首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution (11.7 T) cardiac magnetic resonance imaging (MRI) and histological approaches have been employed in tandem to characterize the secondary damage suffered by the murine myocardium following the initial insult caused by ischemia-reperfusion (I/R). I/R-induced changes in the myocardium were examined in five separate groups at the following time points after I/R: 1 h, day 1, day 3, day 7, and day 14. The infarct volume increased from 1 h to day 1 post-I/R. Over time, the loss of myocardial function was observed to be associated with increased infarct volume and worsened regional wall motion. In the infarct region, I/R caused a decrease in end-systolic thickness coupled with small changes in end-diastolic thickness, leading to massive wall thickening abnormalities. In addition, compromised wall thickening was also observed in left ventricular regions adjacent to the infarct region. A tight correlation (r2 = 0.85) between measured MRI and triphenyltetrazolium chloride (TTC) infarct volumes was noted. Our observation that until day 3 post-I/R the infarct size as measured by TTC staining and MRI was much larger than that of the myocyte-silent regions in trichrome- or hematoxylin-eosin-stained sections is consistent with the literature and leads to the conclusion that at such an early phase, the infarct site contains structurally intact myocytes that are functionally compromised. Over time, such affected myocytes were noted to structurally disappear, resulting in consistent infarct sizes obtained from MRI and TTC as well as trichrome and hematoxylin-eosin analyses on day 7 following I/R. Myocardial remodeling following I/R includes secondary myocyte death followed by the loss of cardiac function over time.  相似文献   

2.
It is well established that brief episodes of ischemia/reperfusion (I/R) [preconditioning (PC)] protect the myocardium from the damage induced by subsequent more prolonged I/R. However, the signaling pathways activated during PC or I/R are not well characterized. In this study, the role of Ras-GTPase, tyrosine kinases (TKs), epidermal growth factor receptor (EGFR) and Ca2 +/calmodulin-dependent protein kinase II (CaMK II) in mediating PC in a perfused rat heart model was investigated. A 40-min episode of global ischemia in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (Pmax) and left ventricular end-diastolic pressure (LVEDP), and impaired coronary hemodynamics, measured as coronary flow (CF) and coronary vascular resistance (CVR). PC significantly enhanced cardiac recovery after I/R. Combination of PC and FPT III (Ras-GTPase inhibitor FPT III; 232 ng/min for 6 days) treatment did not produce any additive benefits as compared to PC alone. In contrast, PC-induced improvements in cardiac function after I/R were significantly attenuated by pretreatment with genistein (1mg/kg/day for 6 days), a broad-spectrum inhibitor of TKs, or AG1478 (1mg/kg/day for 6 days), a specific inhibitor of EGFR tyrosine kinase or KN-93 (578 ng/min for 6 days), a CaMK II inhibitor, before PC. These observations suggest that PC and FPT III pretreatment may produce cardioprotection via similar mechanisms. Present results also indicate that activation of TKs and specifically activation of EGFR-mediated TKs and CaMK II-mediated regulation of calcium homeostasis are part of the PC mechanisms that improve recovery after I/R. (Mol Cell Biochem 268: 175–183, 2005)  相似文献   

3.
The hemodynamic response to submaximal exercise was investigated in 38 mongrel dogs with healed anterior wall myocardial infarctions. The dogs were chronically instrumented to measure heart rate (HR), left ventricular pressure (LVP), LVP rate of change, and coronary blood flow. A 2 min coronary occlusion was initiated during the last minute of an exercise stress test and continued for 1 min after cessation of exercise. Nineteen dogs had ventricular fibrillation (susceptible) while 19 animals did not (resistant) during this test. The cardiac response to submaximal exercise was markedly different between the two groups. The susceptible dogs exhibited a significantly higher HR and left ventricular end-diastolic pressure (LVEDP) but a significantly lower left ventricular systolic pressure (LVSP) in response to exercise than did the resistant animals. (For example, response to 6.4 kph at 8% grade; HR, susceptible 201.4 +/- 5.1 beats/min vs. resistant 176.2 +/- 5.6 beats/min; LVEDP, susceptible 19.4 +/- 1.1 mmHg vs. resistant 12.3 +/- 1.7 mmHg; LVSP, susceptible 136.9 +/- 7.9 mmHg vs. resistant 154.6 +/- 9.8 mmHg.) beta-Adrenergic receptor blockade with propranolol reduced the difference noted in the HR response but exacerbated the LVP differences (response to 6.4 kph at 8% grade; HR, susceptible 163.4 +/- 4.7 mmHg vs. resistant 150.3 +/- 6.4 mmHg; LVEDP susceptible 28.4 +/- 2.1 mmHg vs. resistant 19.6 +/- 3.0 mmHg; LVSP, susceptible 122.2 +/- 8.1 mmHg vs. resistant 142.8 +/- 10.7 mmHg). These data indicate that the animals particularly vulnerable to ventricular fibrillation also exhibit a greater degree of left ventricular dysfunction and an increased sympathetic efferent activity.  相似文献   

