首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stimulation of fluid and electrolyte secretion in salivary cells results in ionic changes that promote rapid increases in the activity of the Na,K-ATPase. In many cell systems, there are conflicting findings concerning the regulation of the phosphorylation of the Na,K-ATPase α subunit, which is the catalytic moiety. Initially, we investigated the phosphorylation sites on the α1 subunit in native rat parotid acinar cells using tandem mass spectrometry and identified two new phosphorylation sites (Ser222, Ser407), three sites (Ser217, Tyr260, Ser47) previously found from large scale proteomic screens, and two sites (Ser23, Ser16) known to be phosphorylated by PKC. Subsequently, we used phospho-specific antibodies to examine the regulation of phosphorylation on Ser23 and Ser16 and measured changes in ERK phosphorylation in parallel. The G-protein-coupled muscarinic receptor mimetic carbachol, the phorbol ester phorbol 12-myristate 13-acetate, the Ca2+ ionophore ionomycin, and the serine/threonine phosphatase inhibitor calyculin A increased Ser23 α1 phosphorylation. Inhibition of classical PKC proteins blocked carbachol-stimulated Ser23 α1 subunit phosphorylation but not ERK phosphorylation, which was blocked by an inhibitor of novel PKC proteins. The carbachol-initiated phosphorylation of Ser23 α1 subunit was not modified by ERK or PKA activity. The Na,K-ATPase inhibitor ouabain reduced and enhanced the carbachol-promoted phosphorylation of Ser23 and Ser16, respectively, the latter because ouabain itself increased Ser16 phosphorylation; thus, both sites display conformational-dependent phosphorylation changes. Ouabain-initiated phosphorylation of Ser16 α1 was not blocked by PKC inhibitors, unlike carbachol- or phorbol 12-myristate 13-acetate-initiated phosphorylations, suggesting that this site was also a substrate for a kinase other than PKC.  相似文献   

2.
Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser22/Ser23, reduces myofilament Ca2+ sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser22/Ser23 remains to be established. To determine the role of cTnI phosphorylation at Ser22/Ser23 in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser22/Ser23 are substituted by nonphosphorylatable Ala (cTnI-Ala2). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser22/Ser23 and decreased the Ca2+ sensitivity of force. In contrast, PKD had no effect on the Ca2+ sensitivity of force in myocardium from cTnI-Ala2 mice, in which Ser22/Ser23 were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala2 mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser273, Ser282, and Ser302, and revealed that PKD phosphorylates only Ser302. Furthermore, PKD phosphorylated Ser302 selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala2 mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca2+ sensitivity through cTnI phosphorylation at Ser22/Ser23 but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser302, which may mediate the latter effect.  相似文献   

3.
Although neurofilaments are among the most highly phosphorylated proteins extant, relatively little is known about the kinases involved in their phosphorylation. The majority of the phosphates present on the two higher-molecular-mass neurofilament subunits are added to multiply repeated sequence motifs in the tail. We have examined the specificity of a neurofilament-associated kinase (NFAK) partially purified from chicken spinal cord that selectively phosphorylates the middle-molecular-mass neurofilament subunit, NF-M. Two-dimensional phosphopeptide mapping of 32P-labeled NF-M shows that, in vitro, NFAK phosphorylates a subset of peptides phosphorylated in vivo in cultured neurons. The absence of a complete complement of labeled phosphopeptides following in vitro phosphorylation, compared with phosphorylation in vivo, is not due to a lack of availability of phosphorylation sites because the same maps are obtained when enzymatically dephosphorylated NF-M is used as an in vitro substrate. Phosphopeptide maps from in vitro-phosphorylated NF-M and those from a recombinant fusion protein containing only a segment of the tail piece of chicken NF-M reveal identical labeled peptides. The fusion protein lacks a segment containing 17 KXX(S/T)P putative phosphorylation sites contained in the tail of chicken NF-M but contains a segment that includes four KSPs and a KSD site also present in the intact tail. These results suggest (a) that NFAK mediates the phosphorylation of some, but not all, potential phosphorylation sites within the tail of NF-M and (b) that multiple kinases are necessary for complete phosphorylation of the NF-M tail.  相似文献   

