首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntaxins and Sec1/munc18 proteins are central to intracellular membrane fusion. All syntaxins comprise a variable N-terminal region, a conserved SNARE motif that is critical for SNARE complex formation, and a transmembrane region. The N-terminal region of neuronal syntaxin 1A contains a three-helix domain that folds back onto the SNARE motif forming a 'closed' conformation; this conformation is required for munc18-1 binding. We have examined the generality of the structural properties of syntaxins by NMR analysis of Vam3p, a yeast syntaxin essential for vacuolar fusion. Surprisingly, Vam3p also has an N-terminal three-helical domain despite lacking apparent sequence homology with syntaxin 1A in this region. However, Vam3p does not form a closed conformation and its N-terminal domain is not required for binding to the Sec1/munc18 protein Vps33p, suggesting that critical distinctions exist in the mechanisms used by syntaxins to govern different types of membrane fusion.  相似文献   

2.
Sec1/munc18-like proteins (SM proteins) and SNARE complexes are probably universally required for membrane fusion. However, the molecular mechanism by which they interact has only been defined for synaptic vesicle fusion where munc18 binds to syntaxin in a closed conformation that is incompatible with SNARE complex assembly. We now show that Sly1, an SM protein involved in Golgi and ER fusion, binds to a short, evolutionarily conserved N-terminal peptide of Sed5p and Ufe1p in yeast and of syntaxins 5 and 18 in vertebrates. In these syntaxins, the Sly1 binding peptide is upstream of a separate, autonomously folded N-terminal domain. These data suggest a potentially general mechanism by which SM proteins could interact with peptides in target proteins independent of core complex assembly and suggest that munc18 binding to syntaxin is an exception.  相似文献   

3.
The Q-SNARE syntaxin 1 is a central component of the synaptic membrane fusion machinery. Syntaxin probably interacts with multiple proteins during synaptic vesicle exocytosis. In vitro, the tightest binding partners for syntaxin 1 are other SNAREs (synaptobrevin/VAMP and SNAP-25) and munc18-1 (also known as rbsec1/nsec1). Recent studies on Drosophila syntaxin led to the surprising finding that a syntaxin mutant which does not bind the munc18-homolog Rop nevertheless functionally substitutes for wild-type syntaxin in membrane fusion (Wu et al., Neuron 23, 593-605, 1999). This observation suggested that syntaxin 1 binding to munc18-1 is not essential for fusion, a puzzling conclusion in view of the tight binding of munc18 and syntaxin homologs in all organisms. To address this issue, we have now reinvestigated the interaction of syntaxin with munc18 and Rop. We find that the syntaxin sequence that was mutated in the Drosophila studies is not essential for munc18/Rop binding, and that the mutant is in fact able to bind to munc18/Rop. Thus the fact that the mutant syntaxin rescues release cannot be used as an argument that munc18 binding is not essential. In addition to munc18 and SNAREs, several other proteins have been suggested to interact with various domains of syntaxin 1, notably the calcium-sensor synaptotagmin and the vesicle protein CSP. Our results confirm that the SNARE motif in syntaxin binds to synaptotagmin, but this interaction does not require the very C-terminus of the motif. Interestingly, binding of synaptotagmin appears to be decreased in the closed conformation of syntaxin. In contrast, no interaction of CSP with syntaxin was detected even under low-stringency conditions. Our data suggest 1., that assays measuring protein/protein interactions that involve syntaxin may be more difficult to evaluate than is often assumed because of the sticky nature of the proteins involved, and 2., that it is currently not possible to draw conclusions about the importance of the various interactions with the available data from Drosophila or vertebrates.  相似文献   

