首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tribulus terrestris is an herbal nutritional supplement that is promoted to produce large gains in strength and lean muscle mass in 5-28 days (15, 18). Although some manufacturers claim T. terrestris will not lead to a positive drug test, others have suggested that T. terrestris may increase the urinary testosterone/epitestosterone (T/E) ratio, which may place athletes at risk of a positive drug test. The purpose of the study was to determine the effect of T. terrestris on strength, fat free mass, and the urinary T/E ratio during 5 weeks of preseason training in elite rugby league players. Twenty-two Australian elite male rugby league players (mean +/- SD; age = 19.8 +/- 2.9 years; weight = 88.0 +/- 9.5 kg) were match-paired and randomly assigned in a double-blind manner to either a T. terrestris (n = 11) or placebo (n = 11) group. All subjects performed structured heavy resistance training as part of the club's preseason preparations. A T. terrestris extract (450 mg.d(-1)) or placebo capsules were consumed once daily for 5 weeks. Muscular strength, body composition, and the urinary T/E ratio were monitored prior to and after supplementation. After 5 weeks of training, strength and fat free mass increased significantly without any between-group differences. No between-group differences were noted in the urinary T/E ratio. It was concluded that T. terrestris did not produce the large gains in strength or lean muscle mass that many manufacturers claim can be experienced within 5-28 days. Furthermore, T. terrestris did not alter the urinary T/E ratio and would not place an athlete at risk of testing positive based on the World Anti-Doping Agency's urinary T/E ratio limit of 4:1.  相似文献   

2.
We hypothesized that suppression of endogenous testosterone would inhibit the adaptations to strength training in otherwise healthy men. Twenty-two young men with minor experience with strength training participated in this randomized, placebo-controlled, double-blinded intervention study. The subjects were randomized to treatment with the GnRH analog goserelin (3.6 mg) or placebo (saline) subcutaneously every 4 wk for 12 wk. The strength training period of 8 wk, starting at week 4, included exercises for all major muscles [3-4 sets per exercise x 6-10 repetitions with corresponding 6- to 10-repetition maximum (RM) loads, 3/wk]. A strength test, blood sampling, and whole body DEXA scan were performed at weeks 4 and 12. Endogenous testosterone decreased significantly (P < 0.01) in the goserelin group from 22.6 +/- 5.5 (mean +/- SD) nmol/l to 2.0 +/- 0.5 (week 4) and 1.1 +/- 0.6 nmol/l (week 12), whereas it remained constant in the placebo group. The goserelin group showed no changes in isometric knee extension strength after training, whereas the placebo group increased from 240.2 +/- 41.3 to 264.1 +/- 35.3 Nm (P < 0.05 within and P = 0.05 between groups). Lean mass of the legs increased 0.37 +/- 0.13 and 0.57 +/- 0.30 kg in the goserelin and placebo groups, respectively (P < 0.05 within and P = 0.05 between groups). Body fat mass increased 1.4 +/- 1.0 kg and decreased 0.6 +/- 1.2 kg in the goserelin and placebo groups, respectively (P < 0.05 within and between groups). We conclude that endogenous testosterone is of paramount importance to the adaptation to strength training.  相似文献   

3.
The purpose of this study was to compare linear periodization (LP) and daily undulating periodization (DUP) for strength gains. Twenty men (age = 21 +/- 2.3 years) were randomly assigned to LP (n = 10) or DUP (n = 10) groups. One repetition maximum (1RM) was recorded for bench press and leg press as a pre-, mid-, and posttest. Training involved 3 sets (bench press and leg press), 3 days per week. The LP group performed sets of 8 RM during weeks 1-4, 6 RM during weeks 4-8, and 4 RM during weeks 9-12. The DUP group altered training on a daily basis (Monday, 8 RM; Wednesday, 6 RM; Friday, 4 RM). Analysis of variance with repeated measures revealed statistically significant differences favoring the DUP group between T1 to T2 and T1 to T3. Making program alterations on a daily basis was more effective in eliciting strength gains than doing so every 4 weeks.  相似文献   