4.
The 24p3 protein is a 25 KDa glycoprotein, having been purified from mouse uterine fluid. Thr54, Ser88, and Thr128/Ser129 on the protein molecule were predicted to be the phosphorylation site of casein kinase II, protein kinase C, and cAMP-dependent protein kinase, respectively. Incorporation of phosphate to this protein from [-32P]-ATP was tested in the solution suitable for the three kinases. Neither casein kinase II nor cAMP-dependent protein kinase reacted to the 24p3 protein; however, protein kinase C demonstrated phosphorylation to this protein. This phosphorylation may be competing with a polypeptide segment: Arg79-Tyr-Trp-Ilu-Arg-Thr-Phe-Val-Pro-Ser88-Ser-Arg-Ala-Gly-Gln-Phe-Thr-Leu-Gly97 in the 24p3 protein molecule. To support this theory, Ser88 is a phosphorylation site of protein kinase C on 24p3 protein. The enzyme kinetic parameter, based on the Michaelis-Menten equation, determined Km to be 2.96 M in the phosphorylation of 24p3 protein by the kinase. Both of the phosphorylated and dephosphorylated form of 24p3 protein can enhance the cAMP-dependent protein kinase activity in vitro. In addition, this experiment will show for the first time that serine-phosphorylated 24p3 protein exists in mouse uterine tissue.  相似文献   

5.
Previously, tau protein kinase I/glycogen synthase kinase-3Β/kinase FA(TPKI/GSK-3Β/FA) was identified as a brain microtubule-associated tau kinase possibly involved in the Alzheimer disease-like phosphorylation of tau. In this report, we find that the TPKI/GSK-3Β/FA can be stimulated to phosphorylate brain tau up to 8.5 mol of phosphates per mol of protein by heparin, a polyanion compound. Tryptic digestion of32P-labeled tau followed by high-performance liquid chromatography and high-voltage electrophoresis/thin-layer chromatography reveals 12 phosphopeptides. Phosphoamino acid analysis together with sequential manual Edman degradation and peptide sequence analysis further reveals that TPKI/GSK-3/Β/FA after heparin potentiation phosphorylates tau on sites of Ser199, Thr231, Ser235, Ser262, Ser396, and Ser400, which are potential sites abnormally phosphorylated in Alzheimer tau and potent sites responsible for reducing microtubule binding possibly involved in neuronal degeneration. The results provide initial evidence that TPKI/GSK-3Β/FA after heparin potentiation may represent one of the most potent systems possibly involved in the abnormal phosphorylation of PHF-tau and neuronal degeneration in Alzheimer disease brains.  相似文献   

6.
Synthetic peptides, representing part of the phosphorylatable site of rat liver pyruvate kinase, were phosphorylated by (32P)ATP and the catalytic subunit of cyclic AMP-stimulated protein kinase. The shortest peptide which could be significantly phosphorylated was Arg-Arg-Ala-Ser-Val, with an apparent Km of 0.08 mM. The apparent Km for Arg-Arg-Ala-Ser-Val-Ala was 0.02 mM and that for Leu-Arg-Arg-Ala-Ser-Val-Ala was less than 0.01 mM. Peptides in which threonine was substituted for serine, or leucine for the one or the other arginine of the pentapeptide were not detectably phosphorylated. Substitution of phenylalanine for valine increased, and substitution of lysine or glycine for valine considerably decreased the rate of phosphorylation.  相似文献   