4.
The signaling pathways involved in ischemic heart disease are not well characterized. In this study, the roles of Ras-GTPase, tyrosine kinases (TKs) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) in global ischemia and reperfusion (I/R) in a perfused rat heart model were investigated and compared to beneficial effects produced by preconditioning (PC). A 40 min episode of global ischemia followed by a 30 min reperfusion in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (Pmax) and left ventricular end-diastolic pressure (LVEDP), and impaired coronary hemodynamics, measured as coronary flow (CF) and coronary vascular resistance (CVR). Hearts from male Wistar rats pre-treated with the tyrosine kinase inhibitor, genistein (1 mg/kg/day for 6 days), or the CaMKII inhibitor, KN-93 (578 ng/min for 6 days), produced detrimental effects on recovery of cardiac function and coronary hemodynamics. In contrast, pre-treatment with Ras-GTPase inhibitor FPT III (232 ng/min for 6 days) significantly enhanced cardiac recovery in terms of left ventricular contractility and coronary vascular hemodynamics. Treatment with FPT III also significantly reduced expression of the sodium-hydrogen exchanger-1 (NHE-1) which was elevated during I/R as detected by Western blotting. These data suggest that TKs and CaMKII are involved in signaling pathways leading to recovery from cardiac ischemia, whereas activation of Ras-GTPase signaling pathways are critical in the development of cardiac dysfunction due to I/R.  相似文献   

5.
Decreased right as well as left ventricular function can be associated with pulmonary hypertension (PH). Numerous investigations have examined cardiac function following induction of pulmonary hypertension with monocrotaline (MCT) assuming that MCT has no direct cardiac effect. We tested this assumption by examining left ventricular function and histology of isolated and perfused hearts from MCT-treated rats. Experiments were performed on 50 male Sprague-Dawley rats [348 +/- 6 g (SD)]. Thirty-seven rats received MCT (50 mg/kg sc; MCT group) while the remainder did not (Control group). Three weeks later, pulmonary artery pressure was assessed echocardiographically in 20 MCT and 8 Control rats. The hearts were then excised and perfused in the constant pressure Langendorff mode to determine peak left ventricular pressure (LVP), the peak instantaneous rate of pressure increase (+dP/dtmax) and decrease (-dP/dtmax), as well as the rate pressure product (RPP). Histological sections were subsequently examined. Pulmonary artery pressure was higher in the MCT-treated group compared with the Control group [12.9 +/- 6 vs. 51 +/- 35.3 mmHg (P < 0.01)]. Left ventricular systolic function and diastolic relaxation were decreased in the MCT group compared with the Control group (+dP/dtmax 4,178 +/- 388 vs. 2,801 +/- 503 mmHg/s, LVP 115 +/- 11 vs. 83 +/- 14 mmHg, RPP 33,688 +/- 1,910 vs. 23,541 +/- 3,858 beats x min(-1) x mmHg(-1), -dP/dtmax -3,036 +/- 247 vs. -2,091 +/- 389 mmHg/s; P < 0.0001). The impairment of cardiac function was associated with myocarditis and coronary arteriolar medial thickening. Similarly depressed ventricular function and inflammatory infiltration was seen in 12 rats 7 days after MCT administration. Our findings appear unrelated to the degree of PH and indicate a direct cardiotoxic effect of MCT.  相似文献   

