首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purposes of this study are to examine gender differences in the contribution of the arm swing to jump height in men and women basketball players and to examine the role of upper-body strength in the contribution of arm swing to jump height. National Collegiate Athletic Association Division I basketball players (men n = 13, women n = 12) performed 4 jumping movements: squat jumps with hands on hips (SNA) and with arm swings (SA) and countermovement jumps with hands on hips and with arm swings (CMA). Differences were found between the jump heights of men and women. Use of the arms increased the jump height of men more than women. Compared with the SNA, the SA allowed an increase of 7 cm (23%) for men and 4 cm (17%) for women. The CMA allowed for an increase of 10 cm (30%) for men and 6 cm (24%) for women. General upper-body strength measures did not correlate strongly with the effect of arms on jumping, but peak power did. As in previous studies, peak power had a high correlation with jumping performance. These results show that the arm swing contributes significantly to jump performance in both men and women basketball players and that strength training for jumping should focus on power production and lifting exercises that are jump specific.  相似文献   

2.
The primary aim of this study was to determine reliability and factorial validity of squat (SJ) and countermovement jump (CMJ) tests. The secondary aim was to compare 3 popular methods for the estimation of vertical jumping height. Physical education students (n = 93) performed 7 explosive power tests: 5 different vertical jumps (Sargent jump, Abalakow's jump with arm swing and without arm swing, SJ, and CMJ) and 2 horizontal jumps (standing long jump and standing triple jump). The greatest reliability among all jumping tests (Cronbach's alpha = 0.97 and 0.98) had SJ and CMJ. The reliability alpha coefficients for other jumps were also high and varied between 0.93 and 0.96. Within-subject variation (CV) in jumping tests ranged between 2.4 and 4.6%, the values being lowest in both horizontal jumps and CMJ. Factor analysis resulted in the extraction of only 1 significant principal component, which explained 66.43% of the variance of all 7 jumping tests. Since all jumping tests had high correlation coefficients with the principal component (r = 0.76-0.87), it was interpreted as the explosive power factor. The CMJ test showed the highest relationship with the explosive power factor (r = 0.87), that is, the greatest factorial validity. Other jumping tests had lower but relatively homogeneous correlation with the explosive power factor extracted. Based on the results of this study, it can be concluded that CMJ and SJ, measured by means of contact mat and digital timer, are the most reliable and valid field tests for the estimation of explosive power of the lower limbs in physically active men.  相似文献   

3.
Although it is known that an arm swing can enhance the performance in vertical jumping, the mechanisms through which this enhancement occurs are not yet clearly described. The purpose of this study was to examine how arm swing affects the lower extremity torque, power and work in vertical jumping and to gain an insight into the mechanisms that enable the arm swing to increase jump height. Five subjects maximally performed two types of vertical squat jumps with (SJA) and without (SJ) an arm swing from a force platform. All performances were videotaped with a high-speed video camera (200 Hz). The jump heights, joint torques, power and work were calculated by combining kinematic and kinetic data. It was confirmed that arm swing enhanced the jump height significantly (p<0.01). The work by the hip and by the ankle was significantly augmented by arm swing (p<0.05 and p<0.01, respectively). However, the work by the knee was significantly smaller in SJA (p<0.05). The total work by the three lower extremity joints (ankle, knee and hip) was significantly larger in SJA (p<0.05). The increase of the lower extremity work by the arm swing (31.4 J) was about twice as large as the work done by the shoulder and elbow in SJA (16.3 J). It was concluded that the increment of jump height resulted mainly from the increase of the lower extremity work, which is considered to have been brought about by the additional load on the lower extremity due to the arm swing.  相似文献   