7.
The phosphorylation sites of simian virus 40 large T antigen were determined within the primary structure of the molecule. Exhaustive digestion of 32P-labeled large T antigen with trypsin generated six major phosphopeptides which could be separated in a newly developed isobutyric acid-containing chromatography system. By partial tryptic digestion, large T antigen was cleaved into an amino-terminal fragment of 17,000 daltons and overlapping fragments from the carboxy-terminal region ranging in size between 71,000 and 13,000 daltons. The location of the phosphopeptides was then determined by fingerprint analyses of individual fragments. Their physical properties were analyzed by sizing on polyacrylamide gels and by sequential digestion and peptide mapping; their amino acid composition was determined by differential labeling with various amino acids. The amino-terminal 17,000-dalton fragment gave rise to only one phosphopeptide (phosphopeptide 3) that contained half of the phosphate label incorporated into large T antigen. It contained phosphoserine and phosphothreonine sites, all of which were clustered within a small segment between Cys105 and Lys127. This segment contained five serines and two threonines. Among these, Ser106, Ser123, and Thr124 were identified as phosphorylated residues; in addition, either one or both of Ser111 and Ser112 were phosphorylated. The neighboring residues, Ser123 and Thr124, were found in three different phosphorylation states in that either Ser123 or Thr124 or both were phosphorylated. Phosphopeptides 1, 2, 4, 5, and 6 were all derived from a single fragment extending 26,000 daltons upstream from the carboxy terminus of large T antigen. Phosphopeptide 6 was identical with the previously determined phosphothreonine peptide phosphorylated at Thr701. Phosphopeptides 1, 2, 4, and 5 contained only serine-bound phosphate. Phosphopeptides 1, 2, and 4 represented overlapping peptides, all of which were phosphorylated at Ser639 located next to a cluster of six acidic residues. In phosphopeptide 5, a large peptide ranging from Asn653 to Arg691, at least two of seven serines were phosphorylated. Thus, large T antigen contains at least eight phosphorylation sites. Their clustering within two separate regions might correlate with structural and functional domains of this protein.  相似文献   

8.
Activation of (Na++K+)-ATPase (NKA) regulates cardiac L-type Ca2+ channel (LTCC) function through molecular crosstalk. The mechanism underlying NKA-LTCC crosstalk remains poorly understood. We have previously shown that activation of NKA leads to phosphorylation of LTCC α1 Ser1928. Here we investigated whether LTCC β2 subunit is modulated by NKA activation and found that LTCC β2 Ser496 is phosphorylated in response to activation of NKA. Src inhibitor PP1 and Erk1/2 inhibitor PD98059 abolish LTCC β2 Ser496 phosphorylation, suggesting that NKA-mediated β2 Ser496 phosphorylation is dependent of Src/Erk1/2 signaling pathway. Protein kinase G (PKG) inhibitor KT5823 failed to inhibit the phosphorylation of β2 Ser496, indicating that the NKA-LTCC crosstalk is independent of PKG activity. The results of nifedipine sensitive 45Ca influx experiments suggest that phosphorylation of β2 Ser496 may play a key down-regulation role in attenuating the accelerated activity of α1 subunit of the channel. Ouabain does not cause a phosphorylation on β2 Ser496, indicating a fundamental difference between activation and inhibition of NKA-mediated biological processes. This study provides the first evidence to demonstrate that LTCC β2 subunit is coupled with the movement of signals in the mechanism of activation of NKA-mediated crosstalk with LTCC.  相似文献   

9.
In vivo phosphorylation sites of the tobacco calcium-dependent protein kinases NtCDPK2 and NtCDPK3 were determined in response to biotic or abiotic stress. Stress-inducible phosphorylation was exclusively located in the variable N termini, where both kinases were phosphorylated differentially despite 91% overall sequence identity. In NtCDPK2, serine 40 and threonine 65 were phosphorylated within 2 min after stress. Whereas Thr65 is subjected to intra-molecular in vivo autophosphorylation, Ser40 represents a target for a regulatory upstream protein kinase, and correct NtCDPK2 membrane localization is required for Ser40 phosphorylation. NtCDPK3 is phosphorylated at least at two sites in the N terminus by upstream kinase(s) upon stress stimulus, first at Ser54, a site not present in NtCDPK2, and also at a second undetermined site not identical to Ser40. Domain swap experiments established that differential phosphorylation of both kinases is exclusively determined by the respective N termini. A cell death-inducing response was only observed upon expression of a truncated variant lacking the junction and calcium-binding domain of NtCDPK2 (VK2). This response required protein kinase activity and was reduced when subcellular membrane localization was disturbed by a mutation in the myristoylation and palmitoylation site. Our data indicate that CDPKs are integrated in stress-dependent protein kinase signaling cascades, and regulation of CDPK function in response to in vivo stimulation is dependent on its membrane localization.  相似文献   

