首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, five different in vitro assays, which together recapitulate much of kidney development, were used to examine the role of the Rho-associated protein serine/threonine kinase (ROCK) in events central to ureteric bud (UB) and metanephric mesenchyme (MM) morphogenensis, in isolation and together. ROCK activity was found to be critical for (1) cell proliferation, growth, and development of the whole embryonic kidney in organ culture, (2) tip and stalk formation in cultures of isolated UBs, and (3) migration of MM cells (in a novel MM migration assay) during their condensation at UB tips (in a UB/MM recombination assay). Together, the data indicate selective involvement of Rho/ROCK in distinct morphogenetic processes necessary for kidney development and that the coordination of these events by Rho/ROCK provides a potential mechanism to regulate overall branching patterns, nephron formation, and thus, kidney architecture.  相似文献   

2.
Developmentally regulated conversion of mesenchyme to epithelium   总被引:32,自引:0,他引:32  
P Ekblom 《FASEB journal》1989,3(10):2141-2150
Polarized epithelial cells perform many critical physiological functions in multicellular organisms. Recent embryological studies of the conversion of nonpolar mesenchymal cells to epithelium in the developing mouse kidney have provided vital information on the molecular mechanisms that initiate epithelial cell polarization. To become polar, the cells first attach to the basement membrane that is produced by the developing epithelial cells themselves. Of the basement membrane components, laminin has a key role in the development of epithelial cell polarity. Laminin is a multidomain glycoprotein composed of three subunits: A, B1, and B2. One binding site for epithelial cells is found in the carboxyl-terminal part of the A chain of laminin. Antibodies reacting with this part of laminin inhibit polarization of developing epithelial cells in organ cultures of embryonic kidneys. Expression studies also suggest that the A chain of laminin is important for epithelial cell polarization; the A chain appears when the cells begin to polarize, whereas B chains are expressed at an earlier stage of development. The studies of conversion of mesenchyme to epithelium suggest that morphogenesis can be controlled by differential expression of laminin chains.  相似文献   

3.
Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.  相似文献   

4.
5.
The c-ret gene encodes a receptor tyrosine kinase (RET) essential for the development of the kidney and enteric nervous system. Activation of RET requires the secreted neurotrophin GDNF (glial cell line-derived neurotrophic factor) and its high affinity receptor, a glycosyl phosphatidylinositol-linked cell surface protein GFRalpha1. In the developing kidney, RET, GDNF, and GFRalpha1 are all required for directed outgrowth and branching morphogenesis of the ureteric bud epithelium. Using MDCK renal epithelial cells as a model system, activation of RET induces cell migration, scattering, and formation of filopodia and lamellipodia. RET-expressing MDCK cells are able to migrate toward a localized source of GDNF. In this report, the intracellular signaling mechanisms regulating RET-dependent migration and chemotaxis are examined. Activation of RET resulted in increased levels of phosphatidylinositol 3-kinase (PI3K) activity and Akt/PKB phosphorylation. This increase in PI3K activity is essential for regulating the GDNF response, since the specific inhibitor, LY294002, blocks migration and chemotaxis of MDCK cells. Using an in vitro organ culture assay, inhibition of PI3K completely blocks the GDNF-dependent outgrowth of ectopic ureter buds. PI3K is also essential for branching morphogenesis once the ureteric bud has invaded the kidney mesenchyme. The data suggest that activation of RET in the ureteric bud epithelium signals through PI3K to control outgrowth and branching morphogenesis.  相似文献   