4.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

5.
Margittai M  Fasshauer D  Jahn R  Langen R 《Biochemistry》2003,42(14):4009-4014
Syntaxin 1a is a member of the SNARE superfamily of small, mostly membrane-bound proteins that mediate membrane fusion in all eukaryotic cells. Upon membrane fusion, syntaxin 1 forms a stable complex with its partner SNAREs. Syntaxin contains a C-terminal transmembrane domain, an adjacent SNARE motif that interacts with its partner SNAREs, and an N-terminal Habc domain. The Habc domain reversibly folds back upon the SNARE motif, resulting in a "closed" conformation that is stabilized by binding to the protein munc18. The SNARE motif and the Habc domain are separated by a linker region of about 40 amino acids. When syntaxin is complexed with munc18, the linker is structured and consists of a mix of turns and small alpha-helices. When syntaxin is complexed with its partner SNAREs, the Habc domain is dissociated, but the structure of the linker region is not known. Here we used site-directed spin labeling and EPR spectroscopy to determine the structure of the linker region of syntaxin in the SNARE complex. We found that the entire linker region of syntaxin is unstructured except for three residues at the N-terminal and six residues at the C-terminal boundary whereas the structures of the flanking regions in the Habc domain and the SNARE motif correspond to the high-resolution structures of the isolated fragments. We conclude that the linker region exhibits a high degree of conformational flexibility.  相似文献   

6.
Although some of the principles of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function are well understood, remarkably little detail is known about sec1/munc18 (SM) protein function and its relationship to SNAREs. Popular models of SM protein function hold that these proteins promote or maintain an open and/or monomeric pool of syntaxin molecules available for SNARE complex formation. To address the functional relationship of the mammalian endoplasmic reticulum/Golgi SM protein rsly1 and its SNARE binding partner syntaxin 5, we produced a conformation-specific monoclonal antibody that binds only the available, but not the cis-SNARE-complexed nor intramolecularly closed form of syntaxin 5. Immunostaining experiments demonstrated that syntaxin 5 SNARE motif availability is nonuniformly distributed and focally regulated. In vitro endoplasmic reticulum-to-Golgi transport assays revealed that rsly1 was acutely required for transport, and that binding to syntaxin 5 was absolutely required for its function. Finally, manipulation of rsly1-syntaxin 5 interactions in vivo revealed that they had remarkably little impact on the pool of available syntaxin 5 SNARE motif. Our results argue that although rsly1 does not seem to regulate the availability of syntaxin 5, its function is intimately associated with syntaxin binding, perhaps promoting a later step in SNARE complex formation or function.  相似文献   

7.
Munc18–1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18–1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18–1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18–1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18–1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25–deficient mice are used. We conclude that Munc18–1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.  相似文献   

8.
Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor} complex formation or binding of Munc18-1 to the SNARE complex. Cys(145) of syntaxin 1a is the target of NO, as a non-nitrosylatable C145S mutant is resistant to NO and novel nitrosomimetic Cys(145) mutants mimic the effect of NO on Munc18-1 binding in vitro. Furthermore, expression of nitrosomimetic syntaxin 1a in living cells affects Munc18-1 localization and alters exocytosis release kinetics and quantal size. Molecular dynamic simulations suggest that NO regulates the syntaxin-Munc18 interaction by local rearrangement of the syntaxin linker and H3c regions. Thus S-nitrosylation of Cys(145) may be a molecular switch to disrupt Munc18-1 binding to the closed conformation of syntaxin 1a, thereby facilitating its engagement with the membrane fusion machinery.  相似文献   

9.
The Sec1/munc18 protein family is essential for vesicle fusion in eukaryotic cells via binding to SNARE proteins. Protein kinase C modulates these interactions by phosphorylating munc18a thereby reducing its affinity to one of the central SNARE members, syntaxin-1a. The established hypothesis is that the reduced affinity of the phosphorylated munc18a to syntaxin-1a is a result of local electrostatic repulsion between the two proteins, which interferes with their compatibility. The current study challenges this paradigm and offers a novel mechanistic explanation by revealing a syntaxin-non-binding conformation of munc18a that is induced by the phosphomimetic mutations. In the present study, using molecular dynamics simulations, we explored the dynamics of the wild-type munc18a versus phosphomimetic mutant munc18a. We focused on the structural changes that occur in the cavity between domains 3a and 1, which serves as the main syntaxin-binding site. The results of the simulations suggest that the free wild-type munc18a exhibits a dynamic equilibrium between several conformations differing in the size of its cavity (the main syntaxin-binding site). The flexibility of the cavity's size might facilitate the binding or unbinding of syntaxin. In silico insertion of phosphomimetic mutations into the munc18a structure induces the formation of a conformation where the syntaxin-binding area is rigid and blocked as a result of interactions between residues located on both sides of the cavity. Therefore, we suggest that the reduced affinity of the phosphomimetic mutant/phosphorylated munc18a is a result of the closed-cavity conformation, which makes syntaxin binding energetically and sterically unfavorable. The current study demonstrates the potential of phosphorylation, an essential biological process, to serve as a driving force for dramatic conformational changes of proteins modulating their affinity to target proteins.  相似文献   

