首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Intra- and interspecific variation in flower color is a hallmark of angiosperm diversity. The evolutionary forces underlying the variety of flower colors can be nearly as diverse as the colors themselves. In addition to pollinator preferences, non-pollinator agents of selection can have a major influence on the evolution of flower color polymorphisms, especially when the pigments in question are also expressed in vegetative tissues. In such cases, identifying the target(s) of selection starts with determining the biochemical and molecular basis for the flower color variation and examining any pleiotropic effects manifested in vegetative tissues. Herein, we describe a widespread purple-white flower color polymorphism in the mustard Parrya nudicaulis spanning Alaska. The frequency of white-flowered individuals increases with increasing growing-season temperature, consistent with the role of anthocyanin pigments in stress tolerance. White petals fail to produce the stress responsive flavonoid intermediates in the anthocyanin biosynthetic pathway (ABP), suggesting an early pathway blockage. Petal cDNA sequences did not reveal blockages in any of the eight enzyme-coding genes in white-flowered individuals, nor any color differentiating SNPs. A qRT-PCR analysis of white petals identified a 24-fold reduction in chalcone synthase (CHS) at the threshold of the ABP, but no change in CHS expression in leaves and sepals. This arctic species has avoided the deleterious effects associated with the loss of flavonoid intermediates in vegetative tissues by decoupling CHS expression in petals and leaves, yet the correlation of flower color and climate suggests that the loss of flavonoids in the petals alone may affect the tolerance of white-flowered individuals to colder environments.  相似文献   

3.
转查尔酮合酶基因对烟草花色及花器官的影响   总被引:1,自引:0,他引:1  
花色是重要的园艺性状,一直是育种工作者苦苦追求的目标。利用植物基因工程技术可定向改良花色。根据已知的CHS序列(序列号M20308.),用PCR方法从拟南芥中克隆CHS基因,并分别将其以正向、反向插入到真核表达载体pBI121,在农杆菌介导下用叶盘转化法转化烟草。对转基因烟草进行检测,结果表明,转基因烟草的花色变淡、花青素含量降低;叶片颜色变浅、叶绿素含量降低。转基因烟草花的形态也发生了明显变异。  相似文献   

4.
为探究滇水金凤(Impatiens uliginosa L.)TT8(TRANSPARENT TESTA 8)基因的功能和表达特性,并解析其对滇水金凤花色的影响,研究以滇水金凤花器官为材料,通过RT-PCR等技术克隆IuTT8基因,并对其进行生物信息学分析;利用qRT-PCR分析该基因在不同花色和不同花发育阶段的表达模式。结果表明,(1)成功克隆得到滇水金凤IuTT8基因,其编码区全长为2 136 bp,编码711 aa,为亲水性不稳定蛋白,gDNA全长为3 938 bp,共有6个内含子;结构域分析发现该蛋白属于bHLH超家族成员,与喜马拉雅凤仙花、山茶等物种的TT8蛋白同源且Motif基序相似。(2)IuTT8与同属植物喜马拉雅凤仙花的聚在一支,相似性约86.34%;多序列比对和系统进化分析显示TT8蛋白的结构域高度保守。(3)IuTT8基因在4种不同花色滇水金凤及其4个不同发育阶段均有表达,除白色外,其表达量均随花发育的进行呈先升后降的趋势;且IuTT8基因的表达量与花色呈正相关,其中以深红色表达量最高,白色表达量最低,深红色S3的表达量约为白色S2时期的48倍。研究表明滇水金凤I...  相似文献   

5.
6.
7.
以‘西伯利亚’百合为试材,利用PCR技术克隆了查尔酮合成酶基因(CHS),构建了CHS基因的正义和反义植物表达载体,采用农杆菌介导法转化烟草叶盘,获得了转正义CHS基因的本明烟草18株,转反义CHS基因的普通烟草21株,总转化率为26.0%。高效液相色谱法(HPLC)检测结果显示,正义CHS转基因的本明烟草类黄酮含量升高14.0%~59.7%,反义CHS转基因的普通烟草类黄酮含量降低44.5%~76.4%。花色观察结果显示,正义转基因烟草的花瓣颜色未见变化,反义转基因烟草部分植株的花瓣颜色变浅。研究表明,CHS基因遗传转化是进行花色调控的有效手段之一。  相似文献   

8.
9.
类黄酮是植物中的一种重要的次级代谢产物,它与植物的花色形成有关。查尔酮合酶是类黄酮合成途径中的一个关键酶,在植物体内,CHS表达量的增加或减少都可能改变花的。从矮牵牛花瓣的cDNA中克隆到了CHS-A基因,进行了全序列分析,并与国外已报道的CHS-A-序列进行了同源性比较。  相似文献   