4.
Plyometric training in children, including different types of jumps, has become common practice during the last few years in different sports, although there is limited information about the adaptability of children with respect to different loads and the differences in performance between various jump types. The purpose of this study was to examine the effect of gender and training background on the optimal drop jump height of 9- to 11-year-old children. Sixty prepubertal (untrained and track and field athletes, boys and girls, equally distributed in each group [n = 15]), performed the following in random order: 3 squat jumps, 3 countermovement jumps (CMJs) and 3 drop jumps from heights of 10, 20, 30, 40, and 50 cm. The trial with the best performance in jump height of each test was used for further analysis. The jump type significantly affected the jump height. The jump height during the CMJ was the highest among all other jump types, resulting in advanced performance for both trained and untrained prepubertal boys and girls. However, increasing the dropping height did not change the jumping height or contact time during the drop jump. This possibly indicates an inability of prepubertal children to use their stored elastic energy to increase jumping height during drop jumps, irrespective of their gender or training status. This indicates that children, independent of gender and training status, have no performance gain during drop jumps from heights up to 50 cm, and therefore, it is recommended that only low drop jump heights be included in plyometric training to limit the probability of sustaining injuries.  相似文献   

5.
Relative net vertical impulse determines jumping performance   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.  相似文献   

6.
The role of arm swing in jumping has been examined in numerous studies of standing jumps for height and forward distance, but no prior studies have explored its effect on lateral jumping. The purpose of the present study was to investigate the effect of arm motion on standing lateral jump performance and to examine the biomechanical mechanisms that may explain differences in jump distance. Six participants executed a series of jumps for maximum lateral distance from two in-ground force platforms for two jump cases (free and restricted arms) while an eight-camera, passive-reflector, motion capture system collected 3D position data throughout the movements. Inverse kinematics and dynamics analyses were performed for all jumps using three-dimensional (3D) link models to calculate segment angular velocities, joint moments, joint powers, and joint work. Free arm motion improved standing lateral jump performance by 29% on average. This improvement was due to increased takeoff velocity and improved lateral and vertical positions of the center of gravity (CG) at takeoff and touchdown. Improved velocity and position of the CG at takeoff resulted from a 33% increase in the work done by the body. This increase in work in free arm jumps compared to restricted arm jumps was found in both upper and lower body joints with the largest improvements (>30 J) occurring at the lower back, right hip, and right shoulder.  相似文献   

7.
The aim of this study was to investigate the influence of a 4-week electromyostimulation (EMS) training program on the vertical jump performance of 12 volleyball players. EMS sessions were incorporated into volleyball sessions 3 times weekly. EMS consisted of 20-22 concomitant stimulations of the knee extensor and plantar flexor muscles and lasted approximately 12 minutes. No significant changes were observed after EMS training for squat jump (SJ) and counter movement jump (CMJ) performance, while the mean height and the mean power maintained during 15 seconds of consecutive CMJs significantly increased by approximately 4% (p < 0.05). Ten days after the end of EMS training, the jumping height significantly (p < 0.05) increased compared with baseline also for single jumps (SJ +6.5%, CMJ +5.4%). When the aim of EMS resistance training is to enhance vertical jump ability, sport-specific workouts following EMS would enable the central nervous system to optimize the control to neuromuscular properties.  相似文献   

8.
Jumping is an important performance component of many sporting activities. A number of training modalities have been used to enhance jumping performance including plyometrics. The positive effects of plyometric training on jumping performance are a function of the stretch-shortening cycle phenomenon. However, there has been little research on the effects of the surface on jumping performance. This study examined the effects of performing 2 different plyometric exercises, depth jump (DJ) and counter movement jump (CMJ), on noncompliant (ground) and compliant (mini-trampoline) surfaces. Male participants (N = 20; age = 21.8 +/- 3.8 years; height = 184.6 +/- 7.6 cm; mass = 83.6 +/- 8.2 kg) randomly performed 10 CMJ and 10 DJ on compliant and noncompliant surfaces. Kinematic data were determined via 2-dimensional high-speed video. There were significant (p < 0.05) differences in DJ and CMJ joint and segment range of movement for ankle, knee, hip and trunk, indicating less crouch when the participants performed plyometric exercises on the compliant surface.  相似文献   

9.
The primary objective of this study was to analyze the relationship between testosterone levels and vertical jumping performance in elite men and women athletes. The secondary objective was to verify whether testosterone levels and vertical jumping performance were different in men and women athletes and if those measurements were different between different athletic groups. Seventy (22 women and 48 men) elite athletes in track and field (sprinters), handball, volleyball, and soccer competing at national and international levels participated in the study. After 10 hours of fasting and 1 day of rest, blood samples were drawn from the antecubital vein for determining testosterone levels. Vertical jumping tests consisted of countermovement jumps conducted on a resistive platform connected to a digital timer. Resting testosterone levels in women were 9.5% of those of the men (respectively 0.62 +/- 0.06 ng.ml(-1) and 6.49 +/- 0.37 ng.ml(-1); p < 0.001). Countermovement jump performance was significantly different between women and men athletes, with women's jumping ability 86.3% of that of men (p < 0.001). A significant positive relationship was identified between testosterone levels and vertical jump performance when all data where considered (r = 0.61, p < 0.001, n = 70).  相似文献   

10.
Acute effects of heavy-load squats on consecutive squat jump performance   总被引:1,自引:0,他引:1  
Postactivation potentiation (PAP) and complex training have generated interest within the strength and conditioning community in recent years, but much of the research to date has produced confounding results. The purpose of this study was to observe the acute effects of a heavy-load back squat [85% 1 repetition maximum (1RM)] condition on consecutive squat jump performance. Twelve in-season Division I male track-and-field athletes participated in two randomized testing conditions: a five-repetition back squat at 85% 1RM (BS) and a five-repetition squat jump (SJ). The BS condition consisted of seven consecutive squat jumps (BS-PRE), followed by five repetitions of the BS at 85% 1RM, followed by another set of seven consecutive squat jumps (BS-POST). The SJ condition was exactly the same as the BS condition except that five consecutive SJs replaced the five BSs, with 3 minutes' rest between each set. BS-PRE, BS-POST, SJ-PRE, and SJ-POST were analyzed and compared for mean and peak jump height, as well as mean and peak ground reaction force (GRF). The BS condition's mean and peak jump height and peak GRF increased 5.8% +/- 4.8%, 4.7% +/- 4.8%, and 4.6% +/- 7.4%, respectively, whereas the SJ condition's mean and peak jump height and peak GRF decreased 2.7% +/- 5.0%, 4.0% +/- 4.9%, and 1.3% +/- 7.5%, respectively. The results indicate that performing a heavy-load back squat before a set of consecutive SJs may enhance acute performance in average and peak jump height, as well as peak GRF.  相似文献   

11.
The maximal height attained in a vertical jump is heavily influenced by the execution of a large countermovement prior to the upward motion. When a jump must be executed without a countermovement, as in a squat jump, the maximal jump height is reduced. During such conditions, the human body may use other strategies in order to increase performance. The purpose of this research was to investigate the effects of two strategies employed during the initiation of the squat jump: the premovement silent period (PSP), and the small amplitude countermovement (SACM). Fifteen elite male volleyball players (20.6 +/- 1.6 years) and 13 untrained males (20.2 +/- 1.7 years) performed 10 maximal effort squat jumps from identical starting positions. The electromyographic activity of the vastus lateralis and biceps femoris was measured in conjunction with the vertical ground reaction force and vertical displacement. It was found that the presence of a PSP or a SACM of 1-3 cm did not increase maximal squat jump height significantly (p > 0.05), in neither the highly trained athletes nor the untrained individuals. These results suggest that these strategies do not play a major role in the determination of jump height. Researchers have assumed that a squat jump is purely concentric, and that there are no facilitating mechanisms present that may influence the performance of the jump. This study provides evidence to support this assumption.  相似文献   

12.
The purpose of this study was to investigate the relationship of the 1 repetition maximum (1RM) squat to power output during countermovement and static weighted vertical squat jumps. The training experience of subjects (N = 22, 87.0 +/- 15.3 kg, 14.1 +/- 7.1% fat, 22.2 +/- 3.8 years) ranged from 7 weeks to 15+ years. Based on the 1RM squat, subjects were further divided into the 5 strongest and 5 weakest subjects (p 相似文献   

13.
The aim of this study was to compare the pattern of force production and center of mass kinematics in maximal vertical jump performance between power athletes, recreational bodybuilders, and physically active subjects. Twenty-seven healthy male subjects (age: 24.5 +/- 4.3 years, height: 178.7 +/- 15.2 cm, and weight: 81.9 +/- 12.7 kg) with distinct training backgrounds were divided into 3 groups: power track athletes (PT, n = 10) with international experience, recreational bodybuilders (BB, n = 7) with at least 2 years of training experience, and physically active subjects (PA, n = 10). Subjects performed a 1 repetition maximum (1RM) leg press test and 5 countermovement jumps with no instructions regarding jumping technique. The power-trained group jumped significantly higher (p < 0.05) than the BB and PA groups (0.40 +/- 0.05, 0.31 +/- 0.04, and 0.30 +/- 0.05, respectively). The difference in jumping height was not produced by higher rates of force development (RFD) and shorter center of mass (CM) displacement. Instead, the PT group had greater CM excursion (p < 0.05) than the other groups. The PT and BB groups had a high correlation between jumping height and 1RM test (r = 0.93 and r = 0.89, p < 0.05, respectively). In conclusion, maximum strength seems to be important for jumping height, but RFD does not seem relevant to achieve maximum jumping heights. High RFD jumps should be performed during training only when sport skills have a time constraint for force application.  相似文献   

14.
The purpose of this study was to determine whether vertical jump height was influenced by completing a half squat or quarter squat exercise prior to jumping. Ten male subjects experienced with the squat exercise performed 4 warm up squat sets followed by 1 repetition with the weight of 90% of 1 repetition maximum of the half squat or quarter squat. No difference in jump heights after any of the 3 conditions, including a control group (F = 3.096, p = 0.070), was found. Correlations between the relative strength ratio and the difference in averaged jump heights before and after the half and quarter squat conditions were also tested, and no correlation was found (r = -0.128, p = 0.724, and r = -0.189, p = 0.601, respectively). Although statistical significance at the 0.05 level was not observed for the comparison of jump heights between conditions, we did observe a trend (i.e., p = 0.07). Therefore, we examined the individual responses to the exercises and determined that 5 of the subjects did increase their vertical jumps after both squat exercises. It may be that the influence of prejump exercise on jump performance may be individualized. Nevertheless, the use of a strength ratio does not appear to predict who will benefit from posttetanic potentiation in this type of exercise situation.  相似文献   

15.
The jump as a fast mode of locomotion in arboreal and terrestrial biotopes   总被引:1,自引:0,他引:1  
The jump is always used for locomotion. For its execution in arboreal and terrestrial biotopes the requirements are of somewhat different nature. In an arboreal biotope the jump is characterized by a rapid progression through discontinuous substrates and the ability to take off from a small area and a secure landing on a spot. This requires well coordinated movements in all phases of the jump. On the ground, the jump is less frequent and often used for crossing obstacles or gaps. In primates both variants can be observed. In order to relate the details of locomotor behaviour to a certain environment, the biomechanics of jumping are analyzed in five primate species: The three mainly arboreal prosimian species Galago moholi, the smallest and most specialized leaper of all, Galago garnettii, a medium-sized bushbaby with some capacities for jumping, and Lemur catta also with some abilities to jump. The two simian species, Macaca fuscata and Homo sapiens, are usually terrestrial and have good jumping capacities, although not in terms of quantity. The investigation is based on high-speed motion analyses (100-500 frames/second) and the synchronized records of a force-plate from which all subjects had to jump off. On the basis of the results two kinds of jumping can be distinguished: standing and running jumps. The three prosimian species perform standing jumps. Dorsiflexion of their tails compensates ventrally oriented rotational moments of the trunk during body extension at take-off. The upward arm swing yields an overall increase in take-off velocity without additional muscular force exerted by the legs. The main difference among the species are the high relative forces in the small Galago moholi (up to 13 times body weight) as compared to the larger G. garnettii (8.5 times body weight) and the even larger Lemur catta (4.5 times body weight). In Homo sapiens the standing jump is characterized by an extensive arm swing backward, which is then followed by a forward and upward movement. The velocity at take-off is much smaller if compared to the prosimians. The running jump in Macaca fuscata is always preceded by at least one gallop cycle. The body assumes a ball shape at the beginning of the actual take-off. This is advantageous for rotating the body into a position in which the trunk axis is in line with the direction of movement. The tail of the Japanese macaque is too short to compensate the trunk's lift exerted on the hip region by the extending hindlimbs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In studies of physical performance comprising muscle strength and power, a vertical jump is a test method that frequently is used. It is important to have access to accurate measuring tools providing data with high reproducibility. Studies have shown that body composition also may play an important part in physical performance. The purpose of this study was to determine test-retest reliability for 3 different kinds of vertical jumps and to correlate jump height with body composition. Thirty-four normally trained subjects (women n = 17) between 18 and 25 years participated. Test-retest, on 3 kinds of vertical jumps, was performed with a median of 7 days between jumps. Methods used were a countermovement jump (CMJ) on a contact mat, with and without arm swing, and an Abalakow jump (AJ) using measuring tape, with arm swing. Body composition was assessed with the use of bioelectric impedance analysis. The results showed that high intraclass correlation coefficients (ICCs) were observed between testing occasions for all 3 vertical jumps (ICC between 0.48 and 0.88). The AJ in women presented the lowest ICC. Also the correlation between CMJ and AJ was high (rs = 0.88). Moderate-to-high correlations could be shown between body composition and CMJ in women (rs = -0.57-0.76). In conclusion, very high test-retest reliability for CMJ on a contact mat was found. For the AJ using a measuring tape, ICC were overall high, but a moderate nonsignificant ICC were found in women, indicating poor reproducibility. The data from the CMJ and AJ may be compared if approximately 25% of the AJ value is subtracted. In practice, this means that vertical jump tests have high reproducibility and can be used as measures of power development.  相似文献   

17.
Contractile force is transmitted to the skeleton through tendons and aponeuroses, and, although it is appreciated that the mechanocharacteristics of these tissues play an important role for movement performance with respect to energy storage, the association between tendon mechanical properties and the contractile muscle output during high-force movement tasks remains elusive. The purpose of the study was to investigate the relation between the mechanical properties of the connective tissue and muscle performance in maximal isometric and dynamic muscle actions. Sixteen trained men participated in the study. The mechanical properties of the vastus lateralis tendon-aponeurosis complex were assessed by ultrasonography. Maximal isometric knee extensor force and rate of torque development (RTD) were determined. Dynamic performance was assessed by maximal squat jumps and countermovement jumps on a force plate. From the vertical ground reaction force, maximal jump height, jump power, and force-/velocity-related determinants of jump performance were obtained. RTD was positively related to the stiffness of the tendinous structures (r = 0.55, P < 0.05), indicating that tendon mechanical properties may account for up to 30% of the variance in RTD. A correlation was observed between stiffness and maximal jump height in squat jumps and countermovement jumps (r = 0.64, P < 0.05 and r = 0.55, P < 0.05). Power, force, and velocity parameters obtained during the jumps were significantly correlated to tendon stiffness. These data indicate that muscle output in high-force isometric and dynamic muscle actions is positively related to the stiffness of the tendinous structures, possibly by means of a more effective force transmission from the contractile elements to the bone.  相似文献   