6.
Chondrogenesis of limb bud mesenchyme in vitro: stimulation by cations   总被引:7,自引:0,他引:7  
To analyze the nature of cell-cell interactions in chondrogenesis, two cations that influence these interactions, calcium and poly-L-lysine (PL), were tested for their effects on chondrogenesis in vitro. High density cultures of chick limb bud mesenchyme (Hamilton-Hamburger stages 23/24), were exposed to culture media containing calcium (0.6-3.3 mM) or PL (1-10 micrograms/ml). Both cations stimulated chondrogenesis in a dose-dependent manner, and also promoted cartilage formation in normally non-chondrogenic, low cell density cultures. Chondrogenesis was assayed based on cartilage nodule number, [35S]sulfate incorporation, and expression of type II collagen as detected by immunohistochemistry. The calcium effect was not mimicked by other divalent cations (Cd, Co, Ni, Mg, Mn, and Sr). The effect of PL was dependent on its Mr (greater than or equal to 14K) and charge, and was mimicked by poly-D-lysine but not by lysine or other analogs of PL or lysine (epsilon-amino caproic acid, lysozyme, poly-L-arginine, and spermidine). Calcium and PL probably act by different mechanisms since their effects were additive, and required their presence on different days of culture: calcium acted on Day 1, and PL on Day 2. It is proposed that calcium may play a role in the cell aggregation phase of chondrogenesis whereas PL, or a naturally occurring polypeptide of similar nature, may promote chondrogenesis by crosslinking specific anionic components of the cell surface or extracellular matrix.  相似文献   

7.
A consistent chondrogenesis takes place in micro high-density cultures derived from limb mesenchymal cells of chick embryos of stages 23-24. Flow-cytometric measurements of DNA content showed that cells in the phase of G1 or G0 made up 51% of the dispersed cell suspensions. The proportion of these cells increased to 71% by the onset of cartilage differentiation in day-2 cultures. This ratio was 84% when the voluminous matrix formation began on the 4th day of culturing. Thereafter, it increased to 90% by the 6th day, and to 93% by the 14th day. The results suggest that cartilage differentiates from G0 mesenchymal cells of the limb. In our measurements, however, the G0 phase includes all non-proliferative cell population which have identical DNA content with G1 cells. Therefore, the G0 phase contains also an increasing number of chondroblasts and chondrocytes as the chondrogenesis proceeds.  相似文献   

8.
Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.  相似文献   

9.
10.
11.
The mesenchymal cells of the chick tail bud comprise the remains of Hensen's node and the primitive streak after gastrulation. This mass of cells, situated at the caudal limit of the chick embryo, is morphologically homogeneous but pluripotent, with the ability to differentiate into a variety of tissues that are both ectoderm- and mesoderm-derived elsewhere in the embryo. These tissues include neuroectoderm, neurons, myoblasts and chondrocytes. As the factors regulating the differentiation of tail bud mesenchyme into so many cell types are unclear, and because the extracellular matrix (ECM) is known to have a profound effect on cellular differentiation in many embryonic systems, we studied the differentiation of tail bud mesenchyme explanted onto a variety of different ECM components as substrata. We report that the histogenetic potential of isolated tail buds in culture compares favourably with that in situ. Using various antibody markers, we have demonstrated that tail bud mesenchyme cultured upon different ECM components as substrata is able to differentiate into neurons, neuroepithelium, melanocytes, muscle and cartilage. Laminin and laminin-containing substrata (Matrigel) were found to promote the differentiation of neural crest derivatives (neurons and melanocytes) and neuroepithelial cells; type I collagen promoted both myogenesis and chondrogenesis; while type IV collagen promoted myogenesis only. We have therefore demonstrated that differentiation of tail bud mesenchyme in vitro is substratum-dependent.  相似文献   

12.
Distal chick wing bud mesenchyme from stages 19 to 27 embryos has been grown in micromass culture. The behavior of cultures comprising mesenchyme located within 350 microns of the apical ectodermal ridge (distal zone mesenchyme) was compared to that of cultures of the immediately proximal mesenchyme (subdistal zone cultures). In cultures of the distal mesenchyme from stages 21-24 limbs, all of the cells stained immunocytochemically for type II collagen within 3 days, indicating ubiquitous chondrogenic differentiation. At stage 19 and 20, this behavior was only observed in cultures of the distal most 50-100 microns of the limb bud mesenchyme. Between stages 25 and 27, distal zone cultures failed to become entirely chondrogenic. At all stages, subdistal zone cultures always contained substantial areas of nonchondrogenic cells. The different behavior observed between distal zone and corresponding subdistal zone cultures appears to be a consequence of the presence of somite-derived presumptive muscle cells in the latter, since no such difference was observed in analagous cultures prepared from muscle-free wing buds. The high capacity of the distal zone for cartilage differentiation supports a view of pattern formation in which inhibition of cartilage is an important component. However, its consistent behavior in vitro indicates that micromass cultures do not reflect the in vivo differences between the distal zones at different stages. The subdistal region retains a high capacity of cartilage differentiation and the observed behavior in micromass reflects interactions with a different cell population.  相似文献   

