首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

2.
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards.  相似文献   

3.
For many sporting activities, initial speed rather than maximal speed would be considered of greater importance to successful performance. The purpose of this study was to identify the relationship between strength and power and measures of first-step quickness (5-m time), acceleration (10-m time), and maximal speed (30-m time). The maximal strength (3 repetition maximum [3RM]), power (30-kg jump squat, countermovement, and drop jumps), isokinetic strength measures (hamstring and quadriceps peak torques and ratios at 60 degrees .s(-1) and 300 degrees .s(-1)) and 5-m, 10-m, and 30-m sprint times of 26 part-time and full-time professional rugby league players (age 23.2 +/- 3.3 years) were measured. To examine the importance of the strength and power measures on sprint performance, a correlational approach and a comparison between means of the fastest and slowest players was used. The correlations between the 3RM, drop jump, isokinetic strength measures, and the 3 measures of sport speed were nonsignificant. Correlations between the jump squat (height and relative power output) and countermovement jump height and the 3 speed measures were significant (r = -0.43 to -0.66, p < 0.05). The squat and countermovement jump heights as well as squat jump relative power output were the only variables found to be significantly greater in the fast players. It was suggested that improving the power to weight ratio as well as plyometric training involving countermovement and loaded jump-squat training may be more effective for enhancing sport speed in elite players.  相似文献   

4.
The purpose of this study was to investigate the effect of weighted jump squat training with and without eccentric braking. Twenty male subjects were divided into two groups (n = 10 per group), Non-Braking Group and Braking Group. The subjects were physically active, but not highly trained. The program for Non-Braking Group consisted of 6 sets of 6 repetitions of weighted jump squats without reduction of eccentric load for 8 weeks. The training program for the Braking Group consisted of the same sets and repetitions, but eccentric load was reduced by using an electromagnetic braking mechanism. Jump and reach, countermovement jump, static jump, drop jump, one repetition maximum half squat, weighted jump squat, and isometric/isokinetic knee extension/flexion at several different positions/angular velocities were tested pre- and posttraining intervention. The Non-Braking Group exhibited greater improvement in peak torque during isokinetic concentric knee flexion at 300 degrees/s [Non-Braking Group: (mean +/- SD) 124.0 +/- 22.6 Nm at pre- and 134.1 +/- 18.4 Nm at posttraining, and Braking Group: 118.5 +/- 32.7 Nm at pre- and 113.2 +/- 26.7 Nm at posttraining]. Braking Group exhibited superior adaptations in peak power relative to body mass during weighted jump squat [Non-Braking Group: (mean +/- SD) 49.1 +/- 8.6 W/kg at pre- and 50.9 +/- 6.2 W/kg at posttraining, and Braking Group: 47.9 +/- 6.9 W/kg at pre- and 53.7 +/- 7.3 W/kg at posttraining]. It appears that power output in relatively slow movement (weighted jump squat) was improved more in the Braking Group, however strength in high velocity movements (isokinetic knee flexion at 300 degrees/s) was improved more in Non-Braking Group. This study supports load and velocity specific effects of weighted jump squat training.  相似文献   

5.
The purpose of this study was to explore the effects of 5 weeks of eccentrically loaded and unloaded jump squat training in experienced resistance-trained athletes during the strength/ power phase of a 15-week periodized off-season resistance training program. Forty-seven male college football players were randomly assigned to 1 of 3 groups. One group performed the jump squat exercise using both concentric and eccentric phases of contraction (CE; n = 15). A second group performed the jump squat exercise using the concentric phase only (n = 16), and a third group did not perform the jump squat exercise and served as control (CT; n = 16). No significant differences between the groups were seen in power, vertical jump height, 40-yd sprint speed and agility performance. In addition, no differences between the groups were seen in integrated electromyography activity during the jump squat exercise. Significant differences between the CE and CT groups were seen in Delta 1RM squat (65.8 and 27.5 kg, respectively) and Delta 1RM power clean (25.9 and 3.8 kg, respectively). No other between-group differences were observed. Results of this study provide evidence of the benefits of the jump squat exercise during a short-duration (5-week) training program for eliciting strength and power gains. In addition, the eccentric phase of this ballistic movement appears to have important implications for eliciting these strength gains in college football players during an off-season training program. Thus, coaches incorporating jump squats (using both concentric and eccentric phases of contraction) in the off-season training programs of their athletes can see significant performance improvements during a relatively short duration of training.  相似文献   

