首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the changes in physical performance after a 6-week skill-based conditioning training program in male competitive volleyball players. Sixteen male volleyball players (mean ± SD: age 22.3 ± 3.7 years, body height 190.7 ± 4.2 cm, and body mass 78.4 ± 4.5 kg) participated in this study. The players were tested for sprinting (5- and 10-m sprint), agility, and jumping performance (the vertical-jump test, the spike-jump test, and the standing broad jump [SBJ]). Compared with pretraining, there was a significant improvement in the 5- and 10-m speed. There were no significant differences between pretraining and posttraining for lower-body muscular power (vertical-jump height, spike-jump height, and SBJ) and agility. Based on our results, it could be concluded that a preseason skill-based conditioning program does not offer a sufficient stimulus for volleyball players. Therefore, a general conditioning and hypertrophy training along with specific volleyball conditioning is necessary in the preseason period for the development of the lower-body strength, agility and speed performance in volleyball players.  相似文献   

2.
Relations between force-velocity characteristics of the multijoint movement of the lower limbs and vertical jump performance were investigated. A total of 67 untrained subjects (age: 19.54 +/- 2.38 years; height: 166.88 +/- 8.53 cm; body mass: 59.14 +/- 10.82 kg, mean +/- SD) performed isometric and isotonic knee-hip extension movements on a servo-controlled dynamometer, and the force-velocity relations were determined. Also, vertical jump (VJ) performance was measured with a jump gauge. The force-velocity relation was described with a linear function so that the maximum isometric force (Fmax) and the maximum unloaded velocity (Vmax) for the knee-hip extension movement were estimated by extrapolation. Maximum isometric force coincided with maximum isometric force, F(0) (F(0)/Fmax = 1.03 +/- 0.24). Maximum isometric force, Vmax, and maximum power output (Pmax) were positively correlated with VJ (r = 0.48, 0.68, and 0.76, respectively; p < 0.001). However, when Fmax, Vmax, and Pmax were normalized with body mass (BM), leg length (LL), and BM, respectively, no correlation was seen between Fmax/BM and VJ (r = 0.24, p > 0.05), and significant correlations were seen between Vmax/LL and VJ (r = 0.56, p < 0.001) and between Pmax/BM and VJ (r = 0.65, p < 0.001). On the other hand, Fmax and Vmax (r = 0.12, p > 0.05) and Fmax/BM and Vmax/LL (r = 0.05, p > 0.05) were not significantly correlated, indicating that Fmax and Vmax were independent variables. The present estimates of Fmax, Vmax, and Pmax can be useful for evaluating the actual performance of multijoint movement of the lower limbs. It is suggested that, although in untrained individuals the speed of movement might be a more important determinant of jump performance, jump performance ability has a potential to improve with increases in strength of the lower limb.  相似文献   

3.
ABSTRACT: Leary, BK, Statler, J, Hopkins, B, Fitzwater, R, Kesling, T, Lyon, J, Phillips, B, Bryner, RW, Cormie, P, and Haff, GG. The relationship between isometric force-time curve characteristics and club head speed in recreational golfers. J Strength Cond Res 26(10): 2685-2697, 2012-The primary purpose of the present investigation was to examine the relationships between club head speed, isometric midthigh pull performance, and vertical jump performance in a cohort of recreational golfers. Twelve recreational golfers (age, 20.4 ± 1.0 years; weight, 77.0 ± 9.8 kg; height, 177.8 ± 6.3 cm; body fat, 17.1 ± 7.6%; handicap, 14.5 ± 7.3; experience, 8.9 ± 3.6 years) completed 3 testing sessions: (a) familiarization session and body composition measurements; (b) measurement of force-time curves in the isometric midthigh pull, countermovement, and static vertical jump (SJ); and (c) measurement of club head speed. During sessions 1 and 2, subjects performed 5 countermovement jumps, 5 SJ, and 2 isometric midthigh pulls. Isometric peak force was measured at 30, 50, 90, 100, 200, and 250 milliseconds. Rate of force development was measured among 0-30, 0-50, 0-90, 0-100, 0-200, and 0-250 milliseconds. Peak rate of force development was determined as the highest value in a 10-millisecond sampling windows. During session 3, subjects performed 10 maximal golf swings with a driver to measure club head speed; peak and average club head speed were analyzed across the 10 swings. Golf handicap was moderately correlated with average (r = -0.52, p = 0.04) and maximal club head speed (r = -0.45, p = 0.07). Force at 150 milliseconds during the isomeric midthigh pull test was moderately correlated with average (r = 0.46, p = 0.07) and maximal club head speed (r = 0.47, p = 0.06). Moderate correlations were also found between the rate of force development from 0 to 150 milliseconds and average (r = 0.38, p = 0.11) and maximal club head speed (r = 0.36, p = 0.12). The present findings suggest that the ability to exhibit high ground reaction forces in time frames <200 milliseconds are related to high club head speeds.  相似文献   