6.
We have developed a model of cyclosporin A (CsA) central nervous system toxicity in the Munich-Wistar rat in which CsA, 20 mg/kg/day i.p., produces significant EEG abnormalities and mortality. In the present study we used cohorts of Munich-Wistar rats to assess effects of CsA on the threshold for tonic-clonic electroshock-induced seizures. Rat cohorts were begun on cremephore, CsA-10 mg/kg/day, or CsA-20 mg/kg/day. On day 7 and day 14 of the dosing protocol, cohorts of animals were exposed to maximal electroshock (MES) using a minimal staircase method within each cohort. Multiple logistic regression models were used to determine differences between groups on the relative odds of producing a MES-induced seizure while controlling for other variables. Seizure threshold was significantly affected by shock amperage and body weight, but not by SUN, creatinine, bilirubin, sodium, potassium, weight loss or day the shock was delivered. The odds ratios of seizure induction in the CsA-treated groups versus placebo group were 1.91 for CsA-10 mg/kg/day and 3.63 for CsA 20-mg/kg/d, both statistically significant. These results suggest that cyclosporine lowers seizure threshold and probably increases susceptibility to seizures, the etiology of which may be multifactorial clinically.  相似文献   

7.
Interleukin-6 (IL-6) reduces myocardial haemodynamics. However, the intrinsic mechanisms of IL-6 effects are not known. We hypothesized that nitric oxide (NO) synthesised by neuronal synthase (nNOS) can be the molecular mediator of IL-6-mediated cardiac effects. Thus, we investigated in vivo after IL-6 acute administration: (1) the role of NO pathway; (2) the importance of NO derived from nNOS located in intracardiac vagal ganglion in the anterior surface of the left ventricle. Sprague-Dawley (SD) rats (225-250 g) were anaesthetized (sodium pentobarbital 30 mg/kg intraperitoneally administered) and ventilated. The effects of a single IL-6 bolus (100 microg/kg intravenously administered) were studied in four experimental groups: (a) IL-6 (n=6), (b) IL-6 plus 30 mg/kg of L-NAME (an eNOS and nNOS inhibitor; n=6), (c) IL-6 plus 25mg/kg of 7-NI (a specific nNOS inhibitor; n=6), (d) IL-6 plus vagal resection (n=6). We evaluated the following parameters: mean aortic pressure (MAP), left ventricular end systolic pressure (LVESP), left ventricular positive peak dP/dt (PP dP/dt). Data are expressed as mean+/-sem. IL-6 caused a transient but significant reduction of MAP (-21.8% of basal: p<0.05), LVESP (from 130+/-4.2 to 1056.5 mmHg: p<0.05) and PP dP/dt (from 5390+/-158 to 4400+/-223 mmHg/s, p<0.02). Concomitant treatment with L-NAME or 7-NI totally abolished IL-6 effects. Vagal resection significantly reduced the haemodynamic effects (MAP: -10% of basal: p=ns; LVEDS: from 125+/-7.3 to 117+/-6.8 mmHg, p<0.05; PP dP/dt from 5500+/-150 to 5000+/-143 mmHg/s, p<0.05). We conclude that acute administration of IL-6 caused transient but significant cardiac negative inotropism. IL-6 haemodynamic effects are partly due to NO synthesised by nNOS located in vagal left ventricular ganglia.  相似文献   

8.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

9.
目的:本文主要研究ghrelin对心肌梗死大鼠恶性心律失常和早期左室重构的影响。方法:心肌梗死大鼠模型每天两次注射ghrelin(100μg/kg)或生理盐水。通过超声心动图评估大鼠的心脏重量并且观察大鼠的血流动力学。使用酶免疫分析法测定血清胰岛素生长因子I(IGF-1)、血浆肾上腺素、去甲肾上腺素和多巴胺的浓度。注射药物前后分析大鼠的神经功能。结果:与对照组相比,ghrelin治疗的心肌梗死模型大鼠生存率显著增加(P0.05),心脏功能增强,但心肌梗死面积差异不大(P0.05)。结论:Ghrelin能够提高心肌梗死模型大鼠的生存率、缓解心肌梗死大鼠心率失常、改善心肌梗死大鼠左心室重构。  相似文献   

