首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
2.
Previously we documented that human epidermis exclusively expresses corticotropin releasing hormone receptor 1 (CRH-R1). To define the role of CRH in the epidermis, we investigated its effects on differentiation of normal human adult epidermal keratinocytes. Thus, CRH inhibited proliferation in a dose dependent fashion and significantly decreased Ki-67 antigen expression. This effect was independent of either the presence or the absence of growth factors in the medium. Flow cytometry analysis demonstrated that CRH inhibited the transition from G0/1 to S phase of the cell cycle, which was accompanied by an increased expression of cdk inhibitor p16 (Ink4a) protein. The antiproliferative effect was attenuated by protein kinase C inhibitor (GF109203X) but not by H89 (protein kinase A inhibitor), PD98059, or SB203580 (MAP kinase inhibitors). The cell cycle withdrawal was associated with the induction of keratinocyte differentiation. Thus, CRH stimulated the expression of cytokeratin 1 and involucrin, and inhibited cytokeratin 14 on both mRNA and protein levels. It also increased cell granularity and cell size. Furthermore, CRH induced signal transduction cascade that included stimulation of inositol 1,4,5-triphosphate, which was time and dose dependent. CRH also increased activator protein-1 DNA binding activity with JunD identified as the most important element. Thus, activation of CRH-R1 induces a non-random and sequential signal transduction cascade governing both keratinocyte differentiation and the inhibition of cell proliferation through G0/1 arrest. We propose that this program, triggered by CRH interaction with CRH-R1, includes induction of a transduction pathway involving the sequential activation of phospholipase C, protein kinase C, activator protein-1 (including Jun D), and p16.  相似文献   

3.
4.
The novel small molecule ingenol 3-angelate (PEP005) has been shown previously to induce apoptosis in leukaemic cell lines and primary AML cells, an effect that requires the expression of protein kinase C-delta (PKCδ). Here we have investigated signalling events downstream of PKCδ that determine sensitivity of AML cells to PEP005. We show that activation of ERK1/2 MAP kinase occurred in both sensitive and resistant cells and that induction of apoptosis required sustained signalling through the ERK1/2 pathway. Inhibition of ERK1/2 signalling using the MEK inhibitor PD98059 inhibited PEP005-induced apoptosis and activation of ERK1/2 was shown to occur downstream of PKC activation. The data show that PEP005-induced apoptosis is both PKC and ERK1/2 dependent and indicate that chronic activation of ERK1/2 in leukaemic cells delivers a pro-apoptotic rather than a proliferative or survival signal.  相似文献   

5.
Neutrophils are abundant, short-lived leukocytes with a key role in the defense against rapidly dividing bacteria. They enter apoptosis spontaneously within 24-48 h of leaving the bone marrow. However, their life span can be extended during inflammatory responses by several proinflammatory cytokines. Inappropriate survival of neutrophils contributes to chronic inflammation and tissue damage associated with diseases such as rheumatoid arthritis. We have previously reported that type I IFNs can inhibit both cytokine deprivation and Fas-induced apoptosis in activated T cells. IFN-beta locally produced by hyperplastic fibroblasts within the pannus tissue of patients with rheumatoid arthritis contributes to the inappropriately extended life span of infiltrating T cells. Type I IFNs are equally effective at delaying spontaneous apoptosis in human neutrophils. In the work presented here we investigated the signaling pathways involved in mediating this effect. The antiapoptotic actions of IFN-beta were targeted at an early stage of neutrophil apoptosis, occurring upstream of mitochondrial permeability transition, and were phosphatidylinositol 3-kinase (PI3K) dependent, as they were blocked by the PI3K inhibitor LY294002. Analysis of signaling pathways downstream of PI3K revealed that the antiapoptotic effect of type 1 IFN was inhibited by rottlerin, SN50, and cycloheximide, indicating requirements for activation of protein kinase C-delta, NF-kappaB, and de novo protein synthesis, respectively. Moreover, EMSA was used to show that the activation of NF-kappaB occurred downstream of PI3K and protein kinase C-delta activation. We conclude that type I IFNs inhibit neutrophil apoptosis in a PI3K-dependent manner, which requires activation of protein kinase C-delta and induction of NF-kappaB-regulated genes.  相似文献   

