首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kupffer cells are the sinusoidal macrophages of the liver. Using ultrastructural phosphatase cytochemical methods, we examined the relationship between the Golgi apparatus, GERL, and lysosomes of Kupffer cells in fetal rat livers identified, in part, by their ability to phagocytize intravenously injected latex spheres. Thiamine pyrophosphatase (TPPase) activity was localized to the inner Golgi saccules and some vesicles in the Golgi region but not to GERL. A TPPase-like activity, demonstrable in lysosomes, was abolished by sodium fluoride but not suppressed by the alkaline phosphatase inhibitors L-cysteine and L-p-bromotetramisole. Acid phosphatase (AcPase) was localized by GERL, some coated vesicles, and in lysosomes, but not to the Golgi stacks. Continuities between GERL and lysosomes were observed. Phagosomes containing internalized latex spheres received TPPase and AcPase sequentially. TPPase was localized in phagosomes immediately after latex administration. AcPase activity was not found here until at least 10 minutes following the injection of the particulates. Our findings indicate that Kupffer cell lysosomes are derived from GERL, but also suggest that phagosomes may receive material packaged by the Golgi apparatus as well as GERL.  相似文献   

2.
H Fujita  H Okamoto 《Histochemistry》1979,64(3):287-295
The fine structural localization of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) was examined in pancreatic acinar cells of fasting and fed mice. The results were not affected by these conditions. TPPase activity was positive in two and sometimes three cisternae of the inner Golgi lamellae as well as in the condensing vacuoles of the trans area, but negative in the rigid lamellae and small vesicles of the trans area. AcPase activity was demonstrated in two and sometimes three cisternae of inner Golgi lamellae, condensing vacuoles, rigid lamellae, lysosomes and smooth or coated vesicles in the trans area. The inner Golgi lamellae and the condensing vacuoles were positive for both enzyme activities. From these facts, the lysosome is considered to be formed not only in the GERL system but also through the rough endoplasmic reticulum-Golgi apparatus route. It is reasonable to consider that Novikoff's GERL is not independent from the Golgi apparatus but represents a part of this organelle.  相似文献   

3.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

4.
Summary The fine structural localization of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) was examined in pancreatic acinar cells of fasting and fed mice. The results were not affected by these conditions. TPPase activity was positive in two and sometimes three cisternae of the inner Golgi lamellae as well as in the condensing vacuoles of the trans area, but negative in the rigid lamellae and small vesicles of the trans area. AcPase activity was demonstrated in two and sometimes three cisternae of inner Golgi lamellae, condensing vacuoles, rigid lamellae, lysosomes and smooth or coated vesicles in the trans area. The inner Golgi lamellae and the condensing vacuoles were positive for both enzyme activities. From these facts, the lysosome is considered to be formed not only in the GERL system but also through the rough endoplasmic reticulum-Golgi apparatus route. It is reasonable to consider that Novikoff's GERL is not independent from the Golgi apparatus but represents a part of this organelle.This study was supported by a grant from the Japan Educational Ministry  相似文献   

5.
The present electron microscopic cytochemical investigation was undertaken to characterize the alterations in the golgi apparatus and GERL of rat parotid acinar cells during ethionine intoxication and recovery. Although the Golgi apparatus and GERL were reduced in size, and some broadening of the Golgi saccules occurred as the result of ethionine treatment, the relative localization of thiamine pyrophosphatase (TPPase) activity in the Golgi saccules, and acid phosphatase activity (AcPase) in GERL, remained unchanged. Shortly after ethionine treatment was stopped, a dramatic redistribution of enzyme activities was noted. Within the first 24 hours of recovery, the Golgi apparatus began to enlarge, and the content of secretory granules increased. By day 3 of recovery, cisternae morphologically identifiable as GERL and forming secretory granules possessed TPPase activity, while AcPase activity was virtually undetectable. After seven days of recovery, the Golgi apparatus and GERL appeared both morphologically and cytochemically normal. The enzyme modulation observed during recovery may be correlated with increased secretory granule production. Furthermore, the presence of TPPase activity in GERL and forming secretory granules lends support to the suggestion that GERL may be derived from the trans Golgi saccule.  相似文献   