10.
Abstract Steep clines in ecologically important traits may be caused by divergent natural selection. However, processes that do not necessarily invoke ongoing selection, such as secondary contact or restricted gene flow, can also cause patterns of phenotypic differentiation over short spatial scales. Distinguishing among all possible scenarios is difficult, but an attainable goal is to establish whether scenarios that imply selection need to be invoked. We compared the extent of morphological and genetic differentiation between geographically structured red and yellow floral races of Mimulus aurantiacus (bush monkeyflower; Phrymacea). Flower color was assessed in a common garden as well as in the field to determine whether variation was genetic and to quantify the extent of geographical differentiation. Population genetic differentiation at marker loci was measured for both chloroplast and nuclear genomes, and the degree of population structure within and among the floral races was evaluated. Flower color shows both a strong genetic basis and a sharp geographic transition, with pure red-flowered populations in western San Diego County and pure yellow-flowered populations to the east. In the zone of contact, both pure and intermediate phenotypes occur. Patterns of genetic differentiation at marker loci are far less pronounced, as little of the variation is partitioned according to the differences in flower color. Phenotypic differentiation (QST) between populations with different flower colors is much greater than neutral genetic differentiation (FST). When comparisons are made between populations of the same flower color, the opposite trend is evident. Limited neutral genetic structure between the floral races, combined with sharp differentiation in flower color, is consistent with the hypothesis that current or recent natural selection maintains the cline in flower color.  相似文献   

11.
12.
Introduction of a constitutive antisense full-length chalcone synthase (CHS) cDNA gene in petunia can result in an inhibition of flower pigmentation. We have evaluated some of the factors which may be important for the effectiveness of an antisense CHS gene.Antisense CHS genes encoding half-length or quarter-length RNA complementary to the 3 half of CHS mRNA are able to affect flower pigmentation, while a gene encoding RNA complementary to the 5 half of CHS mRNA did not show phenotypic effects in transgenic petunia plants. We demonstrate that the RNA encoded by the latter gene has a much lower average steady-state level in leaf tissue than the RNAs encoded by the other antisense gene constructs. We have compared the CaMV 35S and endogenous CHS promoter strengths and intrinsic stabilities of sense and antisense CHS RNAs. From the data we conclude that the constitutive antisense CHS genes are not likely to provide an excess of antisense RNA compared to the CHS mRNA derived from the endogenous genes.Effective inhibition of flower pigmentation is also observed when the antisense CHS gene is under control of the homologous CHS promoter. The results indicate that the mechanism of antisense inhibition cannot solely operate via RNA duplex formation between sense and antisense RNA.  相似文献   

13.
Recent advances in genetic transformation techniques enable the production of desirable and novel flower colors in some important floricultural plants. Genetic engineering of novel flower colors is now a practical technology as typified by commercialization of a transgenic blue rose and blue carnation. Many researchers exploit knowledge of flavonoid biosynthesis effectively to obtain unique flower colors. So far, the main pigments targeted for flower color modification are anthocyanins that contribute to a variety of colors such as red, pink and blue, but recent studies have also utilized colorless or faint-colored compounds. For example, chalcones and aurones have been successfully engineered to produce yellow flowers, and flavones and flavonols used to change flower color hues. In this review, we summarize examples of successful flower color modification in floricultural plants focusing on recent advances in techniques.  相似文献   

14.
花色改造基因工程   总被引:10,自引:0,他引:10  
自1987年世界首例成功运用转基因技术改造矮牵牛花色以来,花色改造基因工程技术不断展现它在培育新花色品系上的无穷魅力。介绍了近年来运用基因工程技术成功改造花色的3种主要策略:(1)采用反义RNA及共抑制的方法来改变花颜色的深浅;(2)通过导入新基因产生新奇花色;(3)利用转座子构建特殊表达载体,随机激活花色合成的基因来产生嵌合花色。此外,还对转基因株花色不稳定原因进行了讨论。  相似文献   

15.
One of the colors of mink is Aleutian (aa)—a specific gun‐metal gray pigmentation of the fur—commonly used in combination with other color loci to generate popular colors such as Violet (aammpp) and Sapphire (aapp). The Aleutian color allele is a manifestation of mink Chédiak‐Higashi syndrome (CHS), which has been described in humans and several other species. As with forms of CHS in other species, we report that the mink CHS is linked to the lysosomal trafficking regulator ( LYST ) gene. Furthermore, we have identified a base deletion (c.9468delC) in exon 40 of LYST, which causes a frameshift and virtually terminates the LYST product prematurely (p.Leu3156Phefs*37). We investigated the blood parameters of three wild‐type mink and three CHS mink. No difference in the platelet number between the two groups was observed, but an accumulation of platelets between the groups appears different when collagen is used as a coagulant. Microscopic analysis of peripheral blood indicates giant inclusions in the neutrophils of the Aleutian mink types. Molecular findings at the LYST locus enable the development of genetic tests for analyzing the color selection in American mink.  相似文献   