4.
Because previous research has shown a relationship between maximal squat strength and sprint performance, this study aimed to determine if changes in maximal squat strength were reflected in sprint performance. Nineteen professional rugby league players (height = 1.84 ± 0.06 m, body mass [BM] = 96.2 ± 11.11 kg, 1 repetition maximum [1RM] = 170.6 ± 21.4 kg, 1RM/BM = 1.78 ± 0.27) conducted 1RM squat and sprint tests (5, 10, and 20 m) before and immediately after 8 weeks of preseason strength (4-week Mesocycle) and power (4-week Mesocycle) training. Both absolute and relative squat strength values showed significant increases after the training period (pre: 170.6 ± 21.4 kg, post: 200.8 ± 19.0 kg, p < 0.001; 1RM/BM pre: 1.78 ± 0.27 kg·kg(-1), post: 2.05 ± 0.21 kg·kg(-1), p < 0.001; respectively), which was reflected in the significantly faster sprint performances over 5 m (pre: 1.05 ± 0.06 seconds, post: 0.97 ± 0.05 seconds, p < 0.001), 10 m (pre: 1.78 ± 0.07 seconds, post: 1.65 ± 0.08 seconds, p < 0.001), and 20 m (pre: 3.03 ± 0.09 seconds, post: 2.85 ± 0.11 seconds, p < 0.001) posttraining. Whether the improvements in sprint performance came as a direct consequence of increased strength or whether both are a function of the strength and power mesocycles incorporated into the players' preseason training is unclear. It is likely that the increased force production, noted via the increased squat performance, contributed to the improved sprint performances. To increase short sprint performance, athletes should, therefore, consider increasing maximal strength via the back squat.  相似文献   

5.
The purpose of the present study was to examine the influence of direct supervision on muscular strength, power, and running speed during 12 weeks of resistance training in young rugby league players. Two matched groups of young (16.7 +/- 1.1 years [mean +/- SD]), talented rugby league players completed the same periodized resistance-training program in either a supervised (SUP) (N = 21) or an unsupervised (UNSUP) (N = 21) environment. Measures of 3 repetition maximum (3RM) bench press, 3RM squat, maximal chin-ups, vertical jump, 10- and 20-m sprints, and body mass were completed pretest (week 0), midtest (week 6), and posttest (week 12) training program. Results show that 12 weeks of periodized resistance training resulted in an increased body mass, 3RM bench press, 3RM squat, maximum number of chin-ups, vertical jump height, and 10- and 20-m sprint performance in both groups (p < 0.05). The SUP group completed significantly more training sessions, which were significantly correlated to strength increases for 3RM bench press and squat (p < 0.05). Furthermore, the SUP group significantly increased 3RM squat strength (at 6 and 12 weeks) and 3RM bench press strength (12 weeks) when compared to the UNSUP group (p < 0.05). Finally, the percent increase in the 3RM bench press, 3RM squat, and chin-up(max) was also significantly greater in the SUP group than in the UNSUP group (p < 0.05). These findings show that the direct supervision of resistance training in young athletes results in greater training adherence and increased strength gains than does unsupervised training.  相似文献   

6.
The purpose of this investigation was to examine the combined effects of resistance and sprint/plyometric training with or without the Meridian Elyte athletic shoe on muscular performance in women. Fourteen resistance-trained women were randomly assigned to one of 2 training groups: (a) an athletic shoe (N = 6) (AS) group or (b) the Meridian Elyte (N = 8) (MS) group. Training was performed for 10 weeks and consisted of resistance training for 2 days per week and 2 days per week of sprint/plyometric training. Linear periodized resistance training consisted of 5 exercises per workout (4 lower body, 1 upper body) for 3 sets of 3-12 repetition maximum (RM). Sprint/plyometric training consisted of 5-7 exercises per workout (4-5 plyometric exercises, 40-yd and 60-yd sprints) for 3-6 sets with gradually increasing volume (8 weeks) followed by a 2-week taper phase. Assessments for 1RM squat and bench press, vertical jump, broad jump, sprint speed, and body composition were performed before and following the 10-week training period. Significant increases were observed in both AS and MS groups in 1RM squat (12.0 vs. 14.6 kg), bench press (6.8 vs. 7.4 kg), vertical jump height (3.3 vs. 2.3 cm), and broad jump (17.8 vs. 15.2 cm). Similar decreases in peak 20-, 40-, and 60-m sprint times were observed in both groups (20 m: 0.14 vs. 0.11 seconds; 40 m: 0.29 vs. 0.34 seconds; 60 m: 0.45 vs. 0.46 seconds in AS and MS groups, respectively). However, when sprint endurance (the difference between the fastest and slowest sprint trials) was analyzed, there was a significantly greater improvement at 60 m in the MS group. These results indicated that similar improvements in peak sprint speed and jumping ability were observed following 10 weeks of training with either shoe. However, high-intensity sprint endurance at 60 m increased to a greater extent during training with the Meridian Elyte athletic shoe.  相似文献   

