首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study assesses the effects of daily beta-hydroxy beta-methylbutyrate (HMB) supplementation on muscular strength (bench press, squats, and power cleans) and body composition (body weight and body fat) among collegiate football players undergoing a strenuous exercise program. Subjects were collegiate football players (n = 35) training under the supervision of certified strength coaches averaging 20 hours of weekly exercise. In the first supplementation period, 16 of the 35 subjects were supplemented with 3 g of HMB per day for 4 weeks; the other 19 received a placebo followed by a 1-week washout period and then a second supplementation period in a randomized double-blind crossover, placebo design. There were no significant changes (p > 0.05) in muscular strength, including bench press, squats, and power cleans, among the subjects. There were also no significant changes (p > 0.05) in body composition, including body fat and body weight. Very little clinical evidence exists for supplementing HMB in athletic populations.  相似文献   

2.
Acute and long-term effects of resistance-training regimens with varied combinations of high- and low-intensity exercises were studied. Acute changes in the serum growth hormone (GH) concentration were initially measured after 3 types of regimens for knee extension exercise: a medium intensity (approximately 10 repetition maximum [RM]) short interset rest period (30 s) with progressively decreasing load ("hypertrophy type"); 5 sets of a high-intensity (90% of 1RM) and low-repetition exercise ("strength type"); and a single set of low-intensity and high-repetition exercise added immediately after the strength-type regimen ("combi-type"). Postexercise increases in serum GH concentration showed a significant regimen dependence: hypertrophy-type > combi-type > strength-type (p < 0.05, n = 8). Next, the long-term effects of periodized training protocols with the above regimens on muscular function were investigated. Male subjects (n = 16) were assigned to either hypertrophy/combi (HC) or hypertrophy/ strength (HS) groups and performed leg press and extension exercises twice a week for 10 weeks. During the first 6 weeks, both groups used the hypertrophy-type regimen to gain muscular size. During the subsequent 4 weeks, HC and HS groups performed combi-type and strength-type regimens, respectively. Muscular strength, endurance, and cross sectional area (CSA) were examined after 2, 6, and 10 weeks. After the initial 6 weeks, no significant difference was seen in the percentage changes of all variables between the groups. After the subsequent 4 weeks, however, 1RM of leg press, maximal isokinetic strength, and muscular endurance of leg extension showed significantly (p < 0.05) larger increases in the HC group than in the HS group. In addition, increases in CSA after this period also tended to be larger in the HC group than in the HS group (p = 0.08). The results suggest that a combination of high- and low-intensity regimens is effective for optimizing the strength adaptation of muscle in a periodized training program.  相似文献   

3.
The purpose of this study was to compare linear periodization (LP) and daily undulating periodization (DUP) for strength gains. Twenty men (age = 21 +/- 2.3 years) were randomly assigned to LP (n = 10) or DUP (n = 10) groups. One repetition maximum (1RM) was recorded for bench press and leg press as a pre-, mid-, and posttest. Training involved 3 sets (bench press and leg press), 3 days per week. The LP group performed sets of 8 RM during weeks 1-4, 6 RM during weeks 4-8, and 4 RM during weeks 9-12. The DUP group altered training on a daily basis (Monday, 8 RM; Wednesday, 6 RM; Friday, 4 RM). Analysis of variance with repeated measures revealed statistically significant differences favoring the DUP group between T1 to T2 and T1 to T3. Making program alterations on a daily basis was more effective in eliciting strength gains than doing so every 4 weeks.  相似文献   

4.
The object of this study was to examine changes in muscular strength, power, and resting hormonal concentrations during 6 weeks of detraining (DTR) in recreationally strength-trained men. Each subject was randomly assigned to either a DTR (n = 9) or resistance training (RT; n = 7) group after being matched for strength, body size, and training experience. Muscular strength and power testing, anthropometry, and blood sampling were performed before the experimental period (T1), after 3 weeks (T2), and after the 6-week experimental period (T3). One-repetition maximum (1RM) shoulder and bench press increased in RT at T3 (p 相似文献   