6.
To achieve maximal force output, clinicians and coaches have been experimenting with upper extremity plyometric exercises for years, without sufficient scientific validation of this training method. The goal of this study was to examine the effects of an 8-week course of high volume upper extremity plyometric training on the isokinetic strength and throwing velocity of a group of intercollegiate baseball players. Twenty-four Division I collegiate baseball players (age: 19.7 +/- 1.3 years; height: 183.9 +/- 5.9 cm; mass: 90.7 +/- 10.5 kg) were recruited to participate in this study. Throwing velocity, isokinetic peak torque, isokinetic functional strength ratios, and time to peak torque were measured pre- and posttraining. Subjects were rank-ordered according to concentric internal rotation (IR) strength and were assigned randomly to either the plyometric training group (PLY) or the control group (CON). Training consisted of 6 upper extremity plyometric exercises ("Ballistic Six") performed twice per week for 8 weeks. Subjects assigned to CON performed regular off-season strength and conditioning activities, but did not perform plyometric activities. PLY demonstrated significant increases (p < 0.05) in throwing velocity following 8 weeks of training when compared with CON (83.15 mph [pre] vs. 85.15 mph [post]). There were no statistically significant differences in any of the isokinetic strength measurements between PLY and CON groups pre- to posttraining. Statistically significant differences were seen within PLY for concentric IR and eccentric external rotation (ER) isokinetic strength at 180 degrees x s(-1) and 300 degrees x s(-1); and within CON for eccentric ER isokinetic strength at 300 degrees x s(-1) and concentric IR isokinetic strength at 180 degrees x s(-1). The Ballistic Six training protocol can be a beneficial supplement to a baseball athlete's off-season conditioning by improving functional performance and strengthening the rotator cuff musculature.  相似文献   

7.
This is the first part of 2 studies that systematically review the current state of research and structure the results of selected electromyostimulation (EMS) studies in a way that makes accurate comparisons possible. This part will focus on the effects of EMS on strength enhancement. On the basis of these results, part 2 will deal with the influence of the training regimen and stimulation parameters on EMS training effectiveness to make recommendations for training control. Out of about 200 studies, 89 trials were selected according to predefined criteria: subject age (<35 years), subject health (unimpaired), EMS type (percutaneous stimulation), and study duration (>7 days). To evaluate these trials, we first defined appropriate categories according to the type of EMS (local or whole body) and type of muscle contraction (isometric, dynamic, isokinetic). Then, we established the most relevant strength parameters for high-performance sports: maximal strength, speed strength, power, jumping and sprinting ability. Unlike former reviews, this study differentiates between 3 categories of subjects based on their level of fitness (untrained subjects, trained subjects, and elite athletes) and on the types of EMS methods used (local, whole-body, combination). Special focus was on trained and elite athletes. Untrained athletes were investigated for comparison purposes. This scientific analysis revealed that EMS is effective for developing physical performance. After a stimulation period of 3-6 weeks, significant gains (p < 0.05) were shown in maximal strength (isometric Fmax +58.8%; dynamic Fmax +79.5%), speed strength (eccentric isokinetic Mmax +37.1%; concentric isokinetic Mmax + 41.3%; rate of force development + 74%; force impulse + 29%; vmax + 19%), and power (+67%). Developing these parameters increases vertical jump height by up to +25% (squat jump +21.4%, countermovement jump +19.2%, drop jump +12%) and improves sprint times by as much as -4.8% in trained and elite athletes. With regard to the level of fitness, the analysis shows that trained and elite athletes, despite their already high level of fitness, are able to significantly enhance their level of strength to same extent as is possible with untrained subjects. The EMS offers a promising alternative to traditional strength training for enhancing the strength parameters and motor abilities described above. Because of the clear-cut advantages in time management, especially when whole-body EMS is used, we can expect this method to see the increasing use in high-performance sports.  相似文献   

