首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data from studies of naps and of shifted sleep were used to determine the relationship between two measures of rapid eye movement (REM) sleep (percentage of REM in the first 2 hr of sleep and REM latency) and prior wakefulness. For each sample, we calculated the difference between the observed value and that predicted by a cosine function that estimated the circadian rhythm of REM sleep propensity. The difference values were found to correlate reliably with hours and log hours of prior wakefulness. We conclude that while REM sleep is regulated in part by an endogenous circadian oscillator, it is also influenced by the duration of prior wakefulness.  相似文献   

2.
Sleep EEG spectral analysis in a diurnal rodent:Eutamias sibiricus   总被引:2,自引:0,他引:2  
1. Sleep was studied in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. Analysis of the distribution of wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep over the 24 h period (LD 12:12) showed that total sleep time was 27.5% of recording time during the 12 h light period and 74.4% during the 12 h dark period. Spectral analysis of the sleep EEG revealed a progressive decay in delta power density in NREM sleep during darkness. Power density of the higher frequencies increased at the end of darkness. Power density of the higher frequencies decreased and that of the lower frequencies increased during light. 2. Analysis of the distribution of vigilance states under three different photoperiods (LD 18:6; 12:12; 6:18) revealed that changes in daylength mainly resulted in a redistribution of sleep and wakefulness over light and darkness. Under long days the percentage of sleep during light was enhanced. The time course of delta power density in NREM sleep was characterized by a long rising part and a short falling part under long days, while a reversed picture emerged under short days. As a consequence, the power density during days. As a consequence, the power density during light was relatively high under long days. 3. After 24 h sleep deprivation by forced activity, no significant changes in the percentages of wakefulness and NREM were observed, whereas REM sleep was slightly enhanced. EEG power density, however, was significantly increased by ca. 50% in the 1.25-10.0 Hz range in the first 3 h of recovery sleep. This increase gradually decayed over the recovery night. 4. The same 24 h sleep deprivation technique led to a ca. 25% increase in oxygen consumption during recovery nights. While the results of the EEG spectral analysis are compatible with the hypothesis that delta power density reflects the 'intensity' of NREM sleep as enhanced by prior wakefulness and reduced by prior sleep, such enhanced sleep depth after sleep deprivation is not associated with reduced energy expenditure as might be anticipated by some energy conservation hypotheses on sleep function.  相似文献   

3.
Sleep-wake regulation involves reciprocal interactions between sleep- and wake-promoting processes that inhibit one another. To uncover the signatures of the opponent processes underlying ultradian sleep cycles, principal component analysis was performed on the sets of 16 single-Hz log-transformed electroencephalographic (EEG) power densities (1-16?Hz frequency range). Data were collected during unrestricted night sleep followed by 9 20-min naps (14 women aged 17-55 yrs) and during 12 20-min naps after either restriction or deprivation of sleep (9 males and 9 males, respectively, aged 18-22 yrs). It was found that any subset of power spectra could be reduced to the invariant four-principal component structure. The time courses of scores on these four components might be interpreted as the spectral EEG markers of the kinetics of two pairs of opponent chronoregulatory processes. In a sequence of ultradian sleep cycles, the 1st and 2nd components represent the alternations between competing drives for sleep and wakefulness, respectively, whereas the 3rd and 4th components reflect the alternations between light and deep sleep, respectively. The results suggest that principal component structuring of EEG spectrum can be employed for derivation of the parameters of the quantitative models conceptualizing the three major aspects of sleep-wake regulation—homeostatic, circadian, and ultradian processes.  相似文献   

4.
Somatosensory (SSctx) and visual cortex (Vctx) EEG were evaluated in rats under a 12:12-h light-dark (LD) cycle and under constant light (LL) or constant dark (DD) in each sleep or wake state. Under LD conditions during light period, relative Vctx EEG slow-wave activity (SWA) was higher than that of the SSctx, whereas during dark period, relative Vctx EEG SWA was lower than in the SSctx. These effects were state specific, occurring only during non-rapid eye movement sleep (NREMS). Under LL conditions, the duration of REMS and NREMS during the period that would have been dark if the LD cycle had continued (subjective dark period) was greater than under LD conditions. DD conditions had little effect on the duration of NREMS and REMS. SSctx and Vctx EEG SWA were suppressed by LL during the subjective dark period; however, the degree of Vctx SWA suppression was smaller than that of the SSctx. DD conditions during the subjective light period enhanced SSctx SWA, whereas Vctx SWA was suppressed. Under LL conditions during the subjective dark period, Vctx EEG power was higher than that of the SSctx across a broad frequency range during NREMS, REMS, and wakefulness. During DD, SSctx EEG power during NREMS was higher than that of the Vctx in the delta wave band, whereas SSctx power during REMS and wakefulness was higher than that of the Vctx in frequencies higher than 8 Hz. We concluded that the SSctx and Vctx EEGs are differentially affected by light during subsequent sleep. Results provide support for the notion that regional sleep intensity is dependent on prior regional afferent input.  相似文献   