5.
The purpose of this investigation was to compare the effects of single-set strength training and 3-set strength training during the early phase of adaptation in 18 untrained male subjects (age, 20-30 years). After initial testing, subjects were randomly assigned to either the 3L-1U group (n = 8), which trained 3 sets in leg exercises and 1 set in upper-body exercises, or the 1L-3U group (n = 10), which trained 1 set in leg exercises and 3 sets in upper-body exercises. Testing was conducted at the beginning and at the end of the study and consisted of 2 maximal isometric tests (knee extension and bench press) and 6 maximal dynamic tests (1 repetition maximum [1RM] tests). Subjects trained 3 days per week for 6 weeks. After warm-up, subjects performed 3 leg exercises and 4 upper-body exercises. In both groups, each set consisted of 7 repetitions (reps) with the load supposed to induce muscular failure after the seventh rep (7RM load). After 6 weeks of training, 1RM performance in all training exercises was significantly increased (10-26%, p < 0.01) in both groups. The relative increase in 1RM load in the 3 leg exercises was significantly greater in the 3L-1U group than in the 1L-3U group (21% vs. 14%, p = 0.01). However, the relative increase in 1RM load in the 3 upper-body exercises was similar in the 3L-1U group (16%) and the 1L-3U group (14%). These results show a superior adaptation to 3-set strength training, compared with 1-set strength training, in leg exercises but not in upper-body exercises during the early phase of adaptation.  相似文献   

6.
The purpose was to determine if creatine supplementation, consumed immediately before and immediately after exercise, with different dosing frequency (i.e., 2 or 3 d wk) could enhance the gains in muscle size and strength from resistance training (RT) in young adults. A group of 38 physically active, nonresistance trained university students (21-28 years) was randomly allocated to 1 of 4 groups: CR2 (0.15 g·kg creatine during 2 d wk of RT; 3 sets of 10 repetitions; n = 11, 6 men, 5 women), CR3 (0.10 g·kg creatine during 3 d wk of RT; 2 sets of 10 repetitions; n = 11, 6 men, 5 women;), PLA2 (placebo during 2 d wk of RT; n = 8, 5 men, 3 women), and PLA3 (placebo during 3 d wk of RT; n = 8, 4 men, 4 women) for 6 weeks. Before and after training, measurements were taken for muscle thickness of the elbow and knee flexor and extensor muscle groups (ultrasound), 1-repetition maximumleg press and chest press strength, and kidney function (urinary microalbumin). Repeated-measures analysis of variance showed that strength and muscle thickness increased in all groups with training (p < 0.05). The CR2 (0.6 ± 0.9 cm or 20%; p < 0.05) and CR3 groups (0.4 ± 0.6 cm or 16.4%; p < 0.05) experienced greater change in muscle thickness of the elbow flexors compared to the PLA2 (0.05 ± 0.5 cm or 2.3%) and PLA3 groups (0.13 ± 0.7 cm or 6.3%). Men supplementing with creatine experienced a greater increase in leg press strength (77.3 ± 51.2 kg or 62%) compared to women on creatine (21.3 ± 10 kg or 34%, p < 0.05). We conclude that creatine supplementation during RT has a small beneficial effect on regional muscle thickness in young adults but that giving the creatine over 3 d wk did not differ from giving the same dose over 2 d wk.  相似文献   

7.
The purpose of the present investigation was to examine the effects of 28 days of polyethylene glycosylated creatine (PEG-creatine) supplementation on 1-repetition maximum bench press (1RMBP) and leg extension (1RMLE), mean power (MP), and peak power (PP) from the Wingate Anaerobic test and body weight (BW). This study used a randomized, double-blind, placebo-controlled, parallel design. Twenty-two untrained men (mean age ± SD = 22.1 ± 2.1 years) were randomly assigned to either a Creatine (n = 10) or Placebo (n = 12) group. The Creatine group ingested PEG-creatine (5 g·d), whereas the Placebo group ingested maltodextrin powder (5 g·d). All subjects performed bench press and bilateral leg extension exercises to determine their 1RM values, and 2 consecutive Wingate Anaerobic Tests (separated by 7 minutes) on a cycle ergometer to determine MP and PP before supplementation (day 0) and after 7 (day 7) and 28 (day 28) days of supplementation. The results indicated that there was a significant (p < 0.05) increase in 1RMBP between days 0 and 28 for the Creatine group but not for the Placebo group. There were no significant changes, however, in 1RMLE, MP, PP, or BW for the Creatine or Placebo group. These findings indicated that 28 days of PEG-creatine supplementation without resistance training increased upper body strength but not lower body strength or muscular power. These findings supported the use of the PEG-creatine supplement for increasing 1RMBP strength in untrained individuals.  相似文献   