16.
大豆种皮色相关基因研究进展   总被引:3,自引:0,他引:3  
Song J  Guo Y  Yu LJ  Qiu LJ 《遗传》2012,34(6):687-694
大豆种皮色在从野生大豆到栽培大豆的演变过程中逐渐从黑色变成黄色,是重要的形态标记,因此,大豆种皮色相关基因研究无论对进化理论还是育种实践都具有重要的意义。种皮颜色是通过各种花色苷的沉积而形成的。虽然很多植物色素沉积的分子调控机制比较明晰,但大豆中控制种皮颜色形成的基因尚未被完全了解。文章综述了控制大豆种皮色基因与位点的相关研究进展,主要有I、T、W1、R、O 5个经典遗传位点,其中I位点被定位在第8号染色体(A2连锁群)一个富含查尔酮合成酶(CHS)的区域,CHS基因在大豆中是多基因家族且同源性较高;定位于第6号染色体(C2连锁群)T位点的基因F3’H已被克隆和转基因验证,由于碱基缺失导致所编码的氨基酸缺少了保守域GGEK,从而不能与血红素结合而丧失功能;R位点定位在第9号染色体(K连锁群)A668-1与K387-1两标记之间,可能是R2R3类MYB转录因子,也可能是UDP类黄酮3-O糖基转移酶;O位点定位在第8号染色体(A2连锁群)Satt207与Satt493两标记之间,其分子特性尚不清楚;W1位点可能由F3’5’H基因控制遗传。  相似文献   

17.
花色是观赏植物的重要性状,创造新花色是花卉育种的主要目标之一。基因工程技术 在观赏植物花色育种上可弥补传统育种技术的缺陷,因此它在花色育种方面的研究和应用发 展迅速。本文从花的成色作用和花色素种类入手,介绍了花色苷的生物合成,并从花色基因 的种类和克隆、花色基因工程操作的策略和方法等角度综述了近年来观赏植物花色基因工程 的研究进展。同时对我国观赏植物花色基因工程的前景作一展望。  相似文献   

18.
观赏植物花色基因工程研究进展   总被引:37,自引:0,他引:37  
花色是观赏植物的重要性状,创造新花色是花卉育种的主要目标之一。基因工程技术在观赏植物花色育种上可弥补传统育种技术的缺陷,因此它在花色育种方面的研究和应用发展迅速。本文从花的成色作用和花色素种类人手,介绍了花色苷的生物合成,并从花色基因的种类和克隆、花色基因工程操作的策略和方法等角度综述了近年来观赏植物花色基因工程的研究进展。同时对我国观赏植物花色基因工程的前景作一展望。  相似文献   

19.
中国水仙查尔酮合酶cDNA的克隆及序列分析(简报)   总被引:6,自引:0,他引:6  
Chalcone synthase (CHS) is a key enzyme in the biosynthesis of all classes of flavonoids. The production of flower pigment is specifically regulated by the activity of CHS. We cloned the cDNA sequence of CHS-A gene from Narcissus by PCR and analyzed the coding sequence of gene. The result demonstrated that the sequence of the coding region was 1167bp, encoding a protein of 389 amino acid which was more than 80% homology with CHS of the other 8 plants, such as Nicotine abacus and Solana tuberosum.  相似文献   

20.
Summary The constitutive expression of an antisense chalcone synthase (CHS) gene in transgenic petunia plants results with high frequency in a reduced flower pigmentation due to a reduction in the CHS mRNA steady-state level in floral tissue. Here we show that this reduction is specific for CHS mRNA; chalcone flavanone isomerase (CHI) and dihydroflavonol reductase (DFR) mRNA steady-state levels are unaffected. However, in white floral tissue a severe reduction in CHI specific activity is found, accompanied by an altered signal for CHI protein on western blots. We find no correlation between the phenotypic effect of the antisense CHS gene and its chromosomal position. For some of the antisense CHS transformants the flower phenotype is highly variable. We demonstrate that pigmentation in these plants can be influenced by gibberellic acid and light, suggesting that the variable flower phenotype is caused by changes in physiological conditions during flower development. The results not only indicate that flower pigmentation in these plants reveals the variable expression of the antisense transgene, but also show that genomic sequences flanking the transgene may render its expression extremely susceptible to physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号