6.
Migration and proliferation of smooth muscle cells are key to a number of physiological and pathological processes, including wound healing and the narrowing of the vessel wall. Previous work has shown links between inflammatory stimuli and vascular smooth muscle cell proliferation and migration through mitogen-activated protein kinase (MAPK) activation, although the molecular mechanisms of this process are poorly understood. Here we report that tribbles-1, a recently described modulator of MAPK activation, controls vascular smooth muscle cell proliferation and chemotaxis via the Jun kinase pathway. Our findings demonstrate that this regulation takes place via direct interactions between tribbles-1 and MKK4/SEK1, a Jun activator kinase. The activity of this kinase is dependent on tribbles-1 levels, whereas the activation and the expression of MKK4/SEK1 are not. In addition, tribbles-1 expression is elevated in human atherosclerotic arteries when compared with non-atherosclerotic controls, suggesting that this protein may play a role in disease in vivo. In summary, the data presented here suggest an important regulatory role for trb-1 in vascular smooth muscle cell biology.  相似文献   

7.
We have previously shown that parotid C5 salivary acinar cells undergo apoptosis in response to etoposide treatment as indicated by alterations in cell morphology, caspase-3 activation, DNA fragmentation, sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Here we report that apoptosis results in the caspase-dependent cleavage of protein kinase C-delta (PKCdelta) to a 40-kDa fragment, the appearance of which correlates with a 9-fold increase in PKCdelta activity. To understand the function of activated PKCdelta in apoptosis, we have used the PKCdelta-specific inhibitor, rottlerin. Pretreatment of parotid C5 cells with rottlerin prior to the addition of etoposide blocks the appearance of the apoptotic morphology, the sustained activation of c-Jun N-terminal kinase, and inactivation of extracellular regulated kinases 1 and 2. Inhibition of PKCdelta also partially inhibits caspase-3 activation and DNA fragmentation. Immunoblot analysis shows that the PKCdelta cleavage product does not accumulate in parotid C5 cells treated with rottlerin and etoposide together, suggesting that the catalytic activity of PKCdelta may be required for cleavage. PKCalpha and PKCbeta1 activities also increase during etoposide-induced apoptosis. Inhibition of these two isoforms with G?6976 slightly suppresses the apoptotic morphology, caspase-3 activation, and DNA fragmentation, but has no effect on the sustained activation of c-Jun N-terminal kinase or inactivation of extracellular regulated kinase 1 and 2. These data demonstrate that activation of PKCdelta is an integral and essential part of the apoptotic program in parotid C5 cells and that specific activated isoforms of PKC may have distinct functions in cell death.  相似文献   

8.
Gastrin (G17) has a CCK-B receptor-mediated growth-promoting effect on the AR42J rat acinar cell line. We examined whether G17 inhibits apoptosis induced by serum withdrawal of AR42J cells and CHO-K1 cells stably expressing CCK-B receptors (CHO-K1/CCK-B cells). Cellular apoptosis was measured by flow cytometry and the terminal deoxynucleotidyltransferase-mediated dUTP-FITC nick end-labeling method. Serum withdrawal induced AR42J and CHO-K1/CCK-B cell apoptosis. Addition of 10 nM G17 reversed these effects. We examined the action of G17 (10 nM) on phosphorylation and activation of protein kinase B/Akt, a kinase known to promote cell survival. Akt phosphorylation and activation were measured by kinase assays and Western blots with an anti-phospho-Akt antibody. G17 stimulated Akt phosphorylation and activation. G17 induction of Akt phosphorylation was inhibited by the phosphoinositide 3-kinase (PI 3-kinase) inhibitors LY-294002 (10 microM) and wortmannin (200 nM) but not by the mitogen-activated protein kinase kinase 1 inhibitor PD-98059 (50 microM). To study the role of p38 kinase in G17 signaling to Akt, we examined the effect of G17 on p38 kinase activation and phosphorylation using kinase assays and Western blots with an anti-phospho-p38 kinase antibody. G17 induced p38 kinase activity at doses and with kinetics similar to those observed for Akt induction. The p38 kinase inhibitor SB-203580 inhibited G17 induction of Akt phosphorylation and activation at a concentration (10 microM) 10-fold higher than necessary to block p38 kinase (1 microM), suggesting the possible involvement of kinase activities other than p38 kinase. Transduction of AR42J cells with the adenoviral vector Adeno-dn Akt, which overexpresses an inhibitor of Akt, reversed the antiapoptotic action of G17. In conclusion, G17 promotes AR42J cell survival through the induction of Akt via PI 3-kinase and SB-203580-sensitive kinase activities.  相似文献   