7.
The purpose of this study was to compare the effects of combined strength and plyometric training with strength training alone on power-related measurements in professional soccer players. Subjects in the intervention team were randomly divided into 2 groups. Group ST (n = 6) performed heavy strength training twice a week for 7 weeks in addition to 6 to 8 soccer sessions a week. Group ST+P (n = 8) performed a plyometric training program in addition to the same training as the ST group. The control group (n = 7) performed 6 to 8 soccer sessions a week. Pretests and posttests were 1 repetition maximum (1RM) half squat, countermovement jump (CMJ), squat jump (SJ), 4-bounce test (4BT), peak power in half squat with 20 kg, 35 kg, and 50 kg (PP20, PP35, and PP50, respectively), sprint acceleration, peak sprint velocity, and total time on 40-m sprint. There were no significant differences between the ST+P group and ST group. Thus, the groups were pooled into 1 intervention group. The intervention group significantly improved in all measurements except CMJ, while the control group showed significant improvements only in PP20. There was a significant difference in relative improvement between the intervention group and control group in 1RM half squat, 4BT, and SJ. However, a significant difference between groups was not observed in PP20, PP35, sprint acceleration, peak sprinting velocity, and total time on 40-m sprint. The results suggest that there are no significant performance-enhancing effects of combining strength and plyometric training in professional soccer players concurrently performing 6 to 8 soccer sessions a week compared to strength training alone. However, heavy strength training leads to significant gains in strength and power-related measurements in professional soccer players.  相似文献   

8.
ABSTRACT: Nimphius, S, McGuigan, MR, and Newton, RU. Changes in muscle architecture and performance during a competitive season in female softball players. J Strength Cond Res 26(10): 2655-2666, 2012-The purpose of this research was (a) to examine the performance changes that occur in elite female softball players during 20 weeks of softball training (that included 14 weeks of periodized resistance training [RT]) and (b) to examine the relationship between percent change (%change) in muscle architecture variables and %change in strength, speed, and change of direction performance. Ten female softball players (age = 18.1 ± 1.6 years, height = 166.5 ± 8.9 cm, weight = 72.4 ± 10.8 kg) from a state Australian Institute of Sport softball team were tested for maximal lower-body strength using a 3 repetition maximum for a predicted 1 repetition maximum (1RM) and peak force, peak velocity (PV), and peak power (PP) were measured during jump squats (JS) unloaded and loaded. In addition, the first base (1B) and the second base (2B) sprint performance, change of direction (505) on dominant (D) and nondominant (ND) sides, aerobic capacity, and muscle architecture characteristics of vastus lateralis (VL) including muscle thickness (MT), fascicle length (FL), and pennation angle (θp) were examined. The testing sessions occurred pre, mid, and post training (total 20 week pre- and in-season training period). Changes over time were analyzed by repeated-measures analysis of variance. The relationship between %change in muscle architecture variables and strength, speed, and change of direction variables from pre to post were assessed by Pearson product-moment correlation coefficient. Significant improvements in PV and PP occurred at all JS loads pre- to mid-testing and pre- to post-testing. Significant increases occurred pre-post in absolute 1RM, relative 1RM, 505 ND, and 2B sprint. The strongest relationships were found between %change in VL MT and 1B sprint (r = -0.80, p = 0.06), %change in VL FL and 2B sprint (r = -0.835, p = 0.02), and %change in relative 1RM and 505 D (r = -0.70, p = 0.04). In conclusion, gains in strength, power, and performance can occur during the season in elite softball players who are also engaged in a periodized RT program. Furthermore, changes in performance measures are associated with changes in muscle architecture.  相似文献   