10.
Important sex differences in cardiovascular disease outcomes exist, including conditions of hypertrophic cardiomyopathy and cardiac ischemia. Studies of sex differences in the extent to which load-independent (primary) hypertrophy modulates the response to ischemia-reperfusion (I/R) damage have not been characterized. We have previously described a model of primary genetic cardiac hypertrophy, the hypertrophic heart rat (HHR). In this study the sex differences in HHR cardiac function and responses to I/R [compared to control normal heart rat (NHR)] were investigated ex vivo. The ventricular weight index was markedly increased in HHR female (7.82 +/- 0.49 vs. 4.80 +/- 0.10 mg/g; P < 0.05) and male (5.76 +/- 0.22 vs. 4.62 +/- 0.07 mg/g; P < 0.05) hearts. Female hearts of both strains exhibited a reduced basal contractility compared with strain-matched males [maximum first derivative of pressure (dP/dt(max)): NHR, 4,036 +/- 171 vs. 4,258 +/- 152 mmHg/s; and HHR, 3,974 +/- 160 vs. 4,540 +/- 259 mmHg/s; P < 0.05]. HHR hearts were more susceptible to I/R (I = 25 min, and R = 30 min) injury than NHR hearts (decreased functional recovery, and increased lactate dehydrogenase efflux). Female NHR hearts exhibited a significantly greater recovery (dP/dt(max)) post-I/R relative to male NHR (95.0 +/- 12.2% vs. 60.5 +/- 9.4%), a resistance to postischemic dysfunction not evident in female HHR (29.0 +/- 5.6% vs. 25.9 +/- 6.3%). Ventricular fibrillation was suppressed, and expression levels of Akt and ERK1/2 were selectively elevated in female NHR hearts. Thus the occurrence of load-independent primary cardiac hypertrophy undermines the intrinsic resistance of female hearts to I/R insult, with the observed abrogation of endogenous cardioprotective signaling pathways consistent with a potential mechanistic role in this loss of protection.  相似文献   

11.
The cardioprotective properties of quinapril, an angiotensin-converting enzyme inhibitor, were studied in a rat model of dilated cardiomyopathy. Twenty-eight days after immunization of pig cardiac myosin, four groups rats were given 0.2 mg/kg (Q0.2, n = 11), 2 mg/kg (Q2, n = 11) or 20 mg/kg (Q20, n = 11) of quinapril or vehicle (V, n = 15) orally once a day. After 1 month, left ventricular end-diastolic pressure (LVEDP), ±dP/dt, area of myocardial fibrosis, and myocardial mRNA expression of transforming growth factor (TGF)-1, collagen-III and fibronectin were measured. Four of 15 (27%) rats in V and two of 11 (18%) in Q0.2 died. None of the animals in Q2 or Q20 died. The LVEDP was higher and ±dP/dt was lower in V (14.1 ± 2.0 mmHg and +2409 ± 150/–2318 ± 235 mmHg/sec) than in age-matched normal rats (5.0 ± 0.6 mmHg and +6173 ± 191/–7120 ± 74 mmHg/sec; all p < 0.01). After quinapril treatment, LVEDP was decreased and ±dP/dt was increased in a dose-dependent manner (10.8 ± 1.8 mmHg and +3211 ± 307/–2928 ± 390 mmHg/sec in Q0.2, 9.4 ± 1.5 mmHg and +2871 ± 270/–2966 ± 366 mmHg/sec in Q2, and 6.6 ± 1.5 mmHg, and +3569 ± 169/–3960 ± 203 mmHg/sec in Q20). Increased expression levels of TGF-1, collagen-III and fibronectin mRNA in V were reduced in Q20. Quinapril improved survival rate and cardiac function in rats with dilated cardiomyopathy after myocarditis. Furthermore, myocardial fibrosis was regressed and myocardial structure returned to nearly normal in animals treated with quinapril.  相似文献   

12.
It is well known that cardiac sympathetic afferent reflexes contribute to increases in sympathetic outflow and that sympathetic activity can antagonize arterial baroreflex function. In this study, we tested the hypothesis that in normal rats, chemical and electrical stimulation of cardiac sympathetic afferents results in a decrease in the arterial baroreflex function by increasing sympathetic nerve activity. Under alpha-chloralose (40 mg/kg) and urethane (800 mg/kg i.p.) anesthesia, renal sympathetic nerve activity, mean arterial pressure, and heart rate were recorded. The arterial baroreceptor reflex was evaluated by infusion of nitroglycerin (25 microg i.v.) and phenylephrine (10 microg i.v.). Left ventricular epicardial application of capsaicin (0.4 microg in 2 microl) blunted arterial baroreflex function by 46% (maximum slope 3.5 +/- 0.3 to 1.9 +/- 0.2%/mmHg, P < 0.01). When the central end of the left cardiac sympathetic nerve was electrically stimulated (7 V, 1 ms, 20 Hz), the sensitivity of the arterial baroreflex was similarly decreased by 42% (maximum slope 3.2 +/- 0.3 to 1.9 +/- 0.4%/mmHg; P < 0.05). Pretreatment with intracerebroventricular injection of losartan (500 nmol in 1 microl of artificial cerebrospinal fluid) completely prevented the impairment of arterial baroreflex function induced by electrical stimulation of the central end of the left cardiac sympathetic nerve (maximum slope 3.6 +/- 0.4 to 3.1 +/- 0.5%/mmHg). These results suggest that the both chemical and electrical stimulation of the cardiac sympathetic afferents reduces arterial baroreflex sensitivity and the impairment of arterial baroreflex function induced by cardiac sympathetic afferent stimulation is mediated by central angiotensin type 1 receptors.  相似文献   