9.
The expression of GnRH (GnRH-I, LHRH) and its receptor as a part of an autocrine regulatory system of cell proliferation has been demonstrated in a number of human malignant tumors, including cancers of the ovary. The proliferation of human ovarian cancer cell lines is time- and dose-dependently reduced by GnRH and its superagonistic analogs. The classical GnRH receptor signal-transduction mechanisms, known to operate in the pituitary, are not involved in the mediation of antiproliferative effects of GnRH analogs in these cancer cells. The GnRH receptor rather interacts with the mitogenic signal transduction of growth-factor receptors and related oncogene products associated with tyrosine kinase activity via activation of a phosphotyrosine phosphatase resulting in downregulation of cancer cell proliferation. In addition GnRH activates nucleus factor κB (NFκB) and protects the cancer cells from apoptosis. Furthermore GnRH induces activation of the c-Jun N-terminal kinase/activator protein-1 (JNK/AP-1) pathway independent of the known AP-1 activators, protein kinase (PKC) or mitogen activated protein kinase (MAPK/ERK).  相似文献   

10.
Chen X  Li Y  Wei K  Li L  Liu W  Zhu Y  Qiu Z  He F 《The Journal of biological chemistry》2003,278(49):49022-49030
Hepatopoietin (HPO) is a novel hepatotrophic growth factor that stimulates hepatocyte proliferation by two pathways. In the first, intracellular HPO specifically modulates the activator protein-1 (AP-1) pathway through JAB1 (Jun activation domain-binding protein 1), whereas in the second, extracellular HPO triggers the mitogen-activated protein kinase pathway by binding its specific receptor on the cell surface. In this report we demonstrate that HPO is a flavin-linked sulfhydryl oxidase, and the invariant CXXC (Cys-Xaa-Xaa-Cys) motif in HPO is essential for the enzyme activity of HPO but not for its dimerization nor for its binding ability with JAB1. Two intramolecular disulfides were identified in HPO by mass spectrometry, one of which is formed by the redox CXXC cysteine residues. HPO site-directed mutants (Cys/Ser) at active sites, which lost sulfhydryl oxidase activity, could not increase c-Jun phosphorylation and failed to potentiate JAB1-mediated AP-1 activation. However, the mutants still have mitogenic stimulation and mitogen-activated protein kinase activation effects on HepG2 cells. Thus, it can be concluded that the potentiation role of HPO on AP-1 is dependent on its sulfhydryl oxidase activity.  相似文献   

11.
12.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells.  相似文献   

13.
EB病毒LMP-1在鼻咽癌细胞中通过JNK介导AP-1活化   总被引:7,自引:0,他引:7  
 EB病毒潜伏膜蛋白 1 (latentmembraneprotein 1 ,LMP 1 )活化激活蛋白 1 (activatorprotein 1 ,AP 1 )信号传导途径与其致瘤作用密切相关 .为了探讨LMP 1活化AP 1信号传导的分子机制 ,在可诱导调控LMP 1表达的鼻咽癌细胞系L7中 ,首先通过荧光酶双报道系统确定了LMP 1表达能激活AP 1 ;在此基础上 ,用c JunPathDetect系统确定LMP 1表达活化AP 1是通过c Jun的磷酸化 (活化 )介导 .虽然LMP 1不能上调c Jun上游主要调节激酶c JunN端激酶 (c JunN terminalkinase ,JNK)的蛋白表达 ,但能显著促进JNK的磷酸化 (活化 ) ;在L7细胞中导入JNK相互作用蛋白 (JNK interactingprotein ,JIP)基因 ,抑制JNK的核移位能显著抑制LMP 1诱导的AP 1活化 ,同时对NFкВ活化也有部分抑制作用 .结果表明 ,EB病毒LMP 1在鼻咽癌细胞中通过JNK介导AP 1活化  相似文献   