10.
Munc13‐1 is crucial for neurotransmitter release and, together with Munc18‐1, orchestrates assembly of the neuronal SNARE complex formed by syntaxin‐1, SNAP‐25, and synaptobrevin. Assembly starts with syntaxin‐1 folded into a self‐inhibited closed conformation that binds to Munc18‐1. Munc13‐1 is believed to catalyze the opening of syntaxin‐1 to facilitate SNARE complex formation. However, different types of Munc13‐1‐syntaxin‐1 interactions have been reported to underlie this activity, and the critical nature of Munc13‐1 for release may arise because of its key role in bridging the vesicle and plasma membranes. To shed light into the mechanism of action of Munc13‐1, we have used NMR spectroscopy, SNARE complex assembly experiments, and liposome fusion assays. We show that point mutations in a linker region of syntaxin‐1 that forms intrinsic part of the closed conformation strongly impair stimulation of SNARE complex assembly and liposome fusion mediated by Munc13‐1 fragments, even though binding of this linker region to Munc13‐1 is barely detectable. Conversely, the syntaxin‐1 SNARE motif clearly binds to Munc13‐1, but a mutation that disrupts this interaction does not affect SNARE complex assembly or liposome fusion. We also show that Munc13‐1 cannot be replaced by an artificial tethering factor to mediate liposome fusion. Overall, these results emphasize how very weak interactions can play fundamental roles in promoting conformational transitions and strongly support a model whereby the critical nature of Munc13‐1 for neurotransmitter release arises not only from its ability to bridge two membranes but also from an active role in opening syntaxin‐1 via interactions with the linker.  相似文献   

11.
To generate and maintain epithelial cell polarity, specific sorting of proteins into vesicles destined for the apical and basolateral domain is required. Syntaxin 3 and 4 are apical and basolateral SNARE proteins important for the specificity of vesicle fusion at the apical and basolateral plasma membrane domains, respectively, but how these proteins are specifically targeted to these domains themselves is unclear. Munc18/SM proteins are potential regulators of this process. Like syntaxins, they are crucial for exocytosis and vesicle fusion. However, how munc18c and syntaxin 4 regulate the function of each other is unclear. Here, we investigated the requirement of syntaxin 4 in the delivery of basolateral membrane and secretory proteins, the basolateral targeting of syntaxin 4, and the role of munc18c in this targeting. Depletion of syntaxin 4 resulted in significant reduction of basolateral targeting, suggesting no compensation by other syntaxin forms. Mutational analysis identified amino acids Leu-25 and to a lesser extent Val-26 as essential for correct localization of syntaxin 4. Recently, it was shown that the N-terminal peptide of syntaxin 4 is involved in binding to munc18c. A mutation in this region that affects munc18c binding shows that munc18c binding is required for stabilization of syntaxin 4 at the plasma membrane but not for its correct targeting. We conclude that the N terminus serves two functions in membrane targeting. First, it harbors the sorting motif, which targets syntaxin 4 basolaterally in a munc18c-independent manner and second, it allows for munc18c binding, which stabilizes the protein in a munc18c-dependent manner.  相似文献   

12.
Synaptobrevin is a synaptic vesicle protein that has an essential role in exocytosis and forms the SNARE complex with syntaxin and SNAP-25. We have analyzed the structure of isolated synaptobrevin and its binary interaction with syntaxin using NMR spectroscopy. Our results demonstrate that isolated synaptobrevin is largely unfolded in solution. The entire SNARE motif of synaptobrevin is capable of interacting with the isolated C-terminal SNARE motif of syntaxin but only a few residues bind to the full-length cytoplasmic region of syntaxin. This result suggests an interaction between the N- and C-terminal regions of syntaxin that competes with core complex assembly.  相似文献   