4.
Although many studies have been focused on soccer athletes, no comprehensive studies have been conducted on adolescent soccer athletes in the United States. Therefore, the purpose of this study was to quantify the physiological and sport-specific skill characteristics of Olympic Developmental Program (ODP) soccer athletes by age group and game experience. Following written, informed consent, 59 male athletes (age = 14.6 +/- 2.0 years; wt = 60.5 +/- 1.4 kg; ht = 172.4 +/- 1.2 cm) completed a battery of tests to determine aerobic power (VO(2)max), heart rate (HR(max)), ventilation (VE(max)), respiratory exchange ratio (RER), anaerobic threshold (AT), blood pressure (BP(rest/max)), anaerobic power/capacity [peak power (PP), mean power (MP), total work output (TWO), fatigue index (FI)], leg power [vertical squat jump (VJS), countermovement jump (VJC)], body composition [percent body fat (%BF), lean body mass (LBM)], joint range of motion (trunk, back, hip, knee, and ankle), and agility/sport-specific skills (T-test, line drill test, juggling test, Johnson wall volley, and modified-Zelenka circuit). Factor analyses with subsequent multivariate analyses of variance (MANOVAs) indicated significant main effects across age (p = 0.0001) but not by game experience (p = 0.82). Older athletes exhibited greater height, weight, LBM, VE(max), Time(max), PP, TWO, and VSJ values than younger athletes. Although not significant, there were differences with increasing age in the agility tests (T-test, wall volley, and juggling test). In conclusion, improvements in anaerobic power, agility, and sport-specific skill should be addressed at this developmental level of competition.  相似文献   

5.
Volleyball players need to sprint and change direction during a match. Lower-body power, often measured by jump tests, could contribute to faster movements. How different jumps relate to linear and change-of-direction (COD) speed has not been analyzed in Division I (DI) collegiate women’s volleyball players. Fifteen female volleyball players completed the vertical jump (VJ), two-step approach jump (AppJ), and standing broad jump (SBJ). Peak power and power-to-body mass ratio (P:BM) were derived from VJ and AppJ height; relative SBJ was derived from SBJ distance. Linear speed was measured via a 20-m sprint (0–10 and 0–20 m intervals); COD speed was measured using the pro-agility shuttle. Pearson’s correlations (p < 0.05) calculated relationships between the power variables, and speed tests. There were no significant relationships between the power variables and the 0–10 m sprint interval. Greater VJ height (r = -0.534) and P:BM (r = -0.557) related to a faster 0–20 m sprint interval. This be due to a greater emphasis on the stretch-shortening cycle to generate speed over 20 m. However, although a 20-m sprint may provide a measure of general athleticism, the distance may not be specific to volleyball. This was also indicated as the AppJ did not relate to any of the speed tests. Nonetheless, VJ height and P:BM, and SBJ distance and relative SBJ, all negatively correlated with the proagility shuttle (r = -0.548 to -0.729). DI women’s collegiate volleyball players could develop absolute and relative power in the vertical and horizontal planes to enhance COD speed.  相似文献   