14.
The ability of low-dose ionizing radiation (1 Gy) to modulate the activities of the mitogen-activated protein kinase (MAPK) and Jun NH2-terminal kinase (JNK1) cascades in human myeloid leukemia (HL60/pCEP4) cells and in cells overexpressing the anti-apoptosis protein BCL2 (HL60/Bcl-2) was investigated. Radiation exposure caused prolonged (3-4 h) activation of MAPK in HL60 cells. The ability of radiation to activate the MAPK pathway was attenuated by 30% in cells overexpressing BCL2. In contrast, low-dose irradiation of HL60/pCEP4 and HL60/Bcl-2 cells failed to modulate JNK1 activity. Inhibition of the MAPK pathway by use of the specific MEK1/2 inhibitor (10 microM PD98059) in both HL60/pCEP4 and HL60/Bcl-2 cells prior to irradiation permitted a similar prolonged radiation-induced activation of JNK1. Furthermore, combined treatment with PD98059 and radiation in both cell types caused a large decrease in growth of cells in suspension culture, a large increase in apoptosis, and a 90% decline in clonogenicity when compared to either treatment alone. Reduced proliferation after combined irradiation and PD98059 treatment in both cell types correlated with reduced Cdc2 activity and arrest in G2/M phase of the cell cycle. These data demonstrate that inhibition of MEK1/2 leading to blockade of the MAPK activation increases the radiation sensitivity of HL60 cells and decreases the ability of these cells to recover from the radiation-induced arrest at the G2/M-phase cell cycle checkpoint. In addition, our data demonstrate that elevated expression of BCL2 does not abrogate the ability of inhibition of MAPK to potentiate radiation-induced cell death in HL60 cells.  相似文献   

15.
16.
The protein activator of RNA-activated protein kinase (PKR) is a proapoptotic protein called PACT. PKR is an interferon (IFN)-induced serine-threonine protein kinase that plays a central role in IFN's antiviral and antiproliferative activities. PKR activation in cells leads to phosphorylation of the alpha-subunit of the eukaryotic protein synthesis initiation factor (eIF)2alpha, inhibition of protein synthesis, and apoptosis. In the absence of viral infections, PKR is activated by its activator PACT, especially in response to diverse stress signals. Overexpression of PACT in cells causes enhanced sensitivity to stress-induced apoptosis. We examined PACT expression in different mouse tissues and evaluated its possible role in regulating apoptosis. PACT is expressed at high levels in colonic epithelial cells, especially as they exit the cell cycle and enter an apoptotic program. PACT expression also coincides with the presence of active PKR and phosphorylated eIF2alpha. These results suggest a possible role of PACT-mediated PKR activation in the regulation of epithelial cell apoptosis in mouse colon. In addition, transient overexpression of PACT in a nontransformed intestinal epithelial cell line leads to induction of apoptosis, further supporting PACT's role in inducing apoptosis.  相似文献   

17.
Expression and activation of the Ste20-like kinase, SLK, is increased during kidney development and recovery from ischemic acute kidney injury. SLK promotes apoptosis, and it may regulate cell survival during injury or repair. This study addresses the role of phosphorylation in the regulation of kinase activity. We mutated serine and threonine residues in the putative activation segment of the SLK catalytic domain and expressed wild type (WT) and mutant proteins in COS-1 or glomerular epithelial cells. Compared with SLK WT, the T183A, S189A, and T183A/S189A mutants showed reduced in vitro kinase activity. SLK WT, but not mutants, increased activation-specific phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. Similarly, SLK WT stimulated activator protein-1 reporter activity, but activation of activator protein-1 by the three SLK mutants was ineffective. To test if homodimerization of SLK affects phosphorylation, the cDNA encoding SLK amino acids 1-373 (which include the catalytic domain) was fused with a cDNA for a modified FK506-binding protein, Fv (Fv-SLK 1-373). After transfection, the addition of AP20187 (an FK506 analog) induced regulated dimerization of Fv-SLK 1-373. AP20187-stimulated dimerization enhanced the kinase activity of Fv-SLK 1-373 WT. In contrast, kinase activity of Fv-SLK 1-373 T183A/S189A was weak and was not enhanced after dimerization. Finally, apoptosis was increased after expression of Fv-SLK 1-373 WT but not T183A/S189A. Thus, phosphorylation of Thr-183 and Ser-189 plays a key role in the activation and signaling of SLK and could represent a target for novel therapeutic approaches to renal injury.  相似文献   