5.
Sleep-wake regulation involves reciprocal interactions between sleep- and wake-promoting processes that inhibit one another. To uncover the signatures of the opponent processes underlying ultradian sleep cycles, principal component analysis was performed on the sets of 16 single-Hz log-transformed electroencephalographic (EEG) power densities (1–16?Hz frequency range). Data were collected during unrestricted night sleep followed by 9 20-min naps (14 women aged 17–55 yrs) and during 12 20-min naps after either restriction or deprivation of sleep (9 males and 9 males, respectively, aged 18–22 yrs). It was found that any subset of power spectra could be reduced to the invariant four–principal component structure. The time courses of scores on these four components might be interpreted as the spectral EEG markers of the kinetics of two pairs of opponent chronoregulatory processes. In a sequence of ultradian sleep cycles, the 1st and 2nd components represent the alternations between competing drives for sleep and wakefulness, respectively, whereas the 3rd and 4th components reflect the alternations between light and deep sleep, respectively. The results suggest that principal component structuring of EEG spectrum can be employed for derivation of the parameters of the quantitative models conceptualizing the three major aspects of sleep-wake regulation—homeostatic, circadian, and ultradian processes. (Author correspondence: )  相似文献   

6.
The effects of a prolonged cognitive task prior to sleep onset on subsequent sleep patterns were examined in 14 healthy subjects who were randomly assigned to two conditions. Those assigned to a working condition were asked to engage in a prolonged cognitive task until close to bedtime (0200 hours), whereas those assigned to a relaxing condition were instructed to perform the same task during the daytime and then to stay awake in a relaxed state until the same bedtime as the work group. Visual scoring of sleep stages showed no significant differences in the amounts of stage 4 and slow wave sleep (stage 3+4) between the two conditions. Power spectrum analysis of sleep electroencephalogram (EEG) revealed that the EEG (0.5–4.0 Hz) power density in the first non-rapid eye movement (REM)-REM sleep cycle was significantly lower following the prolonged cognitive task prior to sleep onset than following the relaxed wakefulness and that the decreased EEG power density in the first sleep cycle was not compensated for during the later part of the sleep. These findings would indicate that the prolonged cognitive task prior to sleep onset may suppress EEG power density during subsequent sleep, suggesting that such a task may interfere with the development of deep non-REM sleep.  相似文献   

7.
Four individuals of the lizard Ctenosaura pectinata were chronically implanted for electroencephalographic (EEG), electromyographic (EMG) and electro-oculographic (EOG) recordings. Four different vigilance states were observed throughout the nyctohemeral cycle. These states were: Active wakefulness (Aw), quiet wakefulness (Qw), quiet sleep (Qs) and active sleep (As). Each state displayed its own behavioral and electrophysiological characteristics. EEG waves were similar during Aw and Qw but they diminished in amplitude and frequency when passing from these states to Qs, and both parameters increased during As. Muscular activity was intense in Aw, it decreased during Qw and almost disappeared during Qs. This activity reappeared in a phasic way during As, coinciding with generalized motor manifestations. Ocular activity was intense during Aw but minimal during Qw, it disappeared in Qs and was present intermittently in As. Aw, Qw, Qs and As occupied 5.9%, 25.7%, 67.7% and 0.6% of the 24 hr period, respectively. The frequency and duration of As episodes showed great inter-animal variability and the mean duration was of 12.9 sec. Stimuli reaction threshold was highest during sleep. In conclusion, the lizard Ctenosaura pectinata exhibit two sleep phases (Qs and As) that may be assimilated to slow wave sleep (SWS) and paradoxical sleep (PS) of birds and mammals.  相似文献   