8.
We hypothesized that resistance training with combined eccentric and concentric actions, and concentric action only, should yield similar changes in muscular strength. Subjects in a free weight group trained three times a week for 12 wk with eccentric and concentric actions (FW, n = 16), a second group trained with concentric-only contractions using hydraulic resistance (HY; n = 12), and a control group did not train (n = 11). Training for FW and HY included five sets of supine bench press and upright squat at an intensity of 1-6 repetition maximum (RM) plus five supplementary exercises at 5-10 RM for a total of 20 sets per session for approximately 50 min. Testing at pre-, mid-, and posttraining included 1) 1 RM bench press and squat with and 2) without prestretch using free weights; 3)isokinetic peak force and power for bench press and squat at 5 degrees/s, and isotonic peak velocity and power for bench press with 20-kg load and squat with 70-kg load; 4) hydraulic peak bench press force and power, and peak knee extension torque and power at fast and slow speeds; and 5) surface anthropometry (fatfolds and girths to estimate upper arm and thigh volume and muscle area). Changes in overall fatness, muscularity, and muscle + bone cross-sectional area of the limbs did not differ between groups (P greater than 0.05). Improvements in free weight bench press and squat were similar (P greater than 0.05) in FW (approximately 24%) and HY (approximately 22%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The purpose of this study was to examine the effects of whey protein supplementation on body composition, muscular strength, muscular endurance, and anaerobic capacity during 10 weeks of resistance training. Thirty-six resistance-trained males (31.0 +/- 8.0 years, 179.1 +/- 8.0 cm, 84.0 +/- 12.9 kg, 17.8 +/- 6.6%) followed a 4 days-per-week split body part resistance training program for 10 weeks. Three groups of supplements were randomly assigned, prior to the beginning of the exercise program, in a double-blind manner to all subjects: 48 g per day (g.d(-1)) carbohydrate placebo (P), 40 g.d(-1) of whey protein + 8 g.d(-1) of casein (WC), or 40 g.d(-1) of whey protein + 3 g.d(-1) branched-chain amino acids + 5 g.d(-1) L-glutamine (WBG). At 0, 5, and 10 weeks, subjects were tested for fasting blood samples, body mass, body composition using dual-energy x-ray absorptiometry (DEXA), 1 repetition maximum (1RM) bench and leg press, 80% 1RM maximal repetitions to fatigue for bench press and leg press, and 30-second Wingate anaerobic capacity tests. No changes (p > 0.05) were noted in all groups for energy intake, training volume, blood parameters, and anaerobic capacity. WC experienced the greatest increases in DEXA lean mass (P = 0.0 +/- 0.9; WC = 1.9 +/- 0.6; WBG = -0.1 +/- 0.3 kg, p < 0.05) and DEXA fat-free mass (P = 0.1 +/- 1.0; WC = 1.8 +/- 0.6; WBG = -0.1 +/- 0.2 kg, p < 0.05). Significant increases in 1RM bench press and leg press were observed in all groups after 10 weeks. In this study, the combination of whey and casein protein promoted the greatest increases in fat-free mass after 10 weeks of heavy resistance training. Athletes, coaches, and nutritionists can use these findings to increase fat-free mass and to improve body composition during resistance training.  相似文献   