13.
Current in vitro investigations suggest that ectoderm plays a major role in limb morphogenesis by producing a diffusible factor which inhibits the chondrogenesis of the underlying mesenchyme. In the present work we report evidence supporting such an ectodermal role in vivo. Surgical removal of the marginal ectoderm from the third interdigit of chick leg buds at stages 27 to 30 induces the formation of PNA-positive prechondrogenic mesenchymal condensations 15 hr after the operation. The incidence of prechondrogenic condensations achieved 47, 95.2, and 92.8 of the experimental embryos of stages 27, 28, and 29, respectively. This high rate of prechondrogenic aggregate formation contrasted with a lower incidence of ectopic cartilage formation detectable by Alcian blue staining 40 hr after the operation. The sequential analysis of the experimental interdigits by means of peanut lectin labeling suggests that a number of prechondrogenic condensations undergo disaggregation 20 and 30 hr after the operation failing to form fully differentiated cartilages. When ectoderm removal was accompanied by the elimination of a variable amount of interdigital mesenchyme the incidence of prechondrogenic aggregates showed little differences but the formation of fully differentiated cartilages was reduced at a rate proportional to the amount of interdigital mesenchyme removed. From this study it can be concluded that the ectoderm in vivo appears to inhibit the process of aggregation of the mesenchymal cells to form prechondrogenic condensations. Furthermore our results suggest that as observed in vitro (C. P. Cotrill, C. Archer, and L. Wolpert, 1987, Dev. Biol. 122, 503-515) the transformation of prechondrogenic aggregates into fully differentiated cartilage requires the involvement of a critical amount of mesenchymal cells.  相似文献   

14.
During development, cell migration plays an important role in morphogenetic processes. The construction of the skeleton of the sea urchin embryo by a small number of cells, the primary mesenchyme cells (PMCs), offers a remarkable model to study cell migration and its involvement in morphogenesis. During gastrulation, PMCs migrate and become positioned along the ectodermal wall following a stereotypical pattern that determines skeleton morphology. Previous studies have shown that interactions between ectoderm and PMCs regulate several aspects of skeletal morphogenesis, but little is known at the molecular level. Here we show that VEGF signaling between ectoderm and PMCs is crucial in this process. The VEGF receptor (VEGFR) is expressed exclusively in PMCs, whereas VEGF expression is restricted to two small areas of the ectoderm, in front of the positions where the ventrolateral PMC clusters that initiate skeletogenesis will form. Overexpression of VEGF leads to skeletal abnormalities, whereas inhibition of VEGF/VEGFR signaling results in incorrect positioning of the PMCs, downregulation of PMC-specific genes and loss of skeleton. We present evidence that localized VEGF acts as both a guidance cue and a differentiation signal, providing a crucial link between the positioning and differentiation of the migrating PMCs and leading to morphogenesis of the embryonic skeleton.  相似文献   

15.
It has been postulated that fibroblast growth factor (FGF) treatment of cultured limb bud mesenchyme cells reinforces the lateral inhibitory effect, but the cells also show accelerated pattern appearance. In the present study, we analyze how a small change in a specific parameter affects the speed of pattern appearance in a Turing reaction-diffusion system using linear stability analysis. It is shown that the sign of the change in appearance speed is qualitatively decided if the system is under the diffusion-driven instability condition, and this is confirmed by numerical simulations. Numerical simulations also show that a small change in parameter value induced easily detectable differences in the appearance speed of patterns. Analysis of the Gierer-Meinhardt model revealed that a change in a single parameter can explain two effects of FGF on limb mesenchyme cells—reinforcement of lateral inhibition and earlier appearance of pattern. These qualitative properties and easy detectability make this feature a promising tool to elucidate the underlying mechanisms of biological pattern formationwhere the quantitative parameters are difficult to obtain.  相似文献   