9.
The objective of this study was to determine if salivary free testosterone can predict an athlete's performance during back squats and sprints over time and the influence baseline strength on this relationship. Ten weight-trained male athletes were divided into 2 groups based on their 1 repetition maximum (1RM) squats, good squatters (1RM > 2.0 × body weight, n = 5) and average squatters (1RM < 1.9 × body weight, n = 5). The good squatters were stronger than the average squatters (p < 0.05). Each subject was assessed for squat 1RM and 10-m sprint times on 10 separate occasions over a 40-day period. A saliva sample was collected before testing and assayed for free testosterone and cortisol. The pooled testosterone correlations were strong and significant in the good squatters (r = 0.92 for squats, r = -0.87 for sprints, p < 0.01), but not significant for the average squatters (r = 0.35 for squats, r = -0.18 for sprints). Cortisol showed no significant correlations with 1RM squat and 10-m sprint performance, and no differences were identified between the 2 squatting groups. In summary, these results suggest that free testosterone is a strong individual predictor of squat and sprinting performance in individuals with relatively high strength levels but a poor predictor in less strong individuals. This information can assist coaches, trainers, and performance scientists working with stronger weight-trained athletes, for example, the preworkout measurement of free testosterone could indicate likely training outcomes or a readiness to train at a certain intensity level, especially if real-time measurements are made. Our results also highlight the need to separate group and individual hormonal data during the repeated testing of athletes with variable strength levels.  相似文献   

10.
This study investigated the effects of ballistic resistance training and strength training on muscle fiber composition, peak force (PF), maximal strength, and peak power (PP). Fourteen males (age = 21.3 +/- 2.9, body mass = 77.8 +/- 10.1 kg) with 3 months of resistance training experience completed the study. Subjects were tested pre and post for their squat one-repetition maximum (1RM) and PP in the jump squat (JS). Peak force and rate of force development (RFD) were tested during an isometric midthigh pull. Muscle biopsies were obtained from the vastus lateralis for analysis of muscle fiber type expression. Subjects were matched for strength and then randomly selected into either training (T) or control (C) groups. Group T performed 8 weeks of JS training using a periodized program with loading between 26 and 48% of 1RM, 3 days per week. Group T showed significant improvement in PP from 4088.9 +/- 520.6 to 5737.6 +/- 651.8 W. Rate of force development improved significantly in group T from 12687.5 +/- 4644.0 to 25343.8 +/- 12614.4 N x s(-1). PV improved significantly from 1.59 +/- 0.41 to 2.11 +/- 0.75 m x s(-1). No changes occurred in PF, 1RM, or muscle fiber type expression for group T. No changes occurred in any variables in group C. The results of this study indicate that using ballistic resistance exercise is an effective method for increasing PP and RFD independently of changes in maximum strength (1RM, PF), and those increases are a result of factors other than changes in muscle fiber type expression.  相似文献   

11.
Training at a load maximizing power output (Pmax) is an intuitively appealing strategy for enhancement of performance that has received little research attention. In this study we identified each subject's Pmax for an isoinertial resistance training exercise used for testing and training, and then we related the changes in strength to changes in sprint performance. The subjects were 18 well-trained rugby league players randomized to two equal-volume training groups for a 7-week period of squat jump training with heavy loads (80% 1RM) or with individually determined Pmax loads (20.0-43.5% 1RM). Performance measures were 1RM strength, maximal power at 55% of pretraining 1RM, and sprint times for 10 and 30 m. Percent changes were standardized to make magnitude-based inferences. Relationships between changes in these variables were expressed as correlations. Sprint times for 10 m showed improvements in the 80% 1RM group (-2.9 +/- 3.2%) and Pmax group (-1.3 +/- 2.2%), and there were similar improvements in 30-m sprint time (-1.9 +/- 2.8 and -1.2 +/- 2.0%, respectively). Differences in the improvements in sprint time between groups were unclear, but improvement in 1RM strength in the 80% 1RM group (15 +/- 9%) was possibly substantially greater than in the Pmax group (11 +/- 8%). Small-moderate negative correlations between change in 1RM and change in sprint time (r approximately -0.30) in the combined groups provided the only evidence of adaptive associations between strength and power outputs, and sprint performance. In conclusion, it seems that training at the load that maximizes individual peak power output for this exercise with a sample of professional team sport athletes was no more effective for improving sprint ability than training at heavy loads, and the changes in power output were not usefully related to changes in sprint ability.  相似文献   