13.
The prolonged production of reactive oxygen species due to ischemia-reperfusion (I/R) is a potential cause of the pathological remodeling that frequently precedes heart failure. We tested the ability of a potent dithiol antioxidant, bucillamine, to protect against the long-term consequences of I/R injury in a murine model of myocardial infarction. After transiently occluding the left anterior descending coronary artery for 30 min, saline or bucillamine (10 microg/g body wt) was injected intravenously as a bolus within the first 5 min of reperfusion. The antioxidant treatment continued with daily subcutaneous injections for 4 wk. There were no differences in infarct sizes between bucillamine- and saline-treated animals. After 4 wk of reperfusion, cardiac hypertrophy was decreased by bucillamine treatment (ventricular weight-to-body weight ratios: I/R + saline, 4.5 +/- 0.2 mg/g vs. I/R + bucillamine, 4.2 +/- 0.1 mg/g; means +/- SE; P < 0.05). Additionally, the hearts of bucillamine-treated mice had improved contractile function (echocardiographic measurement of fractional shortening) relative to saline controls: I/R + saline, 32 +/- 3%, versus I/R + bucillamine, 41 +/- 4% (P < 0.05). Finally, I/R-induced injury in the saline-treated mice was accompanied by a fetal pattern of gene expression determined by ribonuclease protection assay that was consistent with pathological cardiac hypertrophy and remodeling [increased atrial natriuretic peptide, beta-myosin heavy chain (MHC), skeletal alpha-actin; decreased sarco(endo)plasmic reticulum Ca2+ ATPase 2a, and alpha-MHC-to-beta-MHC ratio]. These changes in gene expression were significantly attenuated by bucillamine. Therefore, treatment with a dithiol antioxidant for 4 wk after I/R preserved ventricular function and prevented the abnormal pattern of gene expression associated with pathological cardiac remodeling.  相似文献   

14.
Seven chronically instrumented Yucatan minipigs were deeply sedated with the combination of ketamine (10 mg/kg), a dissociative anesthetic, and medetomidine (0.2 mg/kg), an alpha 2-adrenoceptor agonist used as an animal sedative in Europe. Both drugs were drawn in the same syringe and administered in the left atrium via a previously inserted permanent catheter. As a result, hypertension (mean arterial pressure from 116 +/- 12 mmHg to 142 +/- 18 mmHg) occurred and was followed by bradycardia (from 107 +/- 22 bpm to 71 +/- 9 bpm). Concomitantly, both the rate of increase in ventricular pressure (48%) and ventricular wall thickening fraction (37%) decreased, thus indicating some worsening of left ventricular function. Further, systemic vascular resistance increased (290%) resulting in a reduction in cardiac output from 0.4 +/- 0.3 l/minute. Also, left ventricular end diastolic pressure initially increased (maximum 10.2 +/- 10.8 mmHg) but returned to the control level in 5 minutes. In spite of an increase in respiratory frequency (3x), PaCO2 increased and PaO2 and pH declined. Rectal temperature decreased from 38.4 +/- 0.9 to 36.0 +/- 0.8 degrees C. All of these changes were transient and returned to control levels during the follow-up period (2 hours). However, epinephrine concentration was exceptionally decreased by the drugs and stayed under the detection limit (20 pg/kg) for the entire time, whereas norepinephrine was undetectable for 10 minutes postadministration. Ketamine-medetomidine, administered in a dose that produced deep sedation, induced marked but reversible changes in most of the cardiovascular variables; there were no pedal or palpebral reflexes for 30 minutes.  相似文献   