13.
Assembly of the SNARE proteins syntaxin1, SNAP25, and synaptobrevin into a SNARE complex is essential for exocytosis in neurons. For efficient assembly, SNAREs interact with additional proteins but neither the nature of the intermediates nor the sequence of protein assembly is known. Here, we have characterized a ternary complex between syntaxin1, SNAP25, and the SM protein Munc18‐1 as a possible acceptor complex for the R‐SNARE synaptobrevin. The ternary complex binds synaptobrevin with fast kinetics, resulting in the rapid formation of a fully zippered SNARE complex to which Munc18‐1 remains tethered by the N‐terminal domain of syntaxin1. Intriguingly, only one of the synaptobrevin truncation mutants (Syb1‐65) was able to bind to the syntaxin1:SNAP25:Munc18‐1 complex, suggesting either a cooperative zippering mechanism that proceeds bidirectionally or the progressive R‐SNARE binding via an SM template. Moreover, the complex is resistant to disassembly by NSF. Based on these findings, we consider the ternary complex as a strong candidate for a physiological intermediate in SNARE assembly.  相似文献   

14.
Eukaryotic membrane trafficking is a conserved process under tight temporal and spatial regulation in which the fusion of membranes is driven by the formation of the ternary SNARE complex. Syntaxin 1a, a core component of the exocytic SNARE complex in neurons and neuroendocrine cells, is regulated directly by munc18-1, its cognate Sec1p/munc18 (SM) protein. SM proteins show remarkable structural conservation throughout evolution, indicating a common binding mechanism and function. However, SM proteins possess disparate binding mechanisms and regulatory effects with munc18-1, the major brain isoform, classed as atypical in both its binding specificity and its mode. We now show that munc18-1 interacts with syntaxin 1a through two mechanistically distinct modes of binding, both in vitro and in living cells, in contrast to current models. Furthermore, these functionally divergent interactions occur at distinct cellular locations. These findings provide a molecular explanation for the multiple, spatially distinct roles of munc18-1.  相似文献   

15.
SNARE protein complexes are key mediators of exocytosis by juxtaposing opposing membranes, leading to membrane fusion. SNAREs generally consist of one or two core domains that can form a four-helix bundle with other SNARE core domains. Some SNAREs, such as syntaxin target-SNAREs and longin vesicular-SNAREs, have independent, folded N-terminal domains that can interact with their respective SNARE core domains and thereby affect the kinetics of SNARE complex formation. This autoinhibition mechanism is believed to regulate the role of the longin VAMP7/TI-VAMP in neuronal morphogenesis. Here we use nuclear magnetic resonance spectroscopy to study the longin-SNARE core domain interaction for VAMP7. Using complete backbone resonance assignments, chemical shift perturbations analysis, and hydrogen/deuterium exchange experiments, we conclusively show that VAMP7 adopts a preferentially closed conformation in solution. Taken together, the closed conformation of longins is conserved, in contrast to the syntaxin family of SNAREs for which mixtures of open and closed states have been observed. This may indicate different regulatory mechanisms for SNARE complexes containing syntaxins and longins, respectively.  相似文献   

16.
Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.  相似文献   

17.
Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of alpha-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of alpha-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of alpha-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of alpha-SNAP potently inhibits Ca(2+)-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an alpha-SNAP mutant defective in NSF activation is used. We conclude that alpha-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for alpha-SNAP in the SNARE cycle that drives exocytotic membrane fusion.  相似文献   

