首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen binding constants for human hemoglobin tetramers   总被引:2,自引:0,他引:2  
High-precision studies of oxygen binding in hemoglobin (HbA0) solutions at near-physiological concentrations (2-12 mM heme; pHs 7.0-9.1; various buffers) have led to an unanticipated result: an unmeasurably low contribution from the triply ligated species. We have obtained this result from new differential oxygen-binding measurements for human hemoglobin through the use of a thin-layer apparatus, which enables study of solutions at high Hb concentrations. The effect of tetramer dissociation into dimers, which becomes significant at hemoglobin concentrations below 1 mM in heme, is avoided. The analysis of the binding reactions is thus cast in terms of tetramer-binding polynomial written with overall Adair equilibrium constants which directly reflect the contributions of intermediate ligated species. The unmeasurable contribution of the triply ligated species renders the equilibrium constants of the third and fourth stepwise reactions practically undeterminable.  相似文献   

2.
Oxygen binding to sickle cell hemoglobin.   总被引:1,自引:0,他引:1  
The extent of oxygen binding and light scattering of concentrated solutions of hemoglobin S have been determined as a function of oxygen partial pressure using a thin film optical cell. Nearly reversible oxygen binding is observed as witnessed by the small hysteresis found between slow deoxygenation and reoxygenation runs. High co-operativity is noted from unusually large concentration-dependent Hill coefficients when aggregated hemoglobin S is present. The application of linkage theory with the inclusion of non-ideal solution properties permits a test of various simple models for oxygen binding to both the monomer (α2β2s) and polymer (aggregated) phase. It is concluded that oxygen binding to the polymer is either negligible or small under present experimental conditions. Phase diagrams of the solution concentration in equilibrium with polymer phase as a function of oxygen partial pressure are derived using best fit values of polymer parameters.  相似文献   

3.
4.
5.
The hemoglobin of the bullfrog, Rana catesbeiana, forms aggregates larger than tetramers in two ways. The first, which results from intermolecular disulfide bonds, can be prevented by treatment with iodoacetamide. The second way results from the association of the deoxygenated forms of the two major components, B and C, to form reversibly an aggregate which is believed to be a trimer, BC2. The sedimentation velocity data show that the stoichiometry of the aggregate cannot be 1:1. The electrophoretic pattern of the deoxygenated B/C mixture suggests that the association is not indefinite. No significant aggregation of the separate deoxygenated tetramers of the components nor of the oxygenated components or mixture occurs. Gel chromatography of the oxygenated forms of components B and C and of mixtures indicates that the B and C tetramers both form dimers upon dilution with a dissociation constant of 2-3 micron. The oxygen-binding data indicate that the B/C aggregate has a much lower oxygen affinity than its constituent tetramers. Dissociation of the low affinity B/C aggregate to higher affinity B and C tetramers with increasing oxygenation gives rise to enhanced cooperativity as measured by the Hill coefficient which is maximal near 75-80% oxygenation and is as high as 4.1 at a heme concentration of 15 mM.  相似文献   

6.
Human hemoglobin (Hb) conjugated to benzene tetracarboxylate substituted dextran produces a polymeric Hb (Dex-BTC-Hb) with similar oxygen affinity to that of red blood cells (P(50)=28-29 mm Hg). Under physiological conditions, the oxygen affinity (P(50)) of Dex-BTC-Hb is 26 mm Hg, while that of native purified human HbA(0) is 14 mm Hg, but it exhibits a slight reduction in cooperativity (n(50)), Bohr effect, and lacks sensitivity to inositol hexaphosphate (IHP), when compared to HbA(0). Oxygen-binding kinetics, measured by rapid mixing stopped-flow method showed comparable oxygen dissociation and association rates for both HbA(0) and Dex-BTC-Hb. The rate constant for NO-mediated oxidation of the oxy form of Dex-BTC-Hb, which is governed by NO entry to the heme pocket, was reduced to half of the value obtained for HbA(0). Moreover, Dex-BTC-Hb is only slightly more sensitive to oxidative reactions than HbA(0), as shown by about 2-fold increase in autoxidation, and slightly higher H(2)O(2) reaction and heme degradation rates. Dextran-BTC-based modification of Hb produced an oxygen-carrying compound with increased oxygen release rates, decreased oxygen affinity and reduced nitric oxide scavenging, desirable properties for a viable blood substitute. However, the reduction in the allosteric function of this protein and the lack of apparent quaternary T-->R transition may hinder its physiological role as an oxygen transporter.  相似文献   