15.
Varga E  Nagy N  Lazar J  Czifra G  Bak I  Biro T  Tosaki A 《Life sciences》2004,75(20):2411-2423
We investigated the contribution of dexamethasone treatment on the recovery of postischemic cardiac function and the development of reperfusion-induced arrhythmias in ischemic/reperfused isolated rat hearts. Rats were treated with 2 mg/kg of intraperitoneal injection of dexamethasone, and 24 hours later, hearts were isolated according to the 'working' mode, perfused, and subjected to 30 min global ischemia followed by 120 min reperfusion. Cardiac function including heart rate, coronary flow, aortic flow, and left ventricular developed pressure were recorded. After 60 min and 120 min reperfusion, 2 mg/kg of dexamethasone significantly improved the postischemic recovery of aortic flow and left ventricular developed pressure from their control values of 10.7 +/- 0.3 ml/min and 10.5 +/- 0.3 kPa to 22.2 +/- 0.3 ml/min (p < 0.05) and 14.3 +/- 0.5 kPa (p < 0.05), 19.3 +/- 0.3 ml/min (p < 0.05) and 12.3 +/- 0.5 kPa (p < 0.05), respectively. Heart rate and coronary flow did not show a significant change in postischemic recovery after 60 or 120 min reperfusion. In rats treated with 0.5 mg/kg of actinomycin D injected i.v., one hour before the dexamethasone injection, suppressed the dexamethasone-induced cardiac protection. Electrocardiograms were monitored to determine the incidence of reperfusion-induced ventricular fibrillation. Dexamethasone pretreatment significantly reduces the occurrence of ventricular fibrillation. Cytochrome c release was also observed in the cytoplasm. The results suggest that the inhibition of cytochrome c release is involved in the dexamethasone-induced cardiac protection.  相似文献   

16.
Although statins impart a number of cardiovascular benefits, whether statin therapy during the peri-infarct period improves subsequent myocardial structure and function remains unclear. Thus, we evaluated the effects of atorvastatin on cardiac function, remodeling, fibrosis, and apoptosis after myocardial infarction (MI). Two groups of rats were subjected to permanent coronary occlusion. Group II (n = 14) received oral atorvastatin (10 mg/kg/d) daily for 3 wk before and 4 wk after MI, while group I (n = 12) received equivalent doses of vehicle. Infarct size (Masson''s trichrome-stained sections) was similar in both groups. Compared with group I, echocardiographic left ventricular ejection fraction (LVEF) and fractional area change (FAC) were higher while LV end-diastolic volume (LVEDV) and LV end-systolic and end-diastolic diameters (LVESD and LVEDD) were lower in treated rats. Hemodynamically, atorvastatin-treated rats exhibited significantly higher dP/dtmax, end-systolic elastance (Ees), and preload recruitable stroke work (PRSW) and lower LV end-diastolic pressure (LVEDP). Morphometrically, infarct wall thickness was greater in treated rats. The improvement of LV function by atorvastatin was associated with a decrease in hydroxyproline content and in the number of apoptotic cardiomyocyte nuclei. We conclude that atorvastatin therapy during the peri-infarct period significantly improves LV function and limits adverse LV remodeling following MI independent of a reduction in infarct size. These salubrious effects may be due in part to a decrease in myocardial fibrosis and apoptosis.  相似文献   

17.
目的:探讨激动乙醛脱氢酶2(ALDH2)在糖尿病大鼠心肌损伤中的作用。方法:腹腔注射55 mg/kg链脲佐菌素复制糖尿病大鼠模型,分为糖尿病组和乙醇+糖尿病组(n=8)。8周后行离体心肌缺血/再灌注(I/R),测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量。测定空腹血糖、糖化血红蛋白(HbA1c)水平。RT-PCR和Western blot测定左心室前壁心尖组织线粒体ALDH2 mRNA和蛋白表达。结果:与正常大鼠心肌I/R相比,糖尿病大鼠左室发展压、左心室最大上升和下降速率、左室做功进一步下降,左室舒张末压抬高,复灌期冠脉流出液中LDH释放增多,心室ALDH2 mRNA和蛋白表达降低;与糖尿病大鼠心肌I/R相比,ALDH2激动剂乙醇明显促进左室发展压、左心室最大上升和下降速率、左室做功的恢复,降低左室舒张末压,同时降低HbA1c水平和LDH的释放,ALDH2 mRNA和蛋白表达增高。结论:糖尿病大鼠心肌缺血/再灌注时,心肌ALDH2表达降低;增强ALDH2在糖尿病大鼠心肌中的表达可发挥保护作用。  相似文献   