18.
Syntaxin1A, a neural-specific N-ethylmaleimide-sensitive factor attachment protein receptor protein essential to neurotransmitter release, in isolation forms a closed conformation with an N-terminal alpha-helix bundle folded upon the SNARE motif (H3 domain), thereby limiting interaction of the H3 domain with cognate SNAREs. Munc18-1, a neural-specific member of the Sec1/Munc18 protein family, binds to syntaxin1A, stabilizing this closed conformation. We used fluorescence resonance energy transfer (FRET) to characterize the Munc18-1/syntaxin1A interaction in intact cells. Enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A, or mutants of these proteins, were expressed as donor and acceptor pairs in human embryonic kidney HEK293-S3 and adrenal chromaffin cells. Apparent FRET efficiency was measured using two independent approaches with complementary results that unambiguously verified FRET and provided a spatial map of FRET efficiency. In addition, enhanced cyan fluorescent protein-Munc18-1 and a citrine variant of enhanced yellow fluorescent protein-syntaxin1A colocalized with a Golgi marker and exhibited FRET at early expression times, whereas a strong plasma membrane colocalization, with similar FRET values, was apparent at later times. Trafficking of syntaxin1A to the plasma membrane was dependent on the presence of Munc18-1. Both syntaxin1A(L165A/E166A), a constitutively open conformation mutant, and syntaxin1A(I233A), an H3 domain point mutant, demonstrated apparent FRET efficiency that was reduced approximately 70% from control. In contrast, the H3 domain mutant syntaxin1A(I209A) had no effect. By using phosphomimetic mutants of Munc18-1, we also established that Ser-313, a Munc18-1 protein kinase C phosphorylation site, and Thr-574, a cyclin-dependent kinase 5 phosphorylation site, regulate Munc18-1/syntaxin1A interaction in HEK293-S3 and chromaffin cells. We conclude that FRET imaging in living cells may allow correlated regulation of Munc18-1/syntaxin1A interactions to Ca(2+)-regulated secretory events.  相似文献   

19.
Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1 protein involved in closed-conformation syntaxin binding have been thoroughly examined, regions of the protein involved in other interactions are poorly characterised. To investigate this we performed a random transposon mutagenesis, identifying domain 3b of Munc18-1 as a functionally important region of the protein. Transposon insertion in an exposed loop within this domain specifically disrupted Mint1 binding despite leaving affinity for closed conformation syntaxin and binding to the SNARE complex unaffected. The insertion mutation significantly reduced total amounts of exocytosis as measured by carbon fiber amperometry in chromaffin cells. Introduction of the equivalent mutation in UNC-18 in Caenorhabditis elegans also reduced neurotransmitter release as assessed by aldicarb sensitivity. Correlation between the two experimental methods for recording changes in the number of exocytotic events was verified using a previously identified gain of function Munc18-1 mutation E466K (increased exocytosis in chromaffin cells and aldicarb hypersensitivity of C. elegans). These data implicate a novel role for an exposed loop in domain 3b of Munc18-1 in transducing regulation of vesicle fusion independent of closed-conformation syntaxin binding.  相似文献   

20.
The Sec1/Munc18 (SM) protein Munc18-1 and the SNAREs syntaxin-1, SNAP-25 and synaptobrevin form the core of the membrane fusion machinery that triggers neurotransmitter release. Munc18-1 binds to syntaxin-1 folded into a closed conformation and to the SNARE complex formed by the three SNAREs, which involves an open syntaxin-1 conformation. The former interaction is likely specialized for neurotransmitter release, whereas SM protein/SNARE complex interactions are likely key for all types of intracellular membrane fusion. It is currently unclear whether the closed conformation is highly or only marginally populated in isolated syntaxin-1, and whether Munc18-1 stabilizes the close conformation or helps to open it to facilitate SNARE complex formation. A detailed NMR analysis now suggests that the closed conformation is almost quantitatively populated in isolated syntaxin-1 in the absence of oligomerization, and indicates that its structure is very similar to that observed previously in the crystal structure of the Munc18-1/syntaxin-1 complex. Moreover, we demonstrate that Munc18-1 binding prevents opening of the syntaxin-1 closed conformation. These results support a model whereby the closed conformation constitutes a key intrinsic property of isolated syntaxin-1 and Munc18-1 binding stabilizes this conformation; in this model, Munc18-1 plays in addition an active role in downstream events after another factor(s) helps to open the syntaxin-1 conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号