7.
8.
C R Johnson  D W Ownby  S J Gill  K S Peters 《Biochemistry》1992,31(41):10074-10082
A high-precision thin-layer gas-solution microcalorimeter has been developed to study the binding reactions of gaseous ligands with ligand-binding macromolecules in a manner analogous to that of the Gill thin-layer optical apparatus [Doleman & Gill (1976) Anal. Biochem. 87, 127]. We have generated differential heat-binding curves of oxygen binding to human and bovine hemoglobin in phosphate buffer at pH 7.6, with the enzyme-reducing system of Hayashi et al. [(1973) Biochim. Biophys. Acta 310, 309]. Experiments were conducted at a number of different temperatures in order to expand the data field, allowing for separation of enthalpy and free energy parameters. This type of experimental analysis makes no assumptions of optical linearity between the various heme groups and reveals that the triply ligated species is measurably significant for both human and bovine hemoglobin. It was also determined that the concentration of doubly ligated species of bovine hemoglobin is relatively low. The experiments indicate that the reactions for both hemoglobins are enthalpy-driven for oxygen stepwise additions 1, 2, and 4 while being entropy-driven for step 3. Human hemoglobin oxygen-binding experiments were also performed with the Gill thin-layer optical apparatus under solution conditions identical to those used in the calorimeter. The experiments revealed that if optical linearity is assumed, the overall third equilibrium constant is negative or near zero. This indicated that either the optical cell's performance is much poorer than the thin-layer calorimeter or there is an appreciable nonlinear optical effect.  相似文献   

9.
Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb–NO). Many aspects of the formation and persistence of Hb–NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO–heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO–heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO–heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO–heme, much as occurs with increasing levels of CO–heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO–heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

10.
  • 1.1. The extracellular hemoglobins of the crustacean Artemia can be split into structural and functional domains by limited proteolysis.
  • 2.2. The oxygen affinity of the multi-domain fragments increases linearly with decreasing molecular weight.
  • 3.3. Cooperativity is expressed only in the intact dimeric molecule and not at the subunit or multi-domain level.
  相似文献   

11.
12.
Lama A  Pawaria S  Dikshit KL 《FEBS letters》2006,580(17):4031-4041
Unraveling of microbial genome data has indicated that two distantly related truncated hemoglobins (trHbs), HbN and HbO, might occur in many species of slow-growing pathogenic mycobacteria. Involvement of HbN in bacterial defense against NO toxicity and nitrosative stress has been proposed. A gene, encoding a putative HbN homolog with conserved features of typical trHbs, has been identified within the genome sequence of fast-growing mycobacterium, Mycobacterium smegmatis. Sequence analysis of M. smegmatis HbN indicated that it is relatively smaller in size and lacks N-terminal pre-A region, carrying 12-residue polar sequence motif that is present in HbN of M. tuberculosis. HbN encoding gene of M. smegmatis was expressed in E. coli as a 12.8kD homodimeric heme protein that binds oxygen reversibly with high affinity (P50 approximately 0.081 mm Hg) and autooxidizes faster than M. tuberculosis HbN. The circular dichroism spectra indicate that HbN of M. smegmatis and M. tuberculosis are structurally similar. Interestingly, an hmp mutant of E. coli, unable to metabolize nitric oxide, exhibited very low NO uptake activity in the presence of M. smegmatis HbN as compared to HbN of M. tuberculosis. On the basis of cellular heme content, specific nitric oxide dioxygenase (NOD) activity of M. smegmatis HbN was nearly one-third of that from M. tuberculosis. Additionally, the hmp mutant of E. coli, carrying M. smegmatis HbN, exhibited nearly 10-fold lower cell survival under nitrosative stress and nitrite derived reactive nitrogen species as compared to the isogenic strain harboring HbN of M. tuberculosis. Taken together, these results suggest that NO metabolizing activity and protection provided by M. smegmatis HbN against toxicity of NO and reactive nitrogen is significantly lower than HbN of M. tuberculosis. The lower efficiency of M. smegmatis HbN for NO detoxification as compared to M. tuberculosis HbN might be related to different level of NO exposure and nitrosative stress faced by these mycobacteria during their cellular metabolism.  相似文献   

13.
There does not appear to be any co-operativity manifest in the four combination rate constants for the binding of nitric oxide to deoxyhemoglobin. The time-course of the observed reaction is best fitted by statistically related rates, and the numerical relation between the rate constants for the binding of the fourth molecule of carbon monoxide and the fourth molecule of nitric oxide, which can be obtained independently, also argues for a statistical relation between the nitric oxide binding rate constants.In spite of the absence of co-operativity, the normal T → R transition occurs on nitric oxide binding, as demonstrated by the release of 8-hydroxy-1,3,6-pyrene trisulfonate, and the R-state shows the normal enhancement of reactivity towards carbon monoxide as compared with the T-state (30-fold).Competition experiments between carbon monoxide and nitric oxide in which the two ligands react simultaneously with deoxyhemoglobin suggest that the switching point (T → R) occurs on the average after 2.7 molecules of nitric oxide have been bound (in 0.05 m-2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol, pH 7) and after 3 molecules of carbon monoxide (in 0.05 m-phosphate, PH 7).  相似文献   

14.
With the increasing demand for blood transfusions, the production of human hemoglobin (Hb) from sustainable sources is increasingly studied. Microbial production is an attractive option, as it may provide a cheap, safe, and reliable source of this protein. To increase the production of human hemoglobin by the yeast Saccharomyces cerevisiae, the degradation of Hb was reduced through several approaches. The deletion of the genes HMX1 (encoding heme oxygenase), VPS10 (encoding receptor for vacuolar proteases), PEP4 (encoding vacuolar proteinase A), ROX1 (encoding heme-dependent repressor of hypoxic genes) and the overexpression of the HEM3 (encoding porphobilinogen deaminase) and the AHSP (encoding human alpha-hemoglobin-stabilizing protein) genes — these changes reduced heme and Hb degradation and improved heme and Hb production. The reduced hemoglobin degradation was validated by a bilirubin biosensor. During glucose fermentation, the engineered strains produced 18% of intracellular Hb relative to the total yeast protein, which is the highest production of human hemoglobin reported in yeast. This increased hemoglobin production was accompanied with an increased oxygen consumption rate and an increased glycerol yield, which (we speculate) is the yeast's response to rebalance its NADH levels under conditions of oxygen limitation and increased protein-production.  相似文献   

15.
An extensive and self-consistent set of thermodynamic properties has recently been established for the coupled processes of subunit assembly and ligand binding (oxygen and protons) in human hemoglobin. The resulting thermodynamic values permit a consideration of the possible sources of energetic terms accounting for stability of the tetrameric quaternary structures at different stages of ligation, and of the possible sources of cooperative energy. The analysis indicates that: (a) The change in buried surface ara upon oxygenation (i.e., hydrophobic stabilization) does not play a dominant role in stabilizing the unliganded tetramer relative to the liganded tetramer. (b) The pattern of enthalpic and entropic contributions to the free energies of dimer-tetramer. (c) The thermodynamic results are consistent with a dominant role of increased hydrogen bond formation in the deoxy quaternary structure. (d) Within tetramers the variation in free energy for successive oxygenation steps arises from both enthalpic and entropic contributions and the enthalpic contributions are almost entirely attributable to the heats of Bohr proton release. At pH 7.4 the pattern of thermodynamic values suggests that a large contribution to the free energy of cooperativity may arise from the energetics of Bohr proton release. It is suggested that a combination of proton ionization and hydrogen bonding may account for the main energetic features of cooperativity. Possible contributions from fluctuation behavior cannot presently be evaluated.  相似文献   

16.
CO2-dissociation curves of concentrated human deoxy- and carbonmonoxyhemoglobin at 37 degrees, pH 7.6 to 7.0, PCO2 equal to 10 to 160 mm Hg, have been obtained by a rapid mixing and ion exchange technique. The CO2-dissociation curves for deoxyhemogloblin can only be fitted by assuming two classes of binding sites for carbon dioxide. The simplest way to account for the experimental data is to assume that the alpha-amino groups of the alpha and beta chains react with carbon dioxide with affinities that differ by at least a factor of 3. No difference in reactivity with CO2 was found among the four terminal alpha-amino groups of carbonmonoxyhemoglobin.  相似文献   

17.
We report on oxygen binding to partially oxidized (aquomet) hemoglobin. The fractional saturation with oxygen is evaluated by deconvoluting the optical absorption spectra, in the 500-700 nm wavelength region, in terms of oxyhemoglobin, deoxyhemoglobin and methemoglobin spectral components. Experiments have been performed with auto-oxidized samples and with samples obtained by mixing ferrous hemoglobin with fully oxidized hemoglobin (mixed samples). An increase in oxygen affinity and a decrease in cooperativity are observed on increasing the amount of ferric hemoglobin in the sample. A high cooperativity (nH approximately 2) is maintained even in the presence of 50-60% ferric hemes. Moreover, for equal amounts of methemoglobin the oxygen affinity is lower and the cooperativity higher for mixed samples than for those auto-oxidized. The results are analyzed within the framework of a modified Monod-Wyman-Changeux allosteric model taking into account the effects brought about by the presence of oxidized hemes and of alpha betta dimers. The distribution of ferric subunits within the tetramers in fully deoxygenated and fully oxygenated samples, as derived from the model, provides details on the cooperative behavior of partially oxidized hemoglobin.  相似文献   

18.
Holt JM  Klinger AL  Yarian CS  Keelara V  Ackers GK 《Biochemistry》2005,44(36):11925-11938
The complete binding cascade of human hemoglobin consists of eight partially ligated intermediates and 16 binding constants. Each intermediate binding constant can be evaluated via dimer-tetramer assembly when ligand configurations within the tetramer are fixed through the use of hemesite analogs. The Zn/Fe analog, in which the nonbinding Zn2+ heme substitutes for deoxy Fe2+ heme, also permits direct measurement of O2 binding to the remaining Fe2+ hemesites within the symmetrically ligated Hb tetramers. Measurement of O2 binding over a range of Zn/Fe Hb concentrations to both alpha-subunits (species 23) or to both beta-subunits (species 24) shows noncooperative binding and incomplete saturation of the available Fe2+ hemesites. In contrast, the asymmetrically ligated Zn/FeO2 species 21, in which both oxygens are bound to one of the dimers within the tetramer, exhibits positive cooperativity and >90% ligation under atmospheric conditions. These properties are confirmed in the present study by measurement of the rate constant for tetramer dissociation to free dimer. The binding constants thus derived for these partially ligated intermediates are consistent with the stoichiometric constants measured for native hemoglobin by standard O2 binding techniques, providing additional evidence that Zn2+-heme substitution provides an excellent deoxy hemoglobin analog. There is no evidence that Zn-substitution stabilizes a low-affinity form of the tetramer, as previously suggested. These characterizations demonstrate distinct, nonadditive physical properties of the doubly ligated tetrameric species, yielding an asymmetric distribution of cooperativity within the cascade of O2 binding by human hemoglobin.  相似文献   

19.
Functional and structural studies on hemoglobin and myoglobin from different animals and engineered variants have enlightened the great importance of the physico-chemical properties of the side-chains at topological position B10 and E7. These residues proved to be crucial to the discrimination and stabilisation of gaseous ligands. In view of the data obtained on the high oxygen affinity hemoglobin from Ascaris worms and a new mutant of sperm whale myoglobin, we selected the two mutations Leu B10-->Tyr and His E7-->Gln as potentially relevant to control ligand binding parameters in the alpha and beta-chains of human hemoglobin. Here, we present an investigation of three new mutants: HbalphaYQ (alpha2YQbeta2A), HbbetaYQ (alpha2Abeta2YQ) and HbalphabetaYQ (alpha2YQbeta2YQ). They are characterised by a very low reactivity for NO, O2 and CO, and a reduced cooperativity. Their functional properties are not inconsistent with the behaviour expected for a two-state allosteric model. Proteins with these substitutions may be considered as candidates for the synthesis of a possible "blood substitute", which should yield an O2 adduct stable to autoxidation and slowly reacting with NO. The mutant HbalphabetaYQ is particularly interesting because the rate of reaction of NO with the oxy and deoxy derivatives is reduced. A structural interpretation of our data is presented based on the 3D structure of deoxy HbalphabetaYQ determined by crystallography at 1.8 A resolution.  相似文献   

20.
The bimolecular and geminate CO recombination kinetics have been measured for hemoglobin (Hb) with over 90% of the ligand binding sites occupied by NO. Since Hb(NO)4 with inositol hexaphosphate (IHP) at pH below 7 is thought to take on the low affinity (deoxy) conformation, the goal of the experiments was to determine whether the species IHPHb-(NO)3(CO) also exists in this quaternary structure, which would allow ligand binding studies to tetramers in the deoxy conformation. For samples at pH 6.6 in the presence of IHP, the bimolecular kinetics show only a slow phase with rate 7 x 10(4) M-1 s-1, characteristic of CO binding to deoxy Hb, indicating that the triply NO tetramers are in the deoxy conformation. Unlike Hb(CO)4, the fraction recombination occurring during the geminate phase is low (< 1%) in aqueous solutions, suggesting that the IHPHb(NO)3(CO) hybrid is also essentially in the deoxy conformation. By mixing stock solutions of HbCO and HbNO, the initial exchange of dimers produces asymmetric (alpha NO beta NO/alpha CO beta CO) hybrids. At low pH in the presence of IHP, this hybrid also displays a high bimolecular quantum yield and a large fraction of slow (deoxy-like) CO recombination; the slow bimolecular kinetics show components of equal amplitude with rates 7 and 20 x 10(4) M-1 s-1, probably reflecting the differences in the alpha and beta chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号