18.
Decreasing heart rate might be beneficial for improvement of myocardial energetics and could reduce the severity of myocardial ischemia. We examined the contribution of heart rate reduction by cilobradine (DK-AH 269), a direct sinus node inhibitor, on left ventricular function and peripheral vasomotion in anesthetized rabbits with experimental myocardial infarction. The rabbits were randomized to receive either placebo (n=10) or cilobradine (n=7). Cilobradine decreased significantly heart rate from 163 +/- 33 to 131 +/- 13 bpm, p< 0.05, without any inotopic or vascular effects. After 60 min coronary occlusion and 30 min reperfusion, both systolic and diastolic ventricular function were more reduced in the cilobradine group; i.e. maximal left ventricular pressure significantly decreased to 62 +/- 11 mmHg, p < 0.05 (placebo: 77 +/- 9 mmHg); dP/dt(min) significantly decreased to -904 +/- 247 mmHg, p < 0.05 (placebo: -1106 +/- 242 mmHg). However, infarct size in the cilobradine group was significantly smaller compared with the placebo group. In conclusion, cilobradine reduced heart rate without any negative inotropic effect and reduced infarct size. On that account, this bradycardic agent might open a promising therapeutical avenue to treat postischemic dysfunction.  相似文献   

19.
Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (tau), and the first derivatives of LV pressure rise and fall (dP/dt(max) and dP/dt(min), respectively). During echocardiography, HR was lower in XK than AV mice (250 +/- 14 beats/min in XK vs. 453 +/- 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 +/- 0.08 mm in XK vs. 3.8 +/- 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 +/- 1.2% in XK vs. 40 +/- 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 +/- 24 beats/min) and XK (342 +/- 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 +/- 5 vs. 6.2 +/- 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/dt(max): 4,402 +/- 798 vs. 8,250 +/- 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (tau: 23 +/- 2 vs. 14 +/- 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.  相似文献   

20.
Liu Y  Qi H  Wang Y  Wu M  Cao Y  Huang W  Li L  Ji Z  Sun H 《Phytomedicine》2012,19(8-9):693-698
To evaluate the cardioprotective effect of allicin (AL) on myocardial injury of streptozotocin (STZ)-induced diabetic rats and to further explore its underlying mechanisms. Hyperglycemia was induced in rats by single intraperitoneal injection of STZ (40 mg/kg). Three days after STZ induction, the hyperglycemic rats (plasma glucose levels ≥ 16.7 mmol/l) were treated with AL by intraperitoneal injection at the doses of 4 mg/kg, 8 mg/kg, and 16 mg/kg daily for 28 days. The fasting blood glucose levels were measured on every 7th day during the 28 days of treatment. The body weight, blood glucose, and parameter of cardiac function were detected after 4 weeks to study the cardioprotective effects of AL on diabetic rats in vivo. The apoptotic index of cardiomyocytes was estimated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The expressions of Fas, Bcl-2, CTGF, and TGF-β(1) protein were studied by immunohistochemistry. Laser scanning confocal microscopy technique was utilized to observe the effects of AL on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular cardiomyocytes. AL at the doses of 4 mg/kg, 8 mg/kg, and 16 mg/kg significantly reduced blood glucose levels in a dose-dependent manner and increased body weight as well compared with the model group. Hemodynamic parameters including left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), and maximum rate of left ventricular pressure rise and fall (+dp/dtmax and -dp/dtmax) were significantly restored back to normal levels in AL-treated (8 mg/kg and 16 mg/kg) rats compared with diabetic model rats. AL markedly inhibited cardiomyocyte apoptosis induced by diabetic cardiac injury. Further investigation revealed that this inhibitory effect on cell apoptosis was mediated by increasing anti-apoptotic protein Bcl-2 and decreasing pro-apoptotic protein Fas. Additional experiments demonstrated AL abrogated myocardial fibrosis by blocking the expressions of CTGF and TGF-β(1) protein. AL shows protective action on myocardial injury in diabetic rats. The possible mechanisms were involved in reducing blood glucose, correcting hemodynamic impairment, reducing Fas expression, activating Bcl-2 expression, decreasing intracellular calcium overload, inhibiting the expressions of TGF-β(1) and CTGF, and further improving cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号