8.
Maintenance of wakefulness is established to accomplish muscarinic (M-) cholinergic receptor activation in the ventrolateral preoptic area of the hypothalamus. The "muscarinic" wakefulness is characterized by enhancement of electroencephalogram (EEG) power spectra in the 0.75-12 Hz band and by increase in brain temperature. Activation of nicotinic (N-) cholinergic receptors of the area produces an increase in the duration of slow wave sleep, EEG power spectra reduction in the 0.75-7 Hz band, a decrease in brain temperature. And its hyperactivation leads to wakefulness, during its episodes the brain temperature decreases. During M- and N-cholinergic receptor blockade, the sleep-wakefulness and thermoregulation changes opposite to their activation were found. It is suggested that M- and N-cholinergic receptors of the ventrolateral preoptic area in pigeons participate in the sleep-wakefulness regulation and this effect is related to influence of this area on GABA-ergic system.  相似文献   

9.
The study of electroencephalographic (EEG) activity during sleep in the spider monkey has provided new insights into primitive arboreal sleep physiology and behavior in anthropoids. Nevertheless, studies conducted to date have maintained the frequency ranges of the EEG bands commonly used with humans. The aim of the present work was to determine the EEG broad bands that characterize sleep and wakefulness in the spider monkey using principal component analysis (PCA). The EEG activity was recorded from the occipital, central, and frontal EEG derivations of six young-adult male spider monkeys housed in a laboratory setting. To determine which frequencies covaried and which were orthogonally independent during sleep and wakefulness, the power EEG spectra and interhemispheric and intrahemispheric EEG correlations from 1 to 30 Hz were subjected to PCA. Findings show that the EEG bands detection differed from those reported previously in both spider monkeys and humans, and that the 1–3 and 2–13 Hz frequency ranges concur with the oscillatory activity elucidated by cellular recordings of subcortical regions. Results show that applying PCA to the EEG spectrum during sleep and wakefulness in the spider monkey led to the identification of frequencies that covaried with, and were orthogonally independent of, other frequencies in each behavioral vigilance state. The new EEG bands differ from those used previously with both spider monkeys and humans. The 1–3 and 2–13 Hz frequency ranges are in accordance with the oscillatory activity elucidated by cellular recordings of subcortical regions in other mammals.  相似文献   

10.
Cortical synchronization during NREM sleep, characterized by electroencephalographic slow waves (SW <4Hz and >75 μV), is strongly related to the number of hours of wakefulness prior to sleep and to the quality of the waking experience. Whether a similar increase in wakefulness length leads to a comparable enhancement in NREM sleep cortical synchronization in young and older subjects is still a matter of debate in the literature. Here we evaluated the impact of 25-hours of wakefulness on SW during a daytime recovery sleep episode in 29 young (27y ±5), and 34 middle-aged (51y ±5) subjects. We also assessed whether age-related changes in NREM sleep cortical synchronization predicts the ability to maintain sleep during daytime recovery sleep. Compared to baseline sleep, sleep efficiency was lower during daytime recovery sleep in both age-groups but the effect was more prominent in the middle-aged than in the young subjects. In both age groups, SW density, amplitude, and slope increased whereas SW positive and negative phase duration decreased during daytime recovery sleep compared to baseline sleep, particularly in anterior brain areas. Importantly, compared to young subjects, middle-aged participants showed lower SW density rebound and SW positive phase duration enhancement after sleep deprivation during daytime recovery sleep. Furthermore, middle-aged subjects showed lower SW amplitude and slope enhancements after sleep deprivation than young subjects in frontal and prefrontal derivations only. None of the SW characteristics at baseline were associated with daytime recovery sleep efficiency. Our results support the notion that anterior brain areas elicit and may necessitate more intense recovery and that aging reduces enhancement of cortical synchronization after sleep loss, particularly in these areas. Age-related changes in the quality of wake experience may underlie age-related reduction in markers of cortical synchronization enhancement after sustained wakefulness.  相似文献   

11.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n = 12, mean age = 25.1 yrs; Protocol 2: n = 12, mean age = 23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00 h after ~20 h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00 h after ~30 h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15 min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45 min post-awakening for naps of 40 min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15 min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60 min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45 min after waking.  相似文献   

