首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Neurofibrillary tangles (NFTs), which consist of highly phosphorylated tau, are hallmarks of neurodegenerative diseases including Alzheimer disease (AD). In neurodegenerative diseases, neuronal dysfunction due to neuronal loss and synaptic loss accompanies NFT formation, suggesting that a process associated with NFT formation may be involved in neuronal dysfunction. To clarify the relationship between the tau aggregation process and synapse and neuronal loss, we compared two lines of mice expressing human tau with or without an aggregation-prone P301L mutation. P301L tau transgenic (Tg) mice exhibited neuronal loss and produced sarcosyl-insoluble tau in old age but did not exhibit synaptic loss and memory impairment. By contrast, wild-type tau Tg mice neither exhibited neuronal loss nor produced sarcosyl-insoluble tau but did exhibit synaptic loss and memory impairment. Moreover, P301L tau was less phosphorylated than wild-type tau, suggesting that the tau phosphorylation state is involved in synaptic loss, whereas the tau aggregation state is involved in neuronal loss. Finally, increasing concentrations of insoluble tau aggregates leads to the formation of fibrillar tau, which causes NFTs to form.  相似文献   

2.
Neurofibrillary tangles (NFTs), which are composed of hyperphosphorylated and ubiquitylated tau, are exhibited at regions where neuronal loss occurs in neurodegenerative diseases; however, the mechanisms of NFT formation remain unknown. Molecular studies of frontotemporal dementia with parkinsonism-17 demonstrated that increasing the ratio of tau with exon 10 insertion induced fibrillar tau accumulation. Here, we show that carboxyl terminus of Hsc70-interacting protein (CHIP), a U-box protein, recognizes the microtubule-binding repeat region of tau and preferentially ubiquitylates four-repeat tau compared with three-repeat tau. Overexpression of CHIP induced the prompt degradation of tau, reduced the formation of detergent-insoluble tau and inhibited proteasome inhibitor-induced cell death. NFT bearing neurons in progressive supranuclear palsy, in which four-repeat tau is a component, showed the accumulation of CHIP. Thus, CHIP is a ubiquitin ligase for four-repeat tau and maintains neuronal survival by regulating the quality control of tau in neurons.  相似文献   

3.
Transglutaminase-catalyzed epsilon(gamma-glutamyl)lysine cross-links exist in Alzheimer's disease (AD) paired helical filament (PHF) tau protein but not normal soluble tau. To test the hypothesis that these cross-links could play a role in the formation of neurofibrillary tangles (NFT), we used single- and double-label immunofluorescence confocal microscopy and immunoaffinity purification and immunoblotting to examine epsilon(gamma-glutamyl)lysine cross-links in AD and control brains. The number of neurons that are immunoreactive with an antibody directed at the epsilon-(gamma-glutamyl)lysine bond was significantly higher in AD cortex compared with age-matched controls and schizophrenics. PHF tau-directed antibodies AT8, MC-1 and PHF-1 co-localized with epsilon(gamma-glutamyl)lysine immunolabeling in AD NFT. Immunoaffinity purification and immunoblotting experiments demonstrated that PHF tau contains epsilon(gamma-glutamyl)lysine bonds in parietal and frontal cortex in AD. In control cases with NFT present in the entorhinal cortex and hippocampus, indicative of Braak and Braak stage II, epsilon(gamma-glutamyl)lysine bonds were present in PHF tau in parietal and frontal cortex, despite the lack of microscopically detectable NFT or senile plaques in these cortical regions. The presence of PHF tau with epsilon(gamma-glutamyl)lysine bonds in brain regions devoid of NFT in stage II (but regions, which would be expected to contain NFT in stage III) suggests that these bonds occur early in the formation of NFT.  相似文献   

4.
Neurofibrillary tangles (NFT) accumulated in Alzheimer's diseases and related disorders contain hyperphosphorylated tau and display immunoreactivity for active forms of various kinases. To understand the role of p38MAPK (mitogen-activated protein kinase) in NