contain potential binding sites for the global carbon and nitrogen regulatory proteins, CreA and AreA. The sequences 5(') of eglA and eglB also contain potential consensus binding sites for XlnR which is involved in induction in Aspergillus niger, but none of the 5(') sequences contains an exact copy of the AceII DNA binding consensus sequence involved in induction in Trichoderma reesei, and thus it is likely that they may be induced by different pathway specific regulatory proteins.  相似文献   

11.
12.
13.
14.
15.
16.
The argR gene of Streptomyces clavuligerus has been located in the upstream region of argG . It encodes a protein of 160 amino acids with a deduced M r of 17 117 for the monomer. Transformants containing the amplified argR gene showed lower activity (50%) of the biosynthetic ornithine carbamoyltransferase (OTC) activity and higher levels (380%) of the catabolic ornithine aminotransferase (OAT) activity than control strains. Amplification of an arginine (ARG) box-containing sequence results in a 2- to 2.5-fold derepression of ornithine acetyltransferase and OTC, suggesting that the repressor is titrated out. Footprinting experiments using the pure homologous arginine repressor (AhrC) of B. subtilis showed a protected 38 nt region (ARG box) in the coding strand upstream of argC . The protected region contained two tandemly repeated imperfect palindromic 18-nt ARG boxes. The repressor–operator interaction was confirmed by band-shift experiments of the DNA fragment containing the protected region. By computer analysis of the Streptomyces sequences available in the databases, a consensus ARG box has been deduced for the genus Streptomyces . This is the first example of a clear regulation of an amino acid biosynthetic pathway in Streptomyces species, challenging the belief that actinomycetes do not have a well-developed regulatory system of these pathways.  相似文献   

17.
18.
19.
Eleven variants able to grow without proline (provided arginine was absent) were obtained by spontaneous mutation from Salmonella typhimurium LT7 proA and proAB deletion mutants. Suppression resulted from mutation at argG, which specifies N(alpha)-acetylornithine delta-transaminase. In the absence of exogenous arginine, deficiency of this enzyme would cause derepression of the arginine pathway and accumulation of N-acetylglutamic gamma-semialdehyde. N-acetylglutamic gamma-semialdehyde, if deacetylated, would produce glutamic gamma-semialdehyde, the proline precursor whose synthesis from glutamate is blocked in proA and proAB mutants. All of the mutants grew only slowly (some very slowly) if not supplied with arginine. Sonic-treated preparations of eight mutants had no measurable acetylornithine delta-transaminase activity, but those of the three mutants least dependent on arginine had 0.11, 0.28, and 1.48 of wild-type activity; presumably, their enzymes have low specific activity, at least in vivo. Phage P22 cotransduced argG and strA. Genetic analysis showed that the minor degree of arginine dependence of the mutant with greater than wild-type in vitro enzyme activity was a characteristic of its argG allele, not the result of modification of the argG phenotype by mutation elsewhere.  相似文献   

20.
In Pseudomonas aeruginosa the synthesis of only two out of eight arginine biosynthetic enzymes tested was regulated. Comparisons were made between the specific activities of these enzymes in bacteria grown on arginine or on its precursor, glutamate. N2-Acetylornithine 5-aminotransferase (ACOAT), an enzyme involved in both the biosynthesis and catabolism of arginine, was induced about 14-fold during growth of the organism on arginine as the only carbon and nitrogen source, and the anabolic ornithine carbamoyltransferase (aOTC), a strictly biosynthetic enzyme, was repressed 18-fold. Addition of various carbon sources to the arginine medium led to repression of ACOAT and to derepression of aOTC. Fructose, which supported only slow growth of P. aeruginosa, had a weak regulatory effect on the synthesis of the two arginine enzymes while citrate, a good carbon source for this organism, had a strong effect. The repression of ACOAT by citrate was not relieved by adding cyclic AMP to the medium. Under a variety of growth conditions leading to different enzyme activities, a linear relationship between the reciprocal of the specific activity of ACOAT and the specific activity of aOTC was observed. This inverse regulation of the formation of the two enzymes suggested that a single regulatory system governs their synthesis. Such a view was supported by the isolation of citrate-resistant regulatory mutants which constitutively formed ACOAT at the induced level and aOTC at the repressed level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号