12.
Due to the mixed findings of previous studies, it is still difficult to provide guidance on how to best manage sleep inertia after waking from naps in operational settings. One of the few factors that can be manipulated is the duration of the nap opportunity. The aim of the present study was to investigate the magnitude and time course of sleep inertia after waking from short (20-, 40- or 60-min) naps during simulated night work and extended operations. In addition, the effect of sleep stage on awakening and duration of slow wave sleep (SWS) on sleep inertia was assessed. Two within-subject protocols were conducted in a controlled laboratory setting. Twenty-four healthy young men (Protocol 1: n?=?12, mean age?=?25.1 yrs; Protocol 2: n?=?12, mean age?=?23.2 yrs) were provided with nap opportunities of 20-, 40-, and 60-min (and a control condition of no nap) ending at 02:00?h after ~20?h of wakefulness (Protocol 1 [P1]: simulated night work) or ending at 12:00?h after ~30?h of wakefulness (Protocol 2 [P2]: simulated extended operations). A 6-min test battery, including the Karolinska Sleepiness Scale (KSS) and the 4-min 2-Back Working Memory Task (WMT), was repeated every 15?min the first hour after waking. Nap sleep was recorded polysomnographically, and in all nap opportunities sleep onset latency was short and sleep efficiency high. Mixed-model analyses of variance (ANOVA) for repeated measures were calculated and included the factors time (time post-nap), nap opportunity (duration of nap provided), order (order in which the four protocols were completed), and the interaction of these terms. Results showed no test x nap opportunity effect (i.e., no effect of sleep inertia) on KSS. However, WMT performance was impaired (slower reaction time, fewer correct responses, and increased omissions) on the first test post-nap, primarily after a 40- or 60-min nap. In P2 only, performance improvement was evident 45?min post-awakening for naps of 40?min or more. In ANOVAs where sleep stage on awakening was included, the test x nap opportunity interaction was significant, but differences were between wake and non-REM Stage 1/Stage 2 or wake and SWS. A further series of ANOVAs showed no effect of the duration of SWS on sleep inertia. The results of this study demonstrate that no more than 15?min is required for performance decrements due to sleep inertia to dissipate after nap opportunities of 60?min or less, but subjective sleepiness is not a reliable indicator of this effect. Under conditions where sleep is short, these findings also suggest that SWS, per se, does not contribute to more severe sleep inertia. When wakefulness is extended and napping occurs at midday (i.e., P2), nap opportunities of 40- and 60-min have the advantage over shorter duration sleep periods, as they result in performance benefits ~45?min after waking.  相似文献   

13.
There is mounting evidence for the involvement of the sleep-wake cycle and the circadian system in the pathogenesis of major depression. However, only a few studies so far focused on sleep and circadian rhythms under controlled experimental conditions. Thus, it remains unclear whether homeostatic sleep pressure or circadian rhythms, or both, are altered in depression. Here, the authors aimed at quantifying homeostatic and circadian sleep-wake regulatory mechanisms in young women suffering from major depressive disorder and healthy controls during a multiple nap paradigm under constant routine conditions. After an 8-h baseline night, 9 depressed women, 8 healthy young women, and 8 healthy older women underwent a 40-h multiple nap protocol (10 short sleep-wake cycles) followed by an 8-h recovery night. Polysomnographic recordings were done continuously, and subjective sleepiness was assessed. In order to measure circadian output, salivary melatonin samples were collected during scheduled wakefulness, and the circadian modulation of sleep spindles was analyzed with reference to the timing of melatonin secretion. Sleep parameters as well as non-rapid eye movement (NREM) sleep electroencephalographic (EEG) spectra were determined for collapsed left, central, and right frontal, central, parietal, and occipital derivations for the night and nap-sleep episodes in the frequency range .75-25 Hz. Young depressed women showed higher frontal EEG delta activity, as a marker of homeostatic sleep pressure, compared to healthy young and older women across both night sleep episodes together with significantly higher subjective sleepiness. Higher delta sleep EEG activity in the naps during the biological day were observed in young depressed women along with reduced nighttime melatonin secretion as compared to healthy young volunteers. The circadian modulation of sleep spindles between the biological night and day was virtually absent in healthy older women and partially impaired in young depressed women. These data provide strong evidence for higher homeostatic sleep pressure in young moderately depressed women, along with some indications for impairment of the strength of the endogenous circadian output signal involved in sleep-wake regulation. This finding may have important repercussions on the treatment of the illness as such that a selective suppression of EEG slow-wave activity could promote acute mood improvement.  相似文献   