10.
Brain microtubule protein, prepared by two types of recycling methods, undergoes “flash” phosphorylation in the presence of [γ-32p]ATP through sequential action of protein kinase and phosphoprotein phosphatase present in microtubule protein. SDS electrophoretic analysis indicates that MAP1, tau protein, and tubulin are poorly phosphorylated, and MAP2 is the major site of phosphorylation. To improve [32P]phosphoprotein stability in the presence of the kinase/phosphatase cycle, 3′,5′-cyclicAMP, orthophosphate, or fluoride ion may be added. After separation from tubulin by phosphocellulose chromatography, the MAP fraction exhibits autophosphorylation. Finally, the maximal extent of autophosphorylation is observed with an ATP regenerating system using ADP, [32P]acetyl-P, and bacterial acetate kinase; this results in the incorporation of 3–4 phosphoryl groups per MAP2 subunit.  相似文献   

11.
12.
The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ.  相似文献   

13.
Intact bovine adrenal medullary chromaffin cells were preincubated with32PO4, and the multiplesite phosphorylation of tyrosine hydroxylase (TH) was studied. Up to eight32P-labeled peptides were produced by tryptic hydrolysis of TH; however, all of the tryptic phosphopeptides were derived from four phosphorylation sites—Ser8, Ser19, Ser31 and Ser40. In situ regulation of32P incorporation into the latter three sites was demonstrated with a diverse set of pharmacological agents.32P incorporation into Ser19 was preferentially increased by brief exposures to depolarizing secretagogues. Longer treatments also increased Ser31 and Ser40 phosphorylation. Nicotine, muscarine and vasoactive intestinal polypeptide—reflecting cholinergic and non-cholinergic components of sympatho-adrenal transmission—each produced different patterns of multiple-site phosphorylation of TH. Nicotine, bradykinin and histamine increased32P incorporation at each of the three sites whereas muscarine, angiotensin II, endothelin III, prostaglandin E1, GABA and ATP selectively increased Ser31 phosphorylation. Nerve growth factor did not influence TH phosphorylation in chromaffin cells from adult adrenal glands but selectively increased Ser31 phosphorylation in chromaffin cells isolated from calf adrenal glands.32P incorporation into Ser40 was selectively increased by forskolin and other cAMP-acting agents whereas vasoactive intestinal polypeptide increased Ser31 and Ser40 phosphorylation. Thus, the phosphorylation of TH in bovine chromaffin cells appears to be regulated at three sites by three separate intracellular signaling pathways—Ser19 via Ca2+/calmodulin-dependent protein kinase II; Ser31 via ERK (MAP2 kinases); and Ser40 via cAMP-dependent protein kinase. These signaling pathways, as well as the extracellular signals that were effective in stimulating them, are similar to those previously described for TH in rat pheochromocytoma cells. However, several of the pharmacological agents produced different patterns of multiple-site TH phosphorylation in the bovine chromaffin cells. These differences between tissues could be accounted for by differences in the coupling/access between the extracellular signal transduction systems and the intracellular signaling pathways as opposed to differences in the intracellular signaling pathwaysper se.Special issue dedicated to Dr. Paul Greengard  相似文献   