12.
Caffeine and ephedrine-related alkaloids recently have been removed from International Olympic Committee banned substances lists, whereas ephedrine itself is now permissible at urinary concentrations less than 10 mug.mL. The changes to the list may contribute to an increased use of caffeine and ephedra as ergogenic aids by athletes. Consequently, we sought to investigate the effects of ingesting caffeine (C) or a combination of ephedra and caffeine (C + E) on muscular strength and anaerobic power using a double-blind, crossover design. Forty-five minutes after ingesting a glucose placebo (P: 300 mg), C (300 mg) or C + E (300 mg + 60 mg), 9 resistance-trained male participants were tested for maximal strength by bench press [BP; 1 repetition maximum (1RM)] and latissimus dorsi pull down (LP; 1RM). Subjects also performed repeated repetitions at 80% of 1RM on both BP and LP until exhaustion. After this test, subjects underwent a 30-second Wingate test to determine peak anaerobic cycling power, mean power, and fatigue index. Although subjects reported increased alertness and enhanced mood after supplementation with caffeine and ephedra, there were no significant differences between any of the treatments in muscle strength, muscle endurance, or peak anaerobic power. Our results do not support the contention that supplementation with ephedra or caffeine will enhance either muscle strength or anaerobic exercise performance.  相似文献   

13.
Twenty members of an National Collegiate Athletic Association Division III collegiate football team were assigned to either an Olympic lifting (OL) group or power lifting (PL) group. Each group was matched by position and trained 4-days.wk(-1) for 15 weeks. Testing consisted of field tests to evaluate strength (1RM squat and bench press), 40-yard sprint, agility, vertical jump height (VJ), and vertical jump power (VJP). No significant pre- to posttraining differences were observed in 1RM bench press, 40-yard sprint, agility, VJ or in VJP in either group. Significant improvements were seen in 1RM squat in both the OL and PL groups. After log10-transformation, OL were observed to have a significantly greater improvement in Delta VJ than PL. Despite an 18% greater improvement in 1RM squat (p > 0.05), and a twofold greater improvement (p > 0.05) in 40-yard sprint time by OL, no further significant group differences were seen. Results suggest that OL can provide a significant advantage over PL in vertical jump performance changes.  相似文献   

14.
In this study, we assessed the influence of training intensity on strength retention and loss incurred during detraining in older adults. In a previous study, untrained seniors (age = 71.0 +/- 5.0; n = 61) were randomly divided into 3 exercise groups and 1 control group. Exercise groups trained 2 days per week for 18 weeks with equivalent volumes and acute program variables but intensities of 2 x 15 repetitions maximum (RM), 3 x 9RM, or 4 x 6RM. Thirty of the original training subjects (age 71.5 +/- 5.2 years) participated in a 20-week detraining period. A 1RM for 8 exercises was obtained pre- and posttraining and at 6 and 20 weeks of detraining. The total of 1RM for the 8 exercises served as the dependent variable. Analysis of variance procedures demonstrated significant increases in strength with training (44-51%; p < 0.05), but no group effect. All training groups demonstrated significant strength decreases at both 6 and 20 weeks of detraining independent of prior training intensity (all group average 4.5% at 6 weeks and 13.5% at 20 weeks; p < 0.04). However, total-body strength was significantly greater than pretraining values after the detraining period (all group average 82% at 6 weeks and 49% at 20 weeks; p < 0.001). The results suggest that when older adults participate in progressive resistance exercise for 18 weeks, then stop resistance training (i.e., detrain), strength losses occur at both 6 and 20 weeks of detraining independent of prior resistance training intensity. However, despite the strength losses, significant levels of strength are retained even after 20 weeks of detraining. The results have important implications for resistance-trained older adults who could undergo planned or unplanned training interruptions of up to 5 months.  相似文献   