18.
We examined patterns and mechanisms of cell death induced by haloperidol. Cortical cell cultures exposed to 10-100 microM: haloperidol for 24 h underwent neuronal death without injuring glia. The degenerating neurons showed hallmarks of apoptosis, featuring cell body shrinkage, nuclear chromatin condensation and aggregation, nuclear membrane disintegration with intact plasma membrane, and prominent internucleosomal DNA fragmentation. Neither glutamate antagonists nor antioxidants prevented the haloperidol-induced neuronal apoptosis. The c-Jun-NH(2)-terminal protein kinase and p38 mitogen-activated protein kinase were activated within 1 h and were sustained over the next 3 h following exposure of cortical neurons to 30 microM haloperidol. Haloperidol-induced neuronal apoptosis was partially attenuated by 10-30 microM PD169316, a selective inhibitor of p38 mitogen-activated protein kinase. Inclusion of 1 microg/ml cycloheximide, a protein synthesis inhibitor, or 100 ng/ml insulin prevented activation of both kinases and subsequent neuronal death. The present study demonstrates that cortical neurons exposed to haloperidol undergo apoptosis depending on activation of p38 mitogen-activated protein kinase and c-Jun-NH(2)-terminal protein kinase sensitive to cycloheximide and insulin.  相似文献   

19.
3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), one of the tryptophan pyrolysates, is a dietary carcinogen and is formed in cooked meat and fish in our daily diet. Trp-P-1 will affect the cells in the blood circulation system before it causes carcinogenicity in target organs such as the liver. In this study, the cytotoxicity of Trp-P-1 was investigated in mononuclear cells (MNCs) from blood. Trp-P-1 (10-15 microM) decreased cell viability and induced apoptosis characterized both by morphological changes and by DNA fragmentation 4 h after treatment. DNA fragmentation was also observed following treatment at 1 nM after 24 h in culture. This result suggested that apoptosis would occur in the body following unexpected intake of foods containing Trp-P-1. To determine the mechanism of apoptosis, we investigated the activation of the caspase cascade in MNCs. Trp-P-1 (10-15 microM) activated the caspase cascade, i.e. the activity of caspase-3, -6, -7, -8 and -9 increased dose-dependently using peptide substrates, the active forms of caspase-3, -8 and -9 were detected by immunoblotting, and cleavage of poly(ADP-ribose) polymerase and protein kinase C-delta as the intracellular substrates for caspases was observed. A peptide inhibitor of caspase-8 completely suppressed activation of all other caspases, while an inhibitor of caspase-9 did not. These results indicated that caspase-8 may act as an apical caspase in the Trp-P-1-activated cascade.  相似文献   

20.
Heat shock protein 27, one of the low molecular weight stress proteins, is recognized as a molecular chaperone; however, other functions have not yet been well established. Phosphorylated heat shock protein 27 levels inversely correlate with the progression of human hepatocellular carcinoma. This study shows that phosphorylated heat shock protein 27 interferes with cell growth of the hepatocellular carcinoma-derived HuH7 cells in the presence of the proinflammatory cytokine, tumor necrosis factor-alpha, via inhibition of the sustained activation of the extracellular signal-regulated kinase signal pathway. The activities of Raf/extracellular signal-regulated kinase and subsequent activator protein-1 transactivation and the induction levels of cyclin D1 were lower in HuH7 cells transfected with phosphorylated heat shock protein 27 than those with unphosphorylated heat shock protein 27. Moreover, phosphorylated heat shock protein 27 up-regulated the levels of p38 mitogen-activated protein kinase and mitogen-activated protein kinase phosphatase-1, an inhibitory protein of extracellular signal-regulated kinase. These results indicate that phosphorylated heat shock protein 27 might suppress the extracellular signal-regulated kinase activity in the hepatocellular carcinoma cells via two separate pathways in an inflammatory state. The extracellular signal-regulated kinase activity is inversely correlated with phosphorylated heat shock protein 27 at serine 15 and also in human hepatocellular carcinoma tissues in vivo. Because the extracellular signal-regulated kinase signal pathway is a major proliferation signal of hepatocellular carcinoma, activator protein-1 activation is an early event in hepatocarcinogenesis. These findings strongly suggest that the control of the phosphorylated heat shock protein 27 levels could be a new therapeutic strategy especially to counter the recurrence of hepatocellular carcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号