14.
Daily rhythms in sleep and waking performance are generated by the interplay of multiple external and internal oscillators. These include the light-dark and social cycles, a circadian hypothalamic oscillator oscillating virtually independently of behavior, and a homeostatic oscillator driven primarily by sleep-wake behavior. Both internal oscillators contribute to variation in many aspects of sleep and wakefulness (e.g., sleep timing and duration, REM sleep, non-REM sleep, REM density, sleep spindles, slow-wave sleep, electroencephalographic oscillations during wakefulness and sleep, and performance parameters, including attention and memory). The relative contribution of the oscillators varies greatly between these variables. Sleep and performance cannot be predicted by either oscillator independently but critically depend on their phase relationship and amplitude. The homeostatic oscillator feeds back onto the central pacemaker or its outputs. Thus, the amplitude of observed circadian variation in sleep and performance depends on how long we have been asleep or awake. During entrainment to external 24-h cycles, the opposing interplay between circadian and homeostatic changes in sleep propensity consolidates sleep and wakefulness. Some physiological correlates and mediators of both the circadian process (e.g., melatonin and hypocretin rhythms) and the homeostat (e.g., EEG, slow-wave activity, and adenosine release) have been established, offering targets for the development of countermeasures for circadian sleep and performance disorders. Interindividual differences in sleep timing, duration, and morning or evening preference are associated with changes of circadian or sleep homeostatic processes or both. Molecular genetic correlates, including polymorphisms in clock genes, of some of these interindividual differences are emerging.  相似文献   

15.
Sleeping brain activity reflects brain anatomy and physiology. The aim of this study was to use high density (256 channel) electroencephalography (EEG) during sleep to characterize topographic changes in sleep EEG power across normal aging, with high spatial resolution. Sleep was evaluated in 92 healthy adults aged 18–65 years old using full polysomnography and high density EEG. After artifact removal, spectral power density was calculated for standard frequency bands for all channels, averaged across the NREM periods of the first 3 sleep cycles. To quantify topographic changes with age, maps were generated of the Pearson’s coefficient of the correlation between power and age at each electrode. Significant correlations were determined by statistical non-parametric mapping. Absolute slow wave power declined significantly with increasing age across the entire scalp, whereas declines in theta and sigma power were significant only in frontal regions. Power in fast spindle frequencies declined significantly with increasing age frontally, whereas absolute power of slow spindle frequencies showed no significant change with age. When EEG power was normalized across the scalp, a left centro-parietal region showed significantly less age-related decline in power than the rest of the scalp. This partial preservation was particularly significant in the slow wave and sigma bands. The effect of age on sleep EEG varies substantially by region and frequency band. This non-uniformity should inform the design of future investigations of aging and sleep. This study provides normative data on the effect of age on sleep EEG topography, and provides a basis from which to explore the mechanisms of normal aging as well as neurodegenerative disorders for which age is a risk factor.  相似文献   

16.
Numerous studies have examined sleep's influence on a range of hippocampus-dependent declarative memory tasks, from text learning to spatial navigation. In this study, we examined the impact of sleep, wake, and time-of-day influences on the processing of declarative information with strong semantic links (semantically related word pairs) and information requiring the formation of novel associations (unrelated word pairs). Participants encoded a set of related or unrelated word pairs at either 9 am or 9 pm, and were then tested after an interval of 30 min, 12 hr, or 24 hr. The time of day at which subjects were trained had no effect on training performance or initial memory of either word pair type. At 12 hr retest, memory overall was superior following a night of sleep compared to a day of wakefulness. However, this performance difference was a result of a pronounced deterioration in memory for unrelated word pairs across wake; there was no sleep-wake difference for related word pairs. At 24 hr retest, with all subjects having received both a full night of sleep and a full day of wakefulness, we found that memory was superior when sleep occurred shortly after learning rather than following a full day of wakefulness. Lastly, we present evidence that the rate of deterioration across wakefulness was significantly diminished when a night of sleep preceded the wake period compared to when no sleep preceded wake, suggesting that sleep served to stabilize the memories against the deleterious effects of subsequent wakefulness. Overall, our results demonstrate that 1) the impact of 12 hr of waking interference on memory retention is strongly determined by word-pair type, 2) sleep is most beneficial to memory 24 hr later if it occurs shortly after learning, and 3) sleep does in fact stabilize declarative memories, diminishing the negative impact of subsequent wakefulness.  相似文献   