15.
The purpose of this study was to examine the effects of amino acid supplementation on muscular strength, power, and high-intensity endurance during short-term resistance training overreaching. Seventeen resistance-trained men were randomly assigned to either an amino acid (AA) or placebo (P) group and underwent 4 weeks of total-body resistance training consisting of two 2-week phases of overreaching (phase 1: 3 x 8-12 repetitions maximum [RM], 8 exercises; phase 2: 5 x 3-5 RM, 5 exercises). Muscle strength, power, and high-intensity endurance were determined before (T1) and at the end of each training week (T2-T5). One repetition maximum squat and bench press decreased at T2 in P (5.2 and 3.4 kg, respectively) but not in AA, and significant increases in 1 RM squat and bench press were observed at T3-T5 in both groups. A decrease in the ballistic bench press peak power was observed at T3 in P but not AA. The fatigue index during the 20-repetition jump squat assessment did not change in the P group at T3 and T5 (fatigue index = 18.6 and 18.3%, respectively) whereas a trend for reduction was observed in the AA group (p = 0.06) at T3 (12.8%) but not T5 (15.2%; p = 0.12). These results indicate that the initial impact of high-volume resistance training overreaching reduces muscle strength and power, and it appears that these reductions are attenuated with amino acid supplementation. In addition, an initial high-volume, moderate-intensity phase of overreaching followed by a higher intensity, moderate-volume phase appears to be very effective for enhancing muscle strength in resistance-trained men.  相似文献   

16.
This study compared serum total testosterone (TT) and free testosterone (FT) responses of young (20-26 years, n = 8), middle-aged (38-53 years, n = 7), and older (59-72 years, n = 9) men to resistance exercise. We also examined the relationships between testosterone (T) levels and strength, bone mineral density (BMD), and body composition variables for each age group. Subjects were tested for isotonic muscular strength (1 repetition maximum [1RM]), BMD (dual-energy x-ray absorptiometry [DXA]) and body composition (DXA). Each group performed an acute exercise protocol (3 sets, 10 repetitions, 80% of 1RM, 6 exercises). Blood samples were obtained at baseline, immediately postexercise, and 15 minutes postexercise for the TT and FT assays. The older age group had significantly (p < 0.05) lower T levels than the young group, but each group exhibited an increase (p < 0.05) in TT and FT immediately postexercise. Total T and FT were significantly correlated (p < 0.05) with strength in middle-aged and older men and with bone-free lean tissue mass in older men. In conclusion, middle-aged and older men showed similar relative T responses to those of younger men to a single bout of high-intensity resistance exercise. However, T levels were related to strength and muscle mass only in middle-aged or older men. On a practical application level, older men can complete a high-intensity resistance exercise program resulting in spikes in T that may attenuate age-related muscle and BMD loss.  相似文献   

17.
The aim of the present study was to examine the effect of in-season strength maintenance training frequency on strength, jump height, and 40-m sprint performance in professional soccer players. The players performed the same strength training program twice a week during a 10-week preparatory period. In-season, one group of players performed 1 strength maintenance training session per week (group 2 + 1; n = 7), whereas the other group performed 1 session every second week (group 2 + 0.5; n = 7). Only the strength training frequency during the in-season differed between the groups, whereas the exercise, sets and number of repetition maximum as well as soccer sessions were similar in the 2 groups. The preseason strength training resulted in an increased strength, sprint, and jump height (p < 0.05). During the first 12 weeks of the in-season, the initial gain in strength and 40-m sprint performance was maintained in group 2 + 1, whereas both strength and sprint performance were reduced in group 2 + 0.5 (p < 0.05). There was no statistical significant change in jump height in any of the 2 groups during the first 12 weeks of the in-season. In conclusion, performing 1 weekly strength maintenance session during the first 12 weeks of the in-season allowed professional soccer players to maintain the improved strength, sprint, and jump performance achieved during a preceding 10-week preparatory period. On the other hand, performing only 1 strength maintenance session every second week during the in-season resulted in reduced leg strength and 40-m sprint performance. The practical recommendation from the present study is that during a 12-week period, 1 strength maintenance session per week may be sufficient to maintain initial gain in strength and sprint performance achieved during a preceding preparatory period.  相似文献   