8.
The present study aimed to evaluate the effects of different resistance training programs on jump performance and body composition of female volleyball players of the highest Spanish division league over 24 weeks of training. Ten female volleyball players (27.41 ± 4.94 years; 72.2 ± 8.5 kg; 179.7 ± 6.4 cm) completed 24 weeks of training and testing using a linear periodization, progressing from general conditioning (weeks 1-4), to hypertrophy (weeks 5-8), then to maximum strength and power (weeks 9-16) and concluding with a specific strength training (weeks 17-24). Body composition was measured using bioelectrical-impedance analysis, and neuromuscular capacity was estimated by squat jump, countermovement jump, Abalakov jump, and 2 repetition maxima (2RM). After initial evaluation (PRE), the players were tested on 3 different occasions (POST: fourth week, POST 1: eighth week and POST 2: 24th week) of the training cycle. Muscle mass increased on (4.5%, p < 0.05) and fat-free mass (4.38%, p < 0.05), whereas fat percent decreased (13.90%, p < 0.05). All neuromuscular performance tests were increased from PRE to POST 2 (ranging from 17.64 to 20.89%, p < 0.01) and from POST 1 to POST 2 (ranging from 4.62 to 7.56% p < 0.01). The results suggest that the volleyball players studied continued improving power and strength capacity together with body composition during the course of the study. Finally, as major application, these data provide normative and performance standards for female volleyball players.  相似文献   

9.
The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.  相似文献   

10.
The influence of an eccentric training on torque/angular velocity relationships and coactivation level during maximal voluntary isokinetic elbow flexion was examined. Seventeen subjects divided into two groups (Eccentric Group EG, n = 9 Control Group CG, n = 8) performed on an isokinetic dynamometer, before and after training, maximal isokinetic elbow flexions at eight angular velocities (from - 120 degrees s(-1) under eccentric conditions to 240 degrees s(-1) under concentric conditions), and held maximal and submaximal isometric actions. Under all conditions, the myoelectric activities (EMG) of the biceps and the triceps brachii muscles were recorded and quantified as the RMS value. Eccentric training of the EG consisted of 5x6 eccentric muscle actions at 100 and 120% of one maximal repetition (IRM) for 21 sessions and lasted 7 weeks. In the EG after training, torque was significantly increased at all angular velocities tested (ranging from 11.4% at 30 degrees (s-1) to 45.5% at - 120 degrees s(-1)) (p < 0.05). These changes were accompanied by an increase in the RMS activities of the BB muscle under eccentric conditions (from - 120 to - 30 degrees (s-1)) and at the highest concentric angular velocities (180 and 24 degrees s(-1)) (p < 0.05). The RMS activity of the TB muscle was not affected by the angular velocity in either group for all action modes. The influence of eccentric training on the torque gains under eccentric conditions and for the highest velocities was attributed essentially to neural adaptations.  相似文献   