6.
Complex training is the method of coupling heavy and light loads into an organized sequence with the aim of facilitating postactivation potentiation. Anecdotal evidence has supported the use of complex training sequences, but scientific studies investigating the effects of sequencing isometric loads with dynamic muscle actions have been limited. The purpose of this study was to examine the effects of a preconditioning sequence of maximal isometric knee extensions on performance standards in selected dynamic whole-body exercise. Fourteen track and field athletes (23 +/- 5.7 years; 71.53 +/- 6.93 kg; 172.6 +/- 5.8 cm) were randomly assessed in selected whole-body exercises (drop and countermovement jumps, 5-second cycle sprint, knee extension) following a sequence of maximal voluntary isometric contractions (MVC; 3 repetitions of 3 seconds or 3 repetitions of 5 seconds) or in the absence of prior loading (control). Electromyographic (EMG) assessments of muscle activity were also made during the knee extension assessment. Significant (p < or = 0.05) increases in jump height (5.03%), maximal force (4.94%), and acceleration impulse (9.49%) were observed in the drop jump following 3 repetitions of 3-second MVC only. Knee extension maximal torque was also significantly increased (6.12%) following the 3-second MVC. No significant changes in countermovement jump or cycle sprint measures were observed for any of the experimental conditions. Though adaptations were found, changes in EMG activity were not significantly different for any of the experimental conditions. These data indicate that performing a sequence of repeated maximal isometric knee extensions (3 repetitions of 3 seconds) prior to selected dynamic exercise (< or =0.25 seconds) may have favorable effects on performance beyond standards achieved without prior heavy loading.  相似文献   

7.
8.
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards.  相似文献   

9.
The aim of this study was to characterize relationships between anthropometric and isoinertial strength characteristics and bowling speed in junior and senior cricket fast bowlers. Subjects were first-class senior (n = 24; mean +/- SD age = 23.9 +/- 4.8 years, height = 187.4 +/- 4.8 cm, mass = 87.8 +/- 8.4 kg) and junior representative (n = 48; mean +/- SD age = 14.8 +/- 1.3 years, height = 175.7 +/- 9.8 cm, mass = 65.8 +/- 12.9 kg) male fast bowlers. A full anthropometric profile, upper- and lower-body isoinertial strength tests, and peak bowling speed (Vpeak) were assessed on the same day. The senior bowlers had a substantially faster Vpeak (126.7 km.h(-1)) than the juniors (99.6 km.h(-1)), a larger estimated muscle mass (seniors 40.0 +/- 3.9 kg, juniors 28.3 +/- 5.6 kg), and a greater bench press throw and deltoid throw (all p < 0.01). The best multiple predictors of Vpeak for the junior bowlers were the static jump, bench throw, body mass, percentage muscle mass, and height (multiple-correlation r = 0.86). For the senior bowlers, static jump and arm length correlated positively with Vpeak (multiple-correlation r = 0.74). The 1-legged countermovement jump was negatively correlated with Vpeak in both groups. We conclude that differences in Vpeak between junior and senior bowlers relate primarily to body mass and upper-body strength. However, lower body strength is a more important contributor to Vpeak in senior bowlers.  相似文献   

10.
There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.  相似文献   

11.
Relationship between functional movement screen and athletic performance   总被引:1,自引:0,他引:1  
Parchmann, CJ and McBride, JM. Relationship between functional movement screen and athletic performance. J Strength Cond Res 25(12): 3378-3384, 2011-Tests such as the functional movement screen (FMS) and maximal strength (repetition maximum strength [1RM]) have been theorized to assist in predicting athletic performance capabilities. Some data exist concerning 1RM and athletic performance, but very limited data exist concerning the potential ability of FMS to assess athletic performance. The purpose of this investigation was to determine if FMS scores or 1RM is related to athletic performance, specifically in Division I golfers in terms of sprint times, vertical jump (VJ) height, agility T-test times, and club head velocity. Twenty-five National Collegiate Athletic Association Division I golfers (15 men, age = 20.0 ± 1.2 years, height = 176.8 ± 5.6 cm, body mass = 76.5 ± 13.4 kg, squat 1RM = 97.1 ± 21.0 kg) (10 women, age = 20.5 ± 0.8 years, height = 167.0 ± 5.6 cm, body mass = 70.7 ± 21.5 kg, squat 1RM = 50.3 ± 16.6) performed an FMS, 1RM testing, and field tests common in assessing athletic performance. Athletic performance tests included 10- and 20-m sprint time, VJ height, agility T-test time, and club head velocity. Strength testing included a 1RM back squat. Data for 1RM testing were normalized to body mass for comparisons. Correlations were determined between FMS, 1RMs, and athletic performance tests using Pearson product correlation coefficients (p ≤ 0.05). No significant correlations existed between FMS and 10-m sprint time (r = -0.136), 20-m sprint time (r = -0.107), VJ height (r = 0.249), agility T-test time (r = -0.146), and club head velocity (r = -0.064). The 1RM in the squat was significantly correlated to 10-m sprint time (r = -0.812), 20-m sprint time (r = -0.872), VJ height (r = 0.869), agility T-test time (r = -0.758), and club head velocity (r = 0.805). The lack of relationship suggests that FMS is not an adequate field test and does not relate to any aspect of athletic performance. Based on the data from this investigation, 1RM squat strength appears to be a good indicator of athletic performance.  相似文献   