18.
The purpose of this study was to identify relationships between core stability and various strength and power variables in strength and power athletes. National Collegiate Athletic Association Division I football players (height 184.0 +/- 7.1 cm, weight 100.5 +/- 22.4 kg) completed strength and performance testing before off-season conditioning. Subjects were tested on three strength variables (one-repetition maximum [1RM] bench press, 1RM squat, and 1RM power clean), four performance variables (countermovement vertical jump [CMJ], 20- and 40-yd sprints, and a 10-yd shuttle run), and core stability (back extension, trunk flexion, and left and right bridge). Significant correlations were identified between total core strength and 20-yd sprint (r = -0.594), 40-yd sprint (r = -0.604), shuttle run (r = -0.551), CMJ (r = 0.591), power clean/body weight (BW) (r = 0.622), 1RM squat (r = -0.470), bench press/BW (r = 0.369), and combined 1RM/BW (r = 0.447); trunk flexion and 20-yd sprint (r = -0.485), 40-yd sprint (r = -0.479), shuttle run (r = -0.443), CMJ (r = 0.436), power clean/BW (r = 0.396), and 1RM squat (r = -0.416); back extension and CMJ (r = 0.536), and power clean/BW (r = 0.449); right bridge and 20-yd sprint r = -0.410) and 40-yd sprint (r = -0.435), CMJ (r = 0.403), power clean/BW (r = 0.519) and bench press/BW (r = 0.372) and combined 1RM/BW (r = 0.406); and left bridge and 20-yd sprint (r = -0.376) and 40-yd sprint (r = -0.397), shuttle run (r = -0.374), and power clean/BW (r = 0.460). The results of this study suggest that core stability is moderately related to strength and performance. Thus, increases in core strength are not going to contribute significantly to strength and power and should not be the focus of strength and conditioning.  相似文献   

19.
The purpose of this study was to evaluate the early-phase muscular performance adaptations to 5 weeks of traditional (TRAD) and eccentric-enhanced (ECC+) progressive resistance training and to compare the acute postexercise total testosterone (TT), bioavailable testosterone (BT), growth hormone (GH), and lactate responses in TRAD- and ECC+-trained individuals. Twenty-two previously untrained men (22.1 +/- 0.8 years) completed 1 familiarization and 2 baseline bouts, 15 exercise bouts (i.e., 3 times per week for 5 weeks), and 2 postintervention testing bouts. Anthropometric and 1 repetition maximum (1RM) measurements (i.e., bench press and squat) were assessed during both baseline and postintervention testing. Following baseline testing, participants were randomized into TRAD (4 sets of 6 repetitions at 52.5% 1RM) or ECC+ (3 sets of 6 repetitions at 40% 1RM concentric and 100% 1RM eccentric) groups and completed the 5-week progressive resistance training protocols. During the final exercise bout, blood samples acquired at rest and following exercise were assessed for serum TT, BT, GH, and blood lactate. Both groups experienced similar increases in bench press (approximately 10%) and squat (approximately 22%) strength during the exercise intervention. At the conclusion of training, postexercise TT and BT concentrations increased (approximately 13% and 21%, respectively, p < 0.05) and GH concentrations increased (approximately 750-1200%, p < 0.05) acutely following exercise in both protocols. Postexercise lactate accumulation was similar between the TRAD (5.4 +/- 0.4) and ECC+ (5.6 +/- 0.4) groups; however, the ECC+ group's lactate concentrations were significantly lower than those of the TRAD group 30 to 60 minutes into recovery. In conclusion, TRAD training and ECC+ training appear to result in similar muscular strength adaptations and neuroendocrine responses, while postexercise lactate clearance is enhanced following ECC+ training.  相似文献   

20.
This study examined the impact of short-term (7-day), high-dose (0.35 g.kg(-1).d(-1)) oral creatine monohydrate supplementation (CrS) on single sprint running performance (40 m, <6 seconds) and on intermittent sprint performance in highly trained sprinters. Nine subjects completed the double-blind cross-over design with 2 supplementation periods (placebo and creatine) and a 7-week wash-out period. A test protocol consisting of 40-m sprint runs was performed, and running velocity was continuously recorded over the total distance. The maximal sprint performance, the relative degree of fatigue at the end of intermittent sprint exercise (6 x 40 m, 30-second rest interval), as well as the degree of recovery (120-second passive rest) remained unchanged following CrS. There were no significant changes related to CrS in absolute running velocity at any distance between start and finish (40 m). It was concluded that no ergogenic effect on single or repeated 40-m sprint times with varying rest periods was observed in highly trained athletes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号