14.
To begin to understand the regulation and roles of neurofilament phosphorylation, we localized the phosphorylated domains on the 140-145-kDa neurofilament subunit (NF-M) and identified the protein kinases that may specifically phosphorylate the sites within these domains in vivo. Mouse retinal ganglion cells were labeled in vivo by injecting mice intravitreally with [32P]orthophosphate, and neurofilament-enriched fractions were obtained from the optic axons. Two-dimensional phosphopeptide map analysis of NF-M after digestion with alpha-chymotrypsin and trypsin revealed seven major (M8-M14) and at least eight minor (M1-M7 and M15) phosphopeptides. Two-dimensional phosphopeptide map analyses of NF-M phosphorylated in vitro by individual purified or endogenous axonal cytoskeleton-associated protein kinases showed that five peptides (M9-M13) were substrates for the heparin-sensitive second messenger-independent protein kinase(s). Protein kinase A and/or protein kinase C phosphorylated eight other peptides (M1-M8). Two alpha-chymotryptic peptides (C1 and C2) that were phosphorylated by protein kinase A but not by the endogenous independent kinase(s) were isolated by high performance liquid chromatography on a reverse-phase C8 column. Partial sequence analysis of peptides C1 (S R V S G P S ...) and C2 (S R G S P S T V S ...) showed that the peptides were localized on the head domain of NF-M at 25 and 41 residues from the amino terminus, respectively. Tryptic digest of peptide C1 (less than 12 kDa) generated the phosphopeptides M1-M6. Peptide C2 was a breakdown product of peptide C1. Since the polypeptide sites targeted by second messenger-independent kinase(s) associated with neurofilaments are localized on the carboxyl-terminal domain, separate aspects of NF-M function appear to be regulated by separate kinase systems that selectively phosphorylate head or tail domains of the polypeptide.  相似文献   

15.
16.
We sought the mammalian neurofilament tail domain-specific kinase. Several well known kinases including cAMP-dependent protein kinase, protein kinase C, Ca(2+)-calmodulin-dependent protein kinase II, casein kinase I, and casein kinase II phosphorylated the high (NF-H) and middle molecular mass subunit (NF-M) of bovine neurofilaments, but they did not reduced the electrophoretic mobility of the dephosphorylated form of NF-M and NF-H by phosphorylation nor was the amount of phosphorylation increased by dephosphorylation of NF proteins, indicating that the phosphorylation sites by these kinases are not major in vivo phosphorylation sites at the tail domain. In contrast, cdc2 kinase phosphorylated specifically the dephosphorylated form of NF-H. 4 mol of phosphates were incorporated per mol of NF-H and this phosphorylation returned the electrophoretic mobility of the dephosphorylated form of NF-H to the position of the isolated, fully phosphorylated form of NF-H. Furthermore, the phosphorylation by cdc2 kinase dissociated the binding of dephosphorylated NF-H to microtubules. Phosphorylation sites were located at the carboxyl-terminal tail domain. The KSPXK motif, but not KSPXX, in the repetitive sequence was suggested to be the phosphorylation site by using synthetic peptides.  相似文献   

17.
Phosphorylation of the catalytic subunit of cyclic AMP-dependent protein kinase, or protein kinase A, on Thr-197 is required for optimal enzyme activity, and enzyme isolated from either animal sources or bacterial expression strains is found phosphorylated at this site. Autophosphorylation of Thr-197 occurs in Escherichia coli and in vitro but is an inefficient intermolecular reaction catalyzed primarily by active, previously phosphorylated molecules. In contrast, the Thr-197 phosphorylation of newly synthesized protein kinase A in intact S49 mouse lymphoma cells is both efficient and insensitive to activators or inhibitors of intracellular protein kinase A. Using [35S]methionine-labeled, nonphosphorylated, recombinant catalytic subunit as the substrate in a gel mobility shift assay, we have identified an activity in extracts of protein kinase A-deficient S49 cells that phosphorylates catalytic subunit on Thr-197. The protein kinase A kinase activity partially purified by anion-exchange and hydroxylapatite chromatography is an efficient catalyst of protein kinase A phosphorylation in terms of both a low Km for ATP and a rapid time course. Phosphorylation of wild-type catalytic subunit by the kinase kinase activates the subunit for binding to a pseudosubstrate peptide inhibitor of protein kinase A. By both the gel shift assay and a [γ-32P]ATP incorporation assay, the enzyme is active on wild-type catalytic subunit and on an inactive mutant with Met substituted for Lys-72 but inactive on a mutant with Ala substituted for Thr-197. Combined with the results from mutant subunits, phosphoamino acid analysis suggests that the enzyme is specific for phosphorylation of Thr-197.  相似文献   