12.
The purpose of this study was to determine a resting interval between countermovement jumps (i.e., volleyball spikes) that allows the maintenance of maximal jumping performance. Ten male volleyball players (1.85 +/- 0.05 m, 77.2 +/- 10.6 kg, 21.6 +/- 5.3 years) performed 6 experimental jumping sessions. In the first and sixth sessions, maximal countermovement jump height was measured, followed by submaximal countermovement jumps to the point of volitional fatigue. The number of countermovement jumps was used as a reference to test the effect of rest period between volleyball spikes. From the second to fifth experimental sessions, 30 maximal volleyball spikes were performed with different resting periods (i.e., 8, 14, 17, and 20 seconds) followed by countermovement jumps. Between the 15th and 30th spikes, the blood lactate concentration and heart rate were measured. Because the performance on the first and sixth sessions was the same, no training effects were noticed. During the 8-second resting interval set, the lactate concentration increased significantly between the 15th and 30th spikes (i.e., from 3.37 +/- 1.16 mmol to 4.94 +/- 1.49 mmol); the number of countermovement jumps decreased significantly after spikes compared to those performed without a previous effort (i.e., from 23 +/- 7 jumps to 17 +/- 9 jumps); and these variables were significantly correlated (r = -0.7). On the other hand, the lactate concentration and number of countermovement jumps were stable across the other resting intervals, without a heart rate steady state. The results indicate that an adequate resting period between spikes allowed participants to achieve a lactate steady state in which the performance was maintained during the exercise. These findings show that resting intervals between 14 and 17 seconds, typical during volleyball matches, are indicated to use in volleyball spike drills due to their capacity to maintain maximal jumping performance.  相似文献   

13.
Eight male collegiate weightlifters (age: 21.2 +/- 0.9 years; height: 177.6 +/- 2.3 cm; and body mass: 85.1 +/- 3.3 kg) participated in this study to compare isometric to dynamic force-time dependent variables. Subjects performed the isometric and dynamic mid-thigh clean pulls at 30-120% of their one repetition maximum (1RM) power clean (118.4 +/- 5.5 kg) on a 61 x 121.9-cm AMTI forceplate. Variables such as peak force (PF) and peak rate of force development (PRFD) were calculated and were compared between isometric and dynamic conditions. The relationships between force-time dependent variables and vertical jump performances also were examined. The data indicate that the isometric PF had no significant correlations with the dynamic PF against light loads. On the one hand, there was a general trend toward stronger relationships between the isometric and dynamic PF as the external load increased for dynamic muscle actions. On the other hand, the isometric and dynamic PRFD had no significant correlations regardless of the external load used for dynamic testing. In addition, the isometric PF and dynamic PRFD were shown to be strongly correlated with vertical jump performances, whereas the isometric PRFD and dynamic PF had no significant correlations with vertical jump performances. In conclusion, it appears that the isometric and dynamic measures of force-time curve characteristics represent relatively specific qualities, especially when dynamic testing involves small external loads. Additionally, the results suggest that athletes who possess greater isometric maximum strength and dynamic explosive strength tend to be able to jump higher.  相似文献   