11.
A decreased hamstring:quadriceps (H:Q) ratio may put the hamstrings and anterior cruciate ligament (ACL) at increased risk of injury. Therefore, the purpose of this study was to evaluate H:Q ratios of 12 female National Collegiate Athletic Association soccer players, and to test the effects of a 6-week strength training program on these ratios. Each subject completed 2 practice sessions before a pretest. Subjects then completed 6 weeks of strength training that included the addition of 2 hamstring specific exercises, followed by a posttest. Peak torque during concentric and eccentric actions for both hamstrings and quadriceps was measured with an isokinetic dynamometer. Each muscle action was tested at 3 angular velocities in the following order: concentric 240, 180, and 60 degrees x s(-1) and eccentric 60, 180, and 240 degrees x s(-1). The H:Q strength ratio was evaluated using concentric muscle actions (concentric hamstrings:concentric quadriceps). This method is commonly used and is thus called the conventional ratio. Because concentric actions do not occur simultaneously in opposing muscles, a more functional assessment compares eccentric hamstring actions to concentric quadriceps actions. This functional ratio was also analyzed. Mean conventional and functional H:Q ratio data were analyzed using separate analysis of variance procedures with repeated measures on all factors (2 [Test] x 2 [Leg] x 3 [Angular Velocity]). The results revealed a significant main effect for factor (F test) with the functional ratio (p < 0.05) but not for the conventional ratio. The mean functional ratio increased from 0.96 +/- 0.09 in pretest to 1.08 +/- 0.11 in posttest. These results suggest that 6 weeks of strength training that emphasizes hamstrings is sufficient to significantly increase the functional ratio. The functional ratio after training exceeded 1.0, which is specifically recommended for prevention of ACL injuries.  相似文献   

12.
The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women.  相似文献   

13.
Women are up to eight times more likely than men to suffer an anterior cruciate ligament (ACL) injury, and knee valgus is perhaps the most at-risk motion. Women have been shown to have more knee valgus than men in squatting movements and while landing. The purposes were to investigate whether a relationship exists between lower-extremity frontal plane motions in squatting and landing, whether gender differences exist, and whether squat or hip abduction strength relates to knee valgus while landing. Eleven collegiate Division III soccer players and 11 recreationally trained men were tested for maximal vertical jump height and for squat and hip abduction strength. On the second day of testing, subjects performed light (50% one repetition maximum) and heavy (85%) squat protocols and three landings from their maximal vertical jump height. Pearson's product-moment correlation coefficients and a 2 x 10 factorial analysis of variance with t-test post hoc comparisons (p 相似文献   

14.
The purpose of this study was to determine the acute effects of a spectrum of eccentric loads on force, velocity, and power during the concentric portion of maximal-effort jump squats utilizing a repeated measures design. Thirteen resistance-trained men (age = 22.8 +/- 2.9 years, weight = 87.1 +/- 11.8 kg, 163.5 +/- 28.6 kg squat 1 repetition maximum [1RM]; mean +/- SD), who routinely incorporated back squats into their training, participated as subjects in this investigation. Jump squat performance was assessed using 4 experimental conditions. The first of these conditions consisted of an isoinertial load equal to 30% of back squat 1RM. The remaining conditions consisted of jump squats with a concentric load of 30% 1RM, subsequent to the application of experimental augmented eccentric loading (AEL) conditions of 20, 50, and 80% of back squat 1RM, respectively. All subjects performed 2 sets of 1RM of maximum-effort jump squats with all experimental conditions in a counter-balanced sequence. Forty-eight hours after completing the first testing session, subjects repeated the experimental testing protocol to establish stability reliability. Peak performance values for the reliable variables of force, velocity, and power, as well as force and power values obtained at 20-ms intervals during the initial 400 ms of the concentric jump squat range of motion, showed no statistical difference (p > 0.05) across the experimental AEL loads. These results suggest that load-spectrum AEL prior to a 30% 1RM jump squat fails to acutely enhance force, velocity, and power.  相似文献   