6.
The distribution of thiamine pyrophosphatase (TPPase) and acid phosphatase (AcPase) has been examined in resting parotid acinar cells as well as during decreased and increased secretory granule production. In resting acinar cells, TPPase activity was restricted to the trans Golgi saccules and AcPase activity was localized in GERL and immature secretory granules. Although secretory granule production is diminished during ethionine intoxication, no significant alteration in the distribution of either TPPase or AcPase was noted. However, marked changes in enzyme localization, especially of TPPase, occurred during accelerated secretory granule production. The alterations were essentially the same for all of the conditions studied (recovery from ethionine treatment, recovery from a protein depletion diet, secretory stimulation with isoproterenol, and postnatal maturation of the parotid gland). During maximal secretory granule production, TPPase activity was localized not only in the trans Golgi saccules, but also in GERL-like cisternae and immature secretory granules. The immature secretory granules were often in continuity with the GERL-like cisternae. At the same time that the TPPase activity was increased, the AcPase activity was frequently diminished. These modulations in enzyme activity provide evidence that GERL is derived from the trans Golgi saccule.  相似文献   

7.
Summary A cytochemical study of the Golgi apparatus in the developing oocyte of the golden hamster was carried out using the TPPase, AcPase and zinc iodide-osmium tetroxide (ZnOs) techniques. Tissue from both immature and sexually mature animals was investigated.Peak TPPase activity was found in pre-growth oocytes in ovaries from sexually mature adults. Some activity was also present in SER in the peripheral cytoplasm of growing oocytes. AcPase activity was found only after the onset of oocyte growth. It was present in Golgi cisternae and associated vesicles and in some profiles of peripheral SER. No structures corresponding to GERL were identified. Strong staining with ZnOs was seen, at all stages studied, in certain Golgi vesicles and short tubules but not in the cisternae unless the oocyte was atretic. Weaker ZnOs staining was characteristic of ER throughout the oocyte.With all techniques there was a falling off of reactivity as oocyte size increased. Within a single oocyte some Golgi bodies were negative while others were positive, with both TPPase and AcPase techniques. This suggests that two or more functional types of this organelle are present within the developing oocytes.We would like to thank Dr. K.N. Christie for his interest and helpful suggestions regarding the enzyme techniques  相似文献   

8.
The structure and cytochemistry of the Golgi apparatus and GERL of rat parotid acinar cells was studied after in vivo secretory stimulation with isoproterenol. Discharge of mature secretory granules was complete within 1 hr after isoproterenol injection, but immature granules in the Golgi region or near the lumen were not released. At early times (1-5 hr) after isoproterenol, acid phosphatase (AcPase) activity was markedly increased in GERL and immature secretory granules compared to uninjected controls. GERL appeared increased in extent and numerous continuities with immature granules were observed. Reaccumulation of mature secretory granules was first evident at 5 hr, and was almost complete by 16 hr after isoproterenol. Thiamine pyrophosphatase (TPPase) activity, normally restricted to the trans Golgi saccules, was frequently present in immature granules during this time. Narrow cisternae resembling GERL, occasionally in continuity with immature granules, also contained TPPase reaction product. By 16-24 hr after stimulation, the activity and distribution of AcPase and TPPase were similar to control cells. These results demonstrate the dynamic nature of the Golgi apparatus and GERL in parotid acinar cells, and emphasize the close structural and functional relationship between these two structures.  相似文献   

9.
The reactivity of the various components of the Golgi apparatus of rat spermatids for three phosphatase activities (nicotinamide adenine dinucleotide phosphatase, NADPase; thiamine pyrophosphatase, TPPase; cytidine monophosphatase, CMPase) and the incorporation of 3H-fucose by the spermatids was analyzed at the 19 steps of spermiogenesis, i.e., during and after this organelle elaborated the glycoprotein-rich acrosomic system. During steps 1-3, the Golgi apparatus produced, in addition to the proacrosomic granules, multivesicular bodies that became associated with the chromatoid body. NADPase was located within the four of five intermediate saccules of Golgi stacks, and TPPase was found in the last one or two saccules on the trans aspect of the stacks from steps 1 to 17 of spermiogenesis. CMPase was located within the thick saccular GERL elements found in the trans region of the Golgi apparatus from steps 1 to 7 of spermiogenesis, but the CMPase-positive GERL disappeared from the Golgi apparatus after its detachment from the acrosomic system at step 8. Th acrosomic system itself was reactive from CMPase and TPPase but was negative for NADPase, while the multivesicular bodies were CMPase and NADPase positive but unreactive for TPPase. Tritiated-fucose was readily incorporated within the Golgi apparatus of steps 1-17 spermatids; in steps 1-7 it was subsequently incorporated within the acrosomic system and multivesicular bodies. These various data indicated (1) that the Golgi apparatus of spermatids, although it loses its CMPase-positive GERL element in step 8, retains evidence of functional capacity until it degenerates in step 17; (2) that in early spermatids the various saccular components of the Golgi are specialized with respect to enzymatic activities; and (3) that each Golgi region may contribute in a coordinated fashion to the formation of the acrosomic system and multivesicular bodies.  相似文献   

10.
Phosphatase cytochemistry was used to distinguish between the Golgi apparatus and GERL (considered as a specialized region of endoplasmic reticulum [ER] at the inner [trans] aspect of the Golgi stack) in pancreatic exocrine cells of guinea pig, rat, rabbit, and hamster. The trans element of the Golgi stack exhibits thiamine pyrophosphatase (TPPase) but no acid phosphatase (AcPase) activity. In contrast, GERL shows AcPase but no TPPase activity. The nascent secretory granules, or condensing vacuoles, are expanded cisternal portions of GERL. Continuities of condensing vacuoles with rough ER are suggested, and it is proposed that some secretory components may have direct access to the condensing vacuoles from ER. Connections of Golgi apparatus with GERL were not seen.  相似文献   

11.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

12.
Somatotrophs from male rat anterior pituitary were used to investigate the formation of secretory granules. When enzymatically dispersed cells were incubated with cationized ferritin (CF) for 15 min, CF labeled immature secretory granules, but not mature granules of somatotrophs. Most immature granules labeled by CF transformed to the mature types within 120 min. This indicates that the fusion of endocytic vesicles with the immature granules occurs during the maturation process of secretory granules. The internalized CF was distributed not only in the immature secretory granules, but also in the peripheral region of trans Golgi cisternae or GERL. Enzyme cytochemistry revealed that acid phosphatase-positive cisternae (GERL) were the main site for secretory granule formation, and was devoid of thiamine pyrophosphatase (TPPase) activity. A small number of secretory granules were also present in the peripheral regions of TPPase-positive Golgi cisternae. The granule-forming sites, however, lacked TPPase activity, while the remaining region of the same cisterna showed the positive enzyme activity. This indicates that the granule-forming region at the periphery of Golgi cisterna is different from the remaining part of the same cisterna in terms of cytochemical properties. This probably results from the insertion of endocytic vesicle membrane, since the same granule-forming sites preferentially fused with CF-labeled small vesicles which lacked cytochemical TPPase activity. Taken together. Our results suggest that the membrane of secretory granules is modified during the granule formation, at least partly by the fusion of endocytic small vesicles with Golgi cisternae (or GERL), and with immature secretory granules.  相似文献   

13.
This investigation focuses on the identification, distribution, and transport of intracellular membrane systems during mitosis. The membranes of the Golgi apparatus can be identified cytochemically by staining for acid phosphatase (acPase) and thiamine pyrophosphatase (TPPase) activity. Using this approach we are able to study the disintegration of the Golgi apparatus during mitosis and to follow the dislocation as well as the organized reappearance of Golgi elements after the completion of mitosis. We are able to demonstrate that during mitosis the activity of both enzymes is strong enough to react with the substrate applied during the staining procedure. Furthermore, we observe a characteristic pattern of membrane distribution in mitotic cells. During interphase the TPPase reaction is characteristically limited to one or two cisternae of a dictyosomal stack. The acPase reaction stains the membranes of the total stack, of the GERL, of some vesicles and cisternae near the dictyosomes and lysosomes. After the mitotic breakdown of the dictyosomal stacks the forming vesicles still stain positively and are distributed over the entire cytoplasm. At late anaphase and early telophase the enzyme activity occurs not only in the reconstituting dictyosomes but also in the nuclear envelope and in some ER cisternae. The extended spectrum of membrane structures indicating Golgi enzyme activity becomes obvious. This phenomenon favors the idea that at least some functions of the Golgi apparatus persist during mitosis.  相似文献   

14.
When a semisynthetic diet containing 1% orotic acid (OA) is fed to rats, the endoplasmic reticulum (ER) of hepatocytes vesiculates and lipoprotein (LP) droplets accumulate within the vesicles. When clofibrate (ethyl chlorophenoxyisobutyrate, CPIB) is added to the orotic acid-rich diet, the ER cisternae reform and the LP is mobilized through the reconstituted ER. A remarkable restoration of normal hepatocyte ultrastructure occurs except for a few organelles. From their morphological appearance it was suggested that cisternae which became dilated with small LP particles were part of GERL, abnormally enlarged. The present communication validates this interpretation through ultrastructural cytochemistry which can distinguish GERL from the adjacent Colgi apparatus. GERL shows acid phosphatase (AcPase) but not thiamine pyrophosphatase (TPPase) activity. In contrast, the adjacent Golgi element shows thiamine pyrophosphatase but not acid phosphatase activity. From such cytochemical studies we have recently proposed that GERL in normal rat hepatocytes may be involved in transforming LP particles, by enzymes like lipases that were presumed to be present in this hydrolase-rich portion of smooth ER. In the situation studied in this communication, the addition of ethyl chlorophenoxyisobutyrate to the diet causes the release from the ER of large amounts of LP to the Golgi apparatus and to GERL. Apparently the capacity of GERL to metabolize LP is exceeded and lipid accumulates in the residual bodies.  相似文献   

15.
Treatment of rats with colchicine administered intraperitoneally at a dosage of 0.5 mg per 100 g of body weight for 6 hr induces extensive accumulations of tubular-vesicular and cisternal organelles in the absorptive cells of the small intestine. The formation of these organelle aggregates coincides with a reduction of microtubules and massive changes in the cellular organization including alterations of the Golgi apparatus and the plasma membrane. In most cases the accumulated tubules and vesicles contain a homogeneous electron-dense matrix, the cisternae often having the character of rigid lamellae. The organelle aggregates mainly occupy apical cell portions subjacent to the terminal web as well as basal cellular regions close to the basolateral plasma membrane. Tubular-vesicular as well as cisternal organelles react strongly for thiamine pyrophosphatase (TPPase), inosine diphosphatase (IDPase), acid phosphatase (AcPase) and trimetaphosphatase (TMPase). The staining pattern of TMPase differs from that of the other phosphatases in that the reaction is restricted to the colchicine-induced tubular-vesicular and cisternal aggregates, whereas TPPase, IDPase, and AcPase, respectively, also appear over Golgi stacks, multivesiculated bodies and plasma membrane. This phosphatase reactivity indicates the lysosomal character of the organelle aggregates.  相似文献   

16.
This study characterizes the cytochemical properties of the Golgi complex, the structure which corresponds to Golgi complex-endoplasmic reticulum-lysosomes (GERL), and the granule population in luteal cells of guinea pigs at the time of maximum progesterone secretion, in material fixed by vascular perfusion, a method particularly suited for preserving both fine structure and enzyme activity. The distribution of several marker enzymes was determined by electron microscope cytochemistry. Acid phosphatase (ACPase) and arylsulfatase were used to identify structures containing lysosomal proteins. To resolve specific problems, additional cytochemical markers were employed: localization of thiamine pyrophosphatase (TPPase) (in the Golgi complex) and alkaline phosphatase (ALPase) (a plasma membrane marker), and prolonged osmication (a generally accepted method of marking the outer cisterna of the Golgi complex). The results demonstrate that at the time of peak steroid secretion the Golgi complex in luteal cells, in marked contrast to that of most other cell types, typically displays intense ACPase activity in all of its cisternae. Similarly, all Golgi cisternae stain after prolonged osmication and may show TPPase activity. On the other hand, GERL in luteal cells of this age, unlike that in most cells, commonly shows low levels of, or lacks, ACPase activity. However, GERL resembles that of other cell types in being TPPase-negative and in being unstained by treatment with aqueous OsO4. GERL and some Golgi cisternae are reactive for ALPase. The granule population in luteal cells of this stage consists of lysosomes, multivesicular bodies, electrontransparent vacuoles, and microperoxisome-like bodies. These results form a base line with which luteolytic changes described in the companion study (Paavola, L.G. 1978. The corpus luteum of the guinea pig. III. Cytochemical studies on the Golgi complex and GERL during normal postpartum regression of luteal cells, emphasizing the origin of lysosomes and autophagic vacuoles. J. Cell. Biol. 79:59--73.) can be compared.  相似文献   

17.
The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.  相似文献   

18.
Kupffer cells of fetal rat liver were examined by ultrastructural cytochemical methods to reveal acid phosphatase (AcPase) activity in lysosomes. Elongated cisternae, 940-1150 A in width containing AcPase reaction product, were identified in these cells. These cisternae were sometimes in continuity with phagosomes containing engulfed erythrocytes. Observations suggest that such cisternae may partly encircle these phagosomes. The relationships of these cisternae to GERL (Golgi Endoplasmic Reticulum Lysosomes) is discussed.  相似文献   

19.
The gastrodermal Golgi apparatus of adult Schistosoma mansoni displays two distinct morphologies. In one type, there is an identifiable cis (forming) face where vesicles from the endoplasmic reticulum fuse to form the cisternae. A morphological change occurs in the cisternae as the trans (emitting) face is approached with the cisternae becoming progressively flattened. The cisternae at the emitting face produce a membrane-bound secretory granule with moderately electron-dense contents and a vacuolar structure that may be analogous to a condensing vacuole as reported in several vertebrate secretory cells. In a second type, vesicles possessing a thicker membrane than those of the transfer vesicles are observed at the emitting face. They are not observed when the secretory granules are present. Several cytochemical markers were used to aid in studying the polarity of the Golgi apparatus. Enzymes studied were thiamine pyrophosphatase (TPPase) (EC 3.6.1.1), nucleoside diphosphatase (NDPase) (EC 3.6.1.6) using uridine diphosphate as a substrate, and nicotinamide adenine dinucleotide phosphatase (NADPase) (EC 3.1.3.2). Reaction products from all enzyme markers were observed in the cisternae and, to some extent, in the transfer vesicles. At times, NADPase and TPPase reaction products were observed in all cisternae and in the transfer vesicles of the Golgi. When this distribution was evident, the latter vesicles were observed in clusters occasionally fusing with lipid-like globules dispersed throughout the gastrodermis. Heterogeneity in cisternae was observed when NDPase, TPPase, and osmium reduction techniques were used. NDPase activity was limited to the middle cisternae while reduced osmium was observed in the outer two cisternae and in some transfer vesicles. TPPase reaction product was also observed in the secretory granules and in the condensing vacuoles. It is hypothesized that a functional bipolarity may be demonstrated by the Golgi. Under certain stress conditions, the forming face of the Golgi may package lysosomal enzymes while the emitting region of the Golgi appears to be responsible for the packaging of the secretory granules. The fusion of transfer vesicles and, at times, secretory granules with lipid-like globules is postulated to represent a mechanism by which enzymes may be transported to the lumen of the cecum.  相似文献   

20.
Data from studies of ascitic cells of Chang hepatoma have shown that acid phosphatase (ACPase) can be localized simultaneously within the trans portion of the Golgi apparatus and in tubules of the Golgi-endoplasmic reticulum-lysosome (GERL) system. Reaction products of thiamine pyrophosphatase (TPPase) were also present consistently within trans elements of the Golgi apparatus and within GERL tubules. These new findings indicate that a close physiological association may exist between the Golgi apparatus and GERL, a concept that is consistent with previous observations of fibroblasts. When horseradish peroxidase (PO) is injected intraperitoneally into ascites-bearing rats and the ascitic cells withdrawn at different time intervals, PO could be localized within vesicles and tubules in the GERL region but could not be detected within the Golgi apparatus. Bulk-phase endocytosis requires a long time and a high concentration of PO to occur. The presence of PO within GERL indicates that this organelle may play a role in transporting or processing of certain exogenous proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号