10.
The purpose of this study was to examine the effects of a drink containing creatine, amino acids, and protein vs. a carbohydrate placebo on body composition, strength, muscular endurance, and anaerobic performance before and after 10 weeks of resistance training. Fifty-one men (mean +/- SD; age: 21.8 +/- 2.9 years) were randomly assigned to either the test drink (TEST; n = 23) or the placebo (PLAC; n = 28) and performed two 30-second Wingate Anaerobic Tests for determination of peak power (PP) and mean power (MP), were weighed underwater for percent body fat (%fat) and fat-free mass (FFM), and were tested for 1 repetition maximum (1RM) dynamic constant external resistance strength and muscular endurance (END; number of repetitions performed with 80% of 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. The testing was conducted before (PRE) and after (POST) 10 weeks of resistance training (3 sets of 10 repetitions with 80% of the subject's 1RM performed 3 times per week) on the LE and BP exercises. Body weight, FFM, LE 1RM, LE END, BP 1RM, and BP END increased (p < 0.05), whereas %fat decreased (p < 0.05) from PRE to POST for both the TEST and PLAC groups. Peak power and MP, however, increased for the TEST group, but not for the PLAC group. These results suggested that the creatine-, amino acid-, and protein-containing drink provided no additional benefits when compared with carbohydrates alone for eliciting changes in body composition, strength, and muscular endurance after a 10-week resistance training period. The TEST drink was, however, more effective than carbohydrates alone for improving anaerobic power production.  相似文献   

11.
To determine the effects of a 6-month supervised low-volume resistance training (RT) program (1 set, 85-90%, one repetition maximum, 1RM, 3 d x wk(-1)) on muscular strength (1RM) and skeletal muscle mass (SMM) in previously sedentary, overweight men on an ad libitum diet. Nineteen men were randomly assigned to a control (CON, n = 8) or RT (n = 11) group. The exercise protocol consisted of 5 upper- and 4 lower-body exercises using weight machines. CON maintained their sedentary lifestyle. One RM for upper body (chest press [CP] + lat pull-down [LPD]) and lower body (leg press [LP]) and SMM were assessed at baseline, and at 3 and 6 months. Adherence was 96 +/- 2% with an average time to complete each exercise session of 15 +/- 2 minutes. Volume completed per exercise session significantly increased from baseline (2,812 +/- 670 kg) to 6 months (6,411 +/- 2,128 kg). There was a group by time interaction in 1RM for CP, LPD, and LP. Upper-body strength increased significantly (p < 0.001) (31.3 +/- 9.3%) from baseline to 3 months and from 3 to 6 months (17.9 +/- 8.7%). Lower-body strength also increased significantly from baseline to 3 months (17.8 +/- 16.6%) and from 3 to 6 months (32.0 +/- 33.7%). No changes in upper- or lower-body strength occurred in the CON group. There was no group by time interaction for SMM (CON, 34.5 +/- 2.9 kg vs. RT, 34.2 +/- 2.9 kg; p > 0.05) or for energy intake (p > 0.05). In conclusion, a single set resistance training program at 85% of 1RM, 3 d x wk(-1) resulted in continued increases in muscular strength and a very high adherence rate over a 6-month period in sedentary, overweight men independent of significant changes in SMM. This training protocol may increase adherence and produce long-term increases in muscular fitness as part of an adult fitness program.  相似文献   