15.
The purpose of this study was to investigate the effect of instantaneous performance feedback (peak velocity) provided after each repetition of squat jump exercises over a 6-week training block on sport-specific performance tests. Thirteen professional rugby players were randomly assigned to 1 of 2 groups, feedback (n = 7) and non-feedback (n = 6). Both groups completed a 6-week training program (3 sessions per week) comprising exercises typical of their normal preseason conditioning program. Squat jumps were performed in 2 of the 3 sessions each week during which both groups performed 3 sets of 3 concentric squat jumps using a barbell with an absolute load of 40 kg. Participants in group 1 were given real-time feedback on peak velocity of the squat jump at the completion of each repetition using a linear position transducer and customized software, whereas those in group 2 did not receive any feedback. Pre and posttesting consisted of vertical jump, horizontal jump, and 10-/20-/30-m timed sprints. The relative magnitude (effect size) of the training effects for all performance tests was found to be small (0.18-0.28), except for the 30-m sprint performance, which was moderate (0.46). The probabilities that the use of feedback during squat jump training for 6 weeks was beneficial to increasing performance of sport-specific tests was 45% for vertical jump, 65% for 10-m sprints, 49% for 20-m sprints, 83% for horizontal jump, and 99% for 30-m sprints. In addition to improvements in the performance of sport-specific tests, suggesting the potential for greater adaptation and larger training effects, the provision of feedback may also be used in applications around performance targets and thresholds during training.  相似文献   

16.
The purpose of this study was to investigate the importance of training leading to repetition failure in the performance of 2 different tests: 6 repetition maximum (6RM) bench press strength and 40-kg bench throw power in elite junior athletes. Subjects were 26 elite junior male basketball players (n = 12; age = 18.6 +/- 0.3 years; height = 202.0 +/- 11.6 cm; mass = 97.0 +/- 12.9 kg; mean +/- SD) and soccer players (n = 14; age = 17.4 +/- 0.5 years; height = 179.0 +/- 7.0 cm; mass = 75.0 +/- 7.1 kg) with a history of greater than 6 months' strength training. Subjects were initially tested twice for 6RM bench press mass and 40-kg Smith machine bench throw power output (in watts) to establish retest reliability. Subjects then undertook bench press training with 3 sessions per week for 6 weeks, using equal volume programs (24 repetitions x 80-105% 6RM in 13 minutes 20 seconds). Subjects were assigned to one of two experimental groups designed either to elicit repetition failure with 4 sets of 6 repetitions every 260 seconds (RF(4 x 6)) or allow all repetitions to be completed with 8 sets of 3 repetitions every 113 seconds (NF(8 x 3)). The RF(4 x 6) treatment elicited substantial increases in strength (7.3 +/- 2.4 kg, +9.5%, p < 0.001) and power (40.8 +/- 24.1 W, +10.6%, p < 0.001), while the NF(8 x 3) group elicited 3.6 +/- 3.0 kg (+5.0%, p < 0.005) and 25 +/- 19.0 W increases (+6.8%, p < 0.001). The improvements in the RF(4 x 6) group were greater than those in the repetition rest group for both strength (p < 0.005) and power (p < 0.05). Bench press training that leads to repetition failure induces greater strength gains than nonfailure training in the bench press exercise for elite junior team sport athletes.  相似文献   

17.
The purpose of this study was to examine the effects of regular whole-body vibration (WBV) training on lower body strength and power. National Collegiate Athletic Association Division III softball athletes (n = 9) completed the 9-week protocol as part of their off-season strength and conditioning program. The athletes were randomly assigned to 1 of 2 groups. Week 1, pretesting included 3 repetition maximum (3RM) back squat, standing long jump (SLJ), and vertical countermovement jump (VCMJ). Phase I training (weeks 2-4) consisted of either WBV training (group 1) or conventional strength training (CST, group 2). The primary programmatic difference between WBV and CST was the inclusion of WBV sets after squat sets. Posttesting (3RM squat, SLJ, VCMJ) occurred at week 5. Phase II training (weeks 6-8) consisted of either WBV training (group 2) or CST (group 1). Posttesting was repeated at week 9 after the completion of phase II. Three 2 × 2 mixed factorial analyses of variance were computed. No significant differences (p > 0.05) were found between groups or between groups and testing period for the SLJ, VCMJ, and estimated 1RM back squat. Increases (p < 0.05) were observed in SLJ, VCMJ, and back squat from pretest to posttest 1. Back squat increased (p < 0.05) from posttest 1 to posttest 2. All the athletes experienced significantly greater (p < 0.05) percent changes from pretest to posttest 1 for SLJ and VCMJ. These results indicate that the inclusion of WBV as part of an off-season strength and conditioning program has no apparent benefit over CST methods for collegiate softball players.  相似文献   