14.
The purpose of this study was to evaluate changes in soccer-specific power endurance of 34 female high school soccer players throughout a season either with or without an intermittent, high-intensity exercise protocol. Thirty-four female high school soccer players were tested prior to the 2000 fall season and again 10 weeks later. The tests included an abridged 45-minute shuttle test (LIST), hydrostatic weighing, vertical jump, 20-m running-start sprint, and 30-second Wingate test. The experimental group (EG; n = 17, age 16.5 +/- 0.9 years) completed a 10-week in-season plyometric, resistive training, and high-intensity anaerobic program. The control group (n = 17, age 16.3 +/- 1.4 years) completed only traditional aerobic soccer conditioning. Statistical significance was set at alpha < 0.05. The experimental group showed significant improvements in the LIST (EG = delta 394 seconds +/- 124 seconds), 20-m sprint (EG = Delta-0.10 seconds +/- 0.10 seconds), increase in fat-free mass (EG = delta 1.14 kg +/- 1.22 kg), and decreases in fat mass (EG = Delta-1.40 kg +/- 1.47 kg) comparing pre- to postseason. This study indicates that a strength and plyometric program improved power endurance and speed over aerobic training only. Soccer-specific power endurance training may improve match performance and decrease fatigue in young female soccer players.  相似文献   

15.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

16.
Growth hormone (GH) treatment reverses the muscle loss allegedly responsible for diminished aerobic capacity and increased fatigue in patients with HIV-associated wasting. This study examined whether submaximal measures of physical performance can be used as objective measures of the functional impact of GH treatment-induced anabolism. We randomized 27 HIV-positive men [mean (SD) age, 43.9 (7.2) yr; body mass, 71.9 (10.4) kg; BMI, 23.1 (2.8) kg/m2] with unintentional weight loss despite antiretroviral therapy to receive GH (6 mg) or placebo in a double-blinded, placebo-controlled, cross-over trial with a 3-mo washout. Lean body mass (LBM), maximum oxygen uptake (Vo2 peak), ventilatory threshold (VeT), 6-min walk test (6MWT) distance and work, profile of mood states (POMS) fatigue and vigor scores, and Nottingham health profile (NHP) energy and physical mobility scores were measured. LBM significantly increased after 3 mo of GH treatment vs. placebo (means +/- SE, 3.7 +/- 0.6 vs. 0.3 +/- 0.4 kg; P < 0.001). VeT significantly improved (17.6 +/- 3.7 vs. -5.9 +/- 2.5%; P < 0.001), but Vo2 peak did not change significantly. 6MWT distance improved (24.9 +/- 9.7 vs. 19.9 +/- 11.6 m; P > 0.05) and 6MWT work increased significantly more after 3 mo of GH treatment (33.3 +/- 8.8 vs. 16.5 +/- 7.5 kJ; P < 0.05). POMS scores of fatigue and vigor and the NHP score of energy improved, yet the changes were not statistically significant. GH treatment improved VeT linearly to the increase in LBM (r =0.43, P = 0.037) and 6MWT work (r = 0.51, P = 0.008), and the increase in 6MWT work correlated with increase in LBM (r = 0.45, P = 0.024). Improvement in 6MWT work above the median (27.3 kJ) showed a decrease in fatigue (r = -0.62, P = 0.024). We concluded that GH treatment-induced LBM gains in HIV-associated wasting were functionally relevant, as determined by effort-independent submaximal measures of cardiopulmonary exercise testing.  相似文献   

17.
Recent evidence indicates that muscle ischemia and activation of the muscle chemoreflex are the principal stimuli to sympathetic nerve activity (SNA) during isometric exercise. We postulated that physical training would decrease muscle chemoreflex stimulation during isometric exercise and thereby attenuate the SNA response to exercise. We investigated the effects of 6 wk of unilateral handgrip endurance training on the responses to isometric handgrip (IHG: 33% of maximal voluntary contraction maintained for 2 min). In eight normal subjects the right arm underwent exercise training and the left arm sham training. We measured muscle SNA (peroneal nerve), heart rate, and blood pressure during IHG before vs. after endurance training (right arm) and sham training (left arm). Maximum work to fatigue (an index of training efficacy) was increased by 1,146% in the endurance-trained arm and by only 40% in the sham-trained arm. During isometric exercise of the right arm, SNA increased by 111 +/- 27% (SE) before training and by only 38 +/- 9% after training (P less than 0.05). Endurance training did not significantly affect the heart rate and blood pressure responses to IHG. We also measured the SNA response to 2 min of forearm ischemia after IHG in five subjects. Endurance training also attenuated the SNA response to postexercise forearm ischemia (P = 0.057). Sham training did not significantly affect the SNA responses to IHG or forearm ischemia. We conclude that endurance training decreases muscle chemoreflex stimulation during isometric exercise and thereby attenuates the sympathetic nerve response to IHG.  相似文献   