12.
The purpose of this study was to examine the efficacy of 11 wk of resistance training to failure vs. nonfailure, followed by an identical 5-wk peaking period of maximal strength and power training for both groups as well as to examine the underlying physiological changes in basal circulating anabolic and catabolic hormones. Forty-two physically active men were matched and then randomly assigned to either a training to failure (RF; n = 14), nonfailure (NRF; n = 15), or control groups (C; n = 13). Muscular and power testing and blood draws to determine basal hormonal concentrations were conducted before the initiation of training (T0), after 6 wk of training (T1), after 11 wk of training (T2), and after 16 wk of training (T3). Both RF and NRF resulted in similar gains in 1-repetition maximum bench press (23 and 23%) and parallel squat (22 and 23%), muscle power output of the arm (27 and 28%) and leg extensor muscles (26 and 29%), and maximal number of repetitions performed during parallel squat (66 and 69%). RF group experienced larger gains in the maximal number of repetitions performed during the bench press. The peaking phase (T2 to T3) after NRF resulted in larger gains in muscle power output of the lower extremities, whereas after RF it resulted in larger gains in the maximal number of repetitions performed during the bench press. Strength training leading to RF resulted in reductions in resting concentrations of IGF-1 and elevations in IGFBP-3, whereas NRF resulted in reduced resting cortisol concentrations and an elevation in resting serum total testosterone concentration. This investigation demonstrated a potential beneficial stimulus of NRF for improving strength and power, especially during the subsequent peaking training period, whereas performing sets to failure resulted in greater gains in local muscular endurance. Elevation in IGFBP-3 after resistance training may have been compensatory to accommodate the reduction in IGF-1 to preserve IGF availability.  相似文献   

13.
The purpose of the present investigation was to determine if significant differences exist among 3 different periodization programs in eliciting changes in strength. Twenty-eight recreationally trained college-aged volunteers (mean +/- SD; 22.29 +/- 3.98) of both genders were tested for bench press, leg press, body fat percentage, chest circumference, and thigh circumference during initial testing. After initial testing, subjects were randomly assigned to 1 of 3 training groups: (a) linear periodization (n = 9), (b) daily undulating periodization (n = 10), or (c) weekly undulating periodization (n = 9). The training regimen for each group consisted of a 9-week, 3-day-per-week program. Training loads were assigned as heavy (90%, 4 repetition maximum [4RM]), medium (85%, 6RM), or light (80%, 8RM) for bench press and leg press exercises. Subjects were familiarized with the CR-10 rated perceived exertion scale and instructed to achieve an 8 or 9 on the final repetition of each set for all other exercises. Subjects were then retested after 4 weeks of training. Training loads were then adjusted according to the new 1RM. Subjects were then retested after 5 more weeks of exercise. For all subjects, significant (p < 0.05) increases in bench press and leg press strength were demonstrated at all time points (T1-T3). No significant differences (p > 0.05) were observed between groups for bench press, leg press, body fat percentage, chest circumference, or thigh circumference at all time points. These results indicate that no separation based on periodization model is seen in early-phase training.  相似文献   

14.
The purpose of this study was to compare changes in muscle strength, power, and morphology induced by conventional strength training vs. plyometric training of equal time and effort requirements. Young, untrained men performed 12 weeks of progressive conventional resistance training (CRT, n = 8) or plyometric training (PT, n = 7). Tests before and after training included one-repetition maximum (1 RM) incline leg press, 3 RM knee extension, and 1 RM knee flexion, countermovement jumping (CMJ), and ballistic incline leg press. Also, before and after training, magnetic resonance imaging scanning was performed for the thigh, and a muscle biopsy was sampled from the vastus lateralis muscle. Muscle strength increased by approximately 20-30% (1-3 RM tests) (p < 0.001), with CRT showing 50% greater improvement in hamstring strength than PT (p < 0.01). Plyometric training increased maximum CMJ height (10%) and maximal power (Pmax; 9%) during CMJ (p < 0.01) and Pmax in ballistic leg press (17%) (p < 0.001). This was far greater than for CRT (p < 0.01), which only increased Pmax during the ballistic leg press (4%) (p < 0.05). Quadriceps, hamstring, and adductor whole-muscle cross-sectional area (CSA) increased equally (7-10%) with CRT and PT (p < 0.001). For fiber CSA analysis, some of the biopsies had to be omitted. Type I and IIa fiber CSA increased in CRT (n = 4) by 32 and 49%, respectively (p < 0.05), whereas no significant changes occurred for PT (n = 5). Myosin heavy-chain IIX content decreased from 11 to 6%, with no difference between CRT and PT. In conclusion, gross muscle size increased both by PT and CRT, whereas only CRT seemed to increase muscle fiber CSA. Gains in maximal muscle strength were essentially similar between groups, whereas muscle power increased almost exclusively with PT training.  相似文献   