18.
This study quantified and compared how the directional differences in arm swing affected mechanical and physiological parameters during forward and backward jumping. Seven subjects maximally performed three types of forward and backward squat jumps-no arm swing (FJ, BJ), forward arm swing (FJF, BJF), and backward arm swing (FJB, BJB) from a force platform. All performances were captured with a 3-D motion capture system. Electromyograms (EMGs) of the lower extremity muscles were obtained. Variables were calculated by combining kinematic and kinetic data. The jump displacement and center of mass velocity at take-off were significantly larger in FJF than in FJ or FJB and larger in BJB than in BJ or BJF, suggesting that the best performance was obtained by employing the same arm swing direction as a given jump direction. The total work by three lower and two upper extremity joints was significantly larger in FJF than in FJ or FJB and larger in BJB than in BJ or BJF. For the lower extremity joints, hip work was the greatest in FJF and BJB. The integrated EMG of the biceps femoris when the hip power was produced was significantly larger in FJF and BJB than under other conditions. These results suggest that if the arm swing direction is the same as a given jump direction, the activation level of the hip extensor is greater to counter large loads which make the hip joint flex during the push-off phase, which result in increased hip extension torque, power, and work.  相似文献   

19.
The purpose of this study was to comparatively investigate the energy expenditure of jumping on sand and on a firm surface. Eight male university volleyball players were recruited in this study and performed 3 sets of 10 repetitive jumps on sand (the S condition), and also on a force platform (the F condition). The subjects jumped every two seconds during a set, and the interval between sets was 20 seconds. The subjects performed each jump on sand with maximal exertion while in the F condition they jumped as high as they did on sand. The oxygen requirement for jumping was defined as the total oxygen uptake consecutively measured between the first set of jumps and the point that oxygen uptake recovers to the resting value, and the energy expenditure was calculated. The jump height in the S condition was equivalent to 64.0 +/- 4.4% of the height in the maximal jump on the firm surface. The oxygen requirement was 7.39 +/- 0.33 liters in S condition and 6.24 +/- 0.69 liters in the F condition, and the energy expenditure was 37.0 +/- 1.64 kcal and 31.2 +/- 3.46 kcal respectively. The differences in the two counter values were both statistically significant (p < 0.01). The energy expenditure of jumping in the S condition was equivalent to 119.4 +/- 10.1% of the one in the F condition, which ratio was less than in walking and close to in running.  相似文献   

20.
The hypothesis of the present study was that low-repetition and high-impact training of 10 maximum vertical jumps/day, 3 times/wk would be effective for improving bone mineral density (BMD) in ordinary young women. Thirty-six female college students, with mean age, height, and weight of 20.7+/-0.7 yr, 158.9+/-4.6 cm, and 50.4+/-5.5 kg, respectively, were randomly divided into two groups: jump training and a control group. After the 6 mo of maximum vertical jumping exercise intervention, BMD in the femoral neck region significantly increased in the jump group from the baseline (0.984+/-0.081 vs. 1.010+/-0.080 mg/cm2; P<0.01), although there was no significant change in the control group (0.985+/-0.0143 vs. 0.974+/-0.134 mg/cm2). And also lumbar spine (L2-4) BMD significantly increased in the jump training group from the baseline (0.991+/-0.115 vs. 1.015+/-0.113 mg/cm2; P<0.01), whereas no significant change was observed in the control group (1.007+/-0.113 vs. 1.013+/-0.110 mg/cm2). No significant interactions were observed at other measurement sites, Ward's triangle, greater trochanter, and total hip BMD. Calcium intakes and accelometry-determined physical daily activity showed no significant difference between the two groups. From the results of the present study, low-repetition and high-impact jumps enhanced BMD at the specific bone sites in young women who had almost reached the age of peak bone mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号