18.
Exercise-induced increases in skin sympathetic nerve activity (SSNA) are similar between isometric handgrip (IHG) and leg extension (IKE) performed at 30% of maximal voluntary contraction (MVC). However, the precise effect of exercise intensity and level of fatigue on this relationship is unclear. This study tested the following hypotheses: 1) exercise intensity and fatigue level would not affect the magnitude of exercise-induced increase in SSNA between IHG and IKE, and 2) altering IHG muscle mass would also not affect the magnitude of exercise-induced increase in SSNA. In protocol 1, SSNA (peroneal microneurography) was measured during baseline and during the initial and last 30 s of isometric exercise to volitional fatigue in 12 subjects who randomly performed IHG and IKE bouts at 15, 30, and 45% MVC. In protocol 2, SSNA was measured in eight subjects who performed one-arm IHG at 30% MVC with the addition of IHG of the contralateral arm in 10-s intervals for 1 min. Exercise intensity significantly increased SSNA responses during the first 30 s of IHG (34+/-13, 70+/-11, and 92+/-13% change from baseline) and IKE (30+/-17, 69+/-12, and 76+/-13% change from baseline) for 15, 30, and 45% MVC. During the last 30 s of exercise to volitional fatigue, there were no significant differences in SSNA between exercise intensities or limb. SSNA did not significantly change between one-arm and two-arm IHG. Combined, these data indicate that exercise-induced increases in SSNA are intensity dependent in the initial portion of isometric exercise, but these differences are eliminated with the development of fatigue. Moreover, the magnitude of exercise-induced increase in SSNA responses is not dependent on either muscle mass involved or exercising limb.  相似文献   

19.
The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.  相似文献   

20.
Measurement of skin sympathetic nerve activity (SSNA) during isometric exercise has been previously limited to handgrip. We hypothesized that isometric leg exercise due to the greater muscle mass of the leg would elicit greater SSNA responses than arm exercise because of presumably greater central command and muscle mechanoreceptor activation. To compare the effect of isometric arm and leg exercise on SSNA and cutaneous end-organ responses, 10 subjects performed 2 min of isometric knee extension (IKE) and handgrip (IHG) at 30% of maximal voluntary contraction followed by 2 min of postexercise muscle ischemia (PEMI) in a normothermic environment. SSNA was recorded from the peroneal nerve. Cutaneous vascular conductance (laser-Doppler flux/mean arterial pressure) and electrodermal activity were measured within the field of cutaneous afferent discharge. Heart rate and mean arterial pressure significantly increased by 16 +/- 3 and 23 +/- 3 beats/min and by 22 +/- 2 and 27 +/- 3 mmHg from baseline during IHG and IKE, respectively. Heart rate and mean arterial pressure responses were significantly greater during IKE compared with IHG. SSNA increased significantly and comparably during IHG and IKE (52 +/- 20 and 50 +/- 13%, respectively). During PEMI, SSNA and heart rate returned to baseline, whereas mean arterial pressure remained significantly elevated (Delta12 +/- 2 and Delta13 +/- 2 mmHg from baseline for IHG and IKE, respectively). Neither cutaneous vascular conductance nor electrodermal activity was significantly altered by either exercise or PEMI. These results indicate that, despite cardiovascular differences in response to IHG and IKE, SSNA responses are similar at the same exercise intensity. Therefore, the findings suggest that relative effort and not muscle mass is the main determinant of exercise-induced SSNA responses in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号