15.
Previous research indicates that the Internet, electronic mail (e-mail), and printed materials can be used to deliver interventions to improve physical activity in people with type 2 diabetes. However, no studies have been conducted investigating the effect of e-mail or print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. The purpose of this clinical trial was to investigate the impact of e-mail vs. print delivery of an exercise program on muscular strength and aerobic capacity in people with type 2 diabetes. Nineteen participants with type 2 diabetes were allocated to either a group that was delivered a prescribed exercise program using e-mail (e-mail group, n = 10) or a group that was delivered the same prescribed exercise program in print form (print group, n = 9). Chest press and leg press estimated one-repetition maximum (1-RM) scores as well as estimated peak oxygen uptake ([latin capital V with dot above]O2peak) were measured at baseline and follow-up. Intention-to-treat analysis indicated significant improvements in chest press (mean = 7.00 kg, p = 0.001, effect size = 2.22) and leg press (mean = 19.32 kg, p = 0.002, effect size = 1.98) 1-RM scores and [latin capital V with dot above]O2peak (mean = 9.38 mL of oxygen uptake per kilogram of body mass per minute, p = 0.01, effect size = 1.45) within the e-mail group. Within the print group, significant improvements in chest press (mean = 9.13 kg, p = 0.01, effect size = 1.49) and leg press (mean = 16.68 kg, p = 0.01, effect size = 1.31) 1-RM scores and [latin capital V with dot above]O2peak (mean = 5.14 ml of oxygen uptake per kilogram of body mass per minute, p = 0.03, effect size = 1.14) were found. No significant between-group differences in improvements were found. Clinicians can deliver a prescribed exercise program, either by e-mail or in print form, to significantly improve muscular strength and aerobic capacity in people with type 2 diabetes, and expect similar outcomes.  相似文献   

16.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

17.
The purpose of this study was to determine the effects of acute heat exposure upon muscular strength, muscular endurance, and muscular power in euhydrated athletes. Ten healthy, weight-trained men (average age = 23.0 +/- 4.0 years) volunteered for this investigation. Subjects were randomized to normothermic (22.5 degrees C, 65% relative humidity [RH]) or hyperthermic (65-75 degrees C, 15% RH) condition for 30 minutes. Results indicated that all subjects experienced significant (p < 0.05) hemodynamic stress because of the 30 minutes of heat exposure (blood pressure [BP](rest) 124/78 mm Hg to BP(postsauna) 148/60 mm Hg, heart rate [HR](rest) 64 b.min(-1) to HR(postsauna) 122 b.min(-1)). Oral and tympanic temperature measurements correlated strongly (r(2) = 0.904) and increased by 2.48 and 2.71 degrees C, respectively, during sauna exposure. One repetition maximum (1RM) bench press strength did not differ between the 2 conditions, whereas 1RM leg press strength was significantly decreased (p < 0.05) after the hyperthermic protocol. Subjects' muscular endurance decreased significantly (p < 0.05) in both the leg press (29.2%) and bench press (15.8%) after the sauna exposure. In contrast, muscular power (vertical jump) increased significantly (3.1%, p < 0.5) after acute heat exposure. In agreement with previous studies, we concluded that acute heat exposure is detrimental to muscular endurance; however, the areas of strength and power are far less unequivocal.  相似文献   