18.
The aim of this study was to investigate the response to non-tackle and tackle field-based training on upper- and lower-limb neuromuscular function in elite rugby union players. Nine elite senior elite rugby union players (mean age = 21 ± 2 years; height = 184 ± 7 cm; body mass 91.0 ± 9 kg) were evaluated before and immediately following 17 training sessions. A total of 306 assessments were performed. Data on neuromuscular function of plyometric push-up and countermovement jump were calculated from force signals using inverse dynamics. The change from pre- to post-session was investigated across non-tackle and tackle training using a linear mixed model. Considering upper-limb neuromuscular function, peak concentric power [P = 0.024; ES = 0.33 95%CI (0.04, 0.62)] was significantly lower after tackle compared to non-tackle training. In addition, peak countermovement jump eccentric power was significantly lower after non-tackle compared to tackle training [P = 0.044; ES = -0.4 95%CI (-0.69, -0.1)] in lower-limb neuromuscular function. Overall, the results indicated that the type of training influences upper- and lower-limb neuromuscular function differently immediately after training. Indeed, due to physical contact, the upper-body neuromuscular function increased during tackle training. In contrast, lower-body neuromuscular function emerged only in non-tackle training, due to the greater distance covered during this type of training session. Coaches and practitioners should plan adequate weekly training sessions according to this information.  相似文献   

19.
The purpose of this study was to investigate the time course of adaptations to training in young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players. Fourteen young (14.1 +/- 0.2 years) and 21 older (16.9 +/- 0.3 years) junior rugby league players participated in a 10-week preseason strength, conditioning, and skills program that included 3 sessions each week. Subjects performed measurements of standard anthropometry (i.e., height, body mass, and sum of 7 skinfolds), muscular power (i.e., vertical jump), speed (i.e., 10-m, 20-m, and 40-m sprint), agility (505 test), and estimated maximal aerobic power (i.e., multistage fitness test) before and after training. In addition, players underwent a smaller battery of fitness tests every 3 weeks to assess the time course of adaptation to the prescribed training stimulus. During the triweekly testing sessions, players completed assessments of upper-body (i.e., 60-second push-up, sit-up, and chin-up test) and lower-body (i.e., multiple-effort vertical jump test) muscular endurance. Improvements in maximal aerobic power and muscular endurance were observed in both the young and the older junior players following training. The improvements in speed, muscular power, maximal aerobic power, and upper-body muscular endurance were greatest in the young junior players, while improvements in lower-body muscular endurance were greatest in the older junior players. These findings demonstrate that young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in maturational and training age. In addition, the results of this study provide conditioning coaches with realistic performance improvements following a 10-week preseason strength and conditioning program in junior rugby league players.  相似文献   

20.
This study evaluated and compared the effectiveness of an aerobics-calisthenics (A-CAL) and an aerobics/weight training (A-WT) programs on lower limb strength and body fat (%). Thirty-five adult women (age 42.1 +/- 5.2 years) were randomly assigned to A-CAL (n = 14), A-WT (n = 14), or a control group (n = 7). The A-CAL and A-WT trained 3 days per week for 10 weeks. Maximal bilateral isometric and isokinetic knee extension (KEXT) and flexion (KFLEX) torque, squat jump (SJ), and body fat (%) were measured before and immediately after training. The results revealed nonsignificant differences between A-CAL and A-WT (p > 0.05). Both A-CAL and A-WT improved SJ (p < 0.001). A-WT increased isometric torque of KEXT and KFLEX (p < 0.05), isokinetic torque of KFLEX (p < 0.05), and decreased body fat (%) (p < 0.05) when compared with controls. In summary, the application of a 10-week light-weight training program improved selected strength parameters of healthy women, compared with controls, but the effectiveness of the calisthenics exercises as an independent form of strength training is dubious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号