18.
Maize eukaryotic translation initiation factor 5A (ZmeIF5A) co-purifies with the catalytic α subunit of protein kinase CK2 and is phosphorylated by this enzyme. Phosphorylated ZmeIF5A was also identified after separation of maize leaf proteins by two-dimensional electrophoresis. Multiple sequence alignment of eIF5A proteins showed that in monocots, in contrast to other eukaryotes, there are two serine/threonine residues that could potentially be phosphorylated by CK2. To identify the phosphorylation site(s) of ZmeIF5A, the serine residues potentially phosphorylated by CK2 were mutated. ZmeIF5A and its mutated variants S2A and S4A were expressed in Escherichia coli and purified. Of these recombinant proteins, only ZmeIF5A-S2A was not phosphorylated by maize CK2. Also, Arabidopsis thaliana and Saccharomyces cerevisiae eIF5A-S2A mutants were not phosphorylated despite effective phosphorylation of wild-type variants. A newly developed method exploiting the specificity of thrombin cleavage was used to confirm that Ser2 in ZmeIF5A is indeed phosphorylated. To find a role of the Ser2 phosphorylation, ZmeIF5A and its variants mutated at Ser2 (S2A and S2D) were transiently expressed in maize protoplasts. The expressed fluorescence labeled proteins were visualized by confocal microscopy. Although wild-type ZmeIF5A and its S2A variant were distributed evenly between the nucleus and cytoplasm, the variant with Ser2 replaced by aspartic acid, which mimics a phosphorylated serine, was sequestered in the nucleus. These results suggests that phosphorylation of Ser2 plays a role in regulation of nucleocytoplasmic shuttling of eIF5A in plant cells.  相似文献   

19.
Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C‐terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK‐293) cells. Under basal conditions, MOPr is phosphorylated on Ser363 and Thr370, while in the presence of morphine or [D‐Ala2, NMe‐Phe4, Gly‐ol5]‐enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser356, Thr357 and Ser375. Using N‐terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C‐terminal tail of MOPr and point mutations of the same, we show that, in vitro, purified G protein‐coupled receptor kinase 2 (GRK2) phosphorylates Ser375, protein kinase C (PKC) phosphorylates Ser363, while CaMKII phosphorylates Thr370. Phosphorylation of the GST fusion protein of the C‐terminal tail of MOPr enhanced its ability to bind arrestin‐2 and ‐3. Hence, our study identifies both the basal and agonist‐stimulated phospho‐acceptor sites in the C‐terminal tail of MOPr, and suggests that the receptor is subject to phosphorylation and hence regulation by multiple protein kinases.  相似文献   

20.
Rat liver fructose-1,6-diphosphatase was phosphorylated with (32P)ATP and the catalytic subunit of cyclic AMP-dependent protein kinase from pig muscle. After digestion with pepsin, α-chymotrypsin and subtilisin a peptide with the amino-terminal sequence Ser-Arg-Tyr-(32P)SerP-Leu-Pro-Leu-Pro was isolated. A synthetic unphosphorylated heptapeptide with the same amino acid sequence, ending with leucine, was phosphorylated with an apparent Km of 400 μM, while the apparent Km value for fructose-1,6-diphosphatase was 30 μM (subunit concentration). The Vmax value was 20 times higher for the peptide than for the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号