18.
This study examined the effects of a progressive resistance training program in addition to soccer training on the physical capacities of male adolescents. Eighteen soccer players (age: 12-15 years) were separated in a soccer (SOC; n = 9) and a strength-soccer (STR; n = 9) training group and 8 subjects of similar age constituted a control group. All players followed a soccer training program 5 times a week for the development of technical and tactical skills. In addition, the STR group followed a strength training program twice a week for 16 weeks. The program included 10 exercises, and at each exercise, 2-3 sets of 8-15 repetitions with a load 55-80% of 1 repetition maximum (1RM). Maximum strength ([1RM] leg press, bench-press), jumping ability (squat jump [SJ], countermovement jump [CMJ], repeated jumps for 30 seconds) running speed (30 m, 10 x 5-m shuttle run), flexibility (seat and reach), and soccer technique were measured at the beginning, after 8 weeks, and at the end of the training period. After 16 weeks of training, 1RM leg press, 10 x 5-m shuttle run speed, and performance in soccer technique were higher (p < 0.05) for the STR and the SOC groups than for the control group. One repetition maximum bench press and leg press, SJ and CMJ height, and 30-m speed were higher (p < 0.05) for the STR group compared with SOC and control groups. The above data show that soccer training alone improves more than normal growth maximum strength of the lower limps and agility. The addition of resistance training, however, improves more maximal strength of the upper and the lower body, vertical jump height, and 30-m speed. Thus, the combination of soccer and resistance training could be used for an overall development of the physical capacities of young boys.  相似文献   

19.
The purpose of this study was to examine the acute effects of a caffeine-containing supplement on upper- and lower-body strength and muscular endurance as well as anaerobic capabilities. Thirty-seven resistance-trained men (mean +/- SD, age: 21 +/- 2 years) volunteered to participate in this study. On the first laboratory visit, the subjects performed 2 Wingate Anaerobic Tests (WAnTs) to determine peak power (PP) and mean power (MP), as well as tests for 1 repetition maximum (1RM), dynamic constant external resistance strength, and muscular endurance (TOTV; total volume of weight lifted during an endurance test with 80% of the 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. Following a minimum of 48 hours of rest, the subjects returned to the laboratory for the second testing session and were randomly assigned to 1 of 2 groups: a supplement group (SUPP; n = 17), which ingested a caffeine-containing supplement, or a placebo group (PLAC; n = 20), which ingested a cellulose placebo. One hour after ingesting either the caffeine-containing supplement or the placebo, the subjects performed 2 WAnTs and were tested for 1RM strength and muscular endurance on the LE and BP exercises. The results indicated that there was a significant (p < 0.05) increase in BP 1RM for the SUPP group, but not for the PLAC group. The caffeine-containing supplement had no effect, however, on LE 1RM, LE TOTV, BP TOTV, PP, and MP. Thus, the caffeine-containing supplement may be an effective supplement for increasing upper-body strength and, therefore, could be useful for competitive and recreational athletes who perform resistance training.  相似文献   

20.
Although older people are particularly liable to sarcopenia, limited research is available on beta-hydroxy-beta-methylbutyrate (HMB) supplementation in this population, particularly in healthy subjects. In this parallel-group, randomized, controlled, open-label trial, we aimed to evaluate whether an oral supplement containing 1.5 g of calcium HMB for 8 weeks could improve physical performance and muscle strength parameters in a group of community-dwelling healthy older women. Eighty healthy women attending a twice-weekly mild fitness program were divided into two equal groups of 40, and 32 of the treated women and 33 control completed the study. We considered a change in the Short Physical Performance Battery (SPPB) score as the primary outcome and changes in the peak torque (PT) isometric and isokinetic strength of the lower limbs, 6-minute walking test (6MWT), handgrip strength and endurance as secondary outcomes. Body composition was assessed with dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computerized tomography (pQCT). The mean difference between the two groups on pre-post change were finally calculated (delta) for each outcome. After 8 weeks, there were no significant differences between the groups’ SPPB, handgrip strength or DXA parameters. The group treated with HMB scored significantly better than the control group for PT isokinetic flexion (delta = 1.56±1.56 Nm; p = 0.03) and extension (delta = 3.32±2.61 Nm; p = 0.03), PT isometric strength (delta = 9.74±3.90 Nm; p = 0.02), 6MWT (delta = 7.67±8.29 m; p = 0.04), handgrip endurance (delta = 21.41±16.28 s; p = 0.02), and muscle density assessed with pQCT. No serious adverse effects were reported in either group. In conclusion, a nutritional supplement containing 1.5 g of calcium HMB for 8 weeks in healthy elderly women had no significant effects on SPPB, but did significantly improve several muscle strength and physical performance parameters.

Trial Registration

ClinicalTrials.gov NCT02118181  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号