16.
A recently discovered human plasma protein, tetranectin (TN), which has previously been demonstrated immunohistochemically within various endocrine tissues, was in this study identified in an additional number of epithelial and mesenchymal cells by two polyclonal antibodies and one monoclonal using the conventional immunoperoxidase staining technique and a modification of the CLONO-GLAD procedure. TN was found in endothelial and epithelial tissues, particularly in cells with a high turn-over or storage function such as gastric parietal and zymogenic cells, absorptive surface epithelium of the small intestine, ducts of exocrine glands and pseudostratified respiratory epithelium. Also mesenchymal cells produced a TN positive staining reaction, which was most conspicuous in mast cells, but also present in some lymphocytes, plasma cells, macrophages, granulocytes, striated and smooth muscle cells and fibroblasts. SDS-PAGE and Western blotting analysis of cultured human embryonal fibroblasts (WI-38) showed that the cells besides TN contain another protein with a molecular weight of 82,000. As this protein, however, reacted with our affinity purified antibodies it probably represents a precursor of TN or a protein with a molecular weight of approximately 60,000, which is covalently linked to TN. This and the fact that TN shows amino acid sequence homologies to the carboxyterminal part of the asialo-glycoprotein receptor and a cartilage proteoglycan core protein as well a binding affinity to plasminogen points to TN as being part of a larger molecule, which possibly has been cleaved by proteolysis at the cellular site and then passed into the blood, where it polymerizes into a tetramer.  相似文献   

17.
The vertebrate liver, pancreas and lung arise in close proximity from the multipotent foregut endoderm. Tissue-explant experiments uncovered instructive signals emanating from the neighbouring lateral plate mesoderm, directing the endoderm towards specific organ fates. This suggested that an intricate network of signals is required to control the specification and differentiation of each organ. Here, we show that sequential functions of Wnt2bb and Wnt2 control liver specification and proliferation in zebrafish. Their combined specific activities are essential for liver specification, as their loss of function causes liver agenesis. Conversely, excess wnt2bb or wnt2 induces ectopic liver tissue at the expense of pancreatic and anterior intestinal tissues, revealing the competence of intestinal endoderm to respond to hepatogenic signals. Epistasis experiments revealed that the receptor frizzled homolog 5 (fzd5) mediates part of the broader hepatic competence of the alimentary canal. fzd5 is required for early liver formation and interacts genetically with wnt2 as well as wnt2bb. In addition, lack of both ligands causes agenesis of the swim bladder, the structural homolog of the mammalian lung. Thus, tightly regulated spatiotemporal expression of wnt2bb, wnt2 and fzd5 is central to coordinating early liver, pancreas and swim bladder development from a multipotent foregut endoderm.  相似文献   

18.
19.
Summary The developing avian limb bud is a classic example of an epithelial-mesenchymal interaction. Numerous attempts at maintenance of the epithelia in culture have been predominantly unsuccessful. The fate of the isolated epithelial sheet of the limb bud [including the apical ectodermal ridge (AER)] in culture may depend at least in part on the integrity of its basal lamina following isolation. In this study the distal epithelium of the stage 23 limb bud was isolated utilizing trypsin and Dispase II in a variety of procedures. The integrity of the basal lamina of limb epithelium immediately upon isolation and after 2 h in culture was determined by immunofluorescent staining for laminin, and electron microscopy. In epithelial sheets isolated with Dispase II a direct relationship was observed between maintenance of the extracellular matrix at isolation and the preservation of the tissue structure and cytoarchitecture following 2 h in culture. In contrast, there was an accelerated deterioration during incubation of the tissue isolated with trypsin, independent of isolation conditions and integrity of basal lamina after isolation. Short-term maintenance of limb bud epithelial structure and cytoarchitecture after enzymatic isolation seems correlative to the maintenance of extracellular matrix at the epithelial basal surface.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号