17.
《Life sciences》1996,58(6):PL103-PL110
The effects of the central (CB1) cannabinoid receptor antagonist SR 141716A on the sleep-waking cycle were investigated in freely-moving rats using time scoring and power spectral analysis of the electroencephalogram (EEG). Over a 4-hour recording period, SR 141716A (0.1, 0.3, 1, 3 and 10 mg/kg I.P.) dose-dependently increased the time spent in wakefulness at the expense of slow-wave sleep (SWS) and rapid eye movement sleep (REMS), delayed the occurrence of REMS but did not change the mean duration of REMS episodes. Moreover, the compound induced no change in motor behavior. At the efficient dose of 3 mg/kg I.P., SR 141716A reduced the spectral power of the EEG signals typical of SWS but did not affect those of wakefulness. Taken together, these results demonstrate that the EEG effects of SR 141716A reflect arousal-enhancing properties. In addition, the present study suggests that an endogenous cannabinoid-like system is involved in the control of the sleep-waking cycle.  相似文献   

18.
Neocortical EEG slow wave activity (SWA) in the delta frequency band (0.5–4.0 Hz) is a hallmark of slow wave sleep (SWS) and its power is a function of prior wake duration and an indicator of a sleep need. SWS is considered the most important stage for realization of recovery functions of sleep. Possibility of impact on characteristics of a night sleep by rhythmic (0.8–1.2 Hz) subthreshold electocutaneous stimulation of a hand during SWS is shown: 1st night—adaptation, 2nd night—control, 3d and 4th nights—with stimulation during SWA stages of a SWS. Stimulation caused significant increase in average duration of SWS and EEG SWA power (in 11 of 16 subjects), and also well-being and mood improvement in subjects with lowered emotional tone. It is supposed that the received result is caused by functioning of a hypothetical mechanism directed on maintenance and deepening of SWS and counteracting activating, awakening influences of the afferent stimulation. The results can be of value both for understanding the physiological mechanisms of sleep homeostasis and for development of non-pharmacological therapy of sleep disorders.  相似文献   

19.
In the rook, Corvus frugilegus, electrographic and behavioural correlates of sleep and wakefulness have been determined under natural lighting conditions. Slow wave sleep (SWS) was characterized by high amplitude slow EEG activity, low neck EMG, and behavioural inactivity. Paradoxical sleep (PS) was characterized by low amplitude fast EEG activity and inconsistent decrease in EMG. PS episodes always commenced with head downward. Several eye movements occurred activity were present. The rook spent in sleep 31.8% of the 24-h period. PS however, eye movements, high tonic neck EMG activity, and behavioural activity were present. The rook spent in sleep 31.8% of the 24-h period. PS constituted 1.8% of total sleep, while the rest of total sleep was occupied by SWS. On the average, episodes of SWS and PS lasted 10.8 min and 24 s respectively. The daily percentage of SWS was highly correlated with the mean episode duration. PS amount was better correlated with the number of episodes than with their mean duration. Our data suggest that over-short period of recovery from surgery and adaptation with implanted electrodes could lead to underestimation of sleep duration in rook.  相似文献   

20.
We tested whether evening exposure to unilateral photic stimulation has repercussions on interhemispheric EEG asymmetries during wakefulness and later sleep. Because light exerts an alerting response in humans, which correlates with a decrease in waking EEG theta/alpha-activity and a reduction in sleep EEG delta activity, we hypothesized that EEG activity in these frequency bands show interhemispheric asymmetries after unilateral bright light (1,500 lux) exposure. A 2-h hemi-field light exposure acutely suppressed occipital EEG alpha activity in the ipsilateral hemisphere activated by light. Subjects felt more alert during bright light than dim light, an effect that was significantly more pronounced during activation of the right than the left visual cortex. During subsequent sleep, occipital EEG activity in the delta and theta range was significantly reduced after activation of the right visual cortex but not after stimulation of the left visual cortex. Furthermore, hemivisual field light exposure was able to shift the left predominance in occipital spindle EEG activity toward the stimulated hemisphere. Time course analysis revealed that this spindle shift remained significant during the first two sleep cycles. Our results reflect rather a hemispheric asymmetry in the alerting action of light than a use-dependent recovery function of sleep in response to the visual stimulation during prior waking. However, the observed shift in the spindle hemispheric dominance in the occipital cortex may still represent subtle local use-dependent recovery functions during sleep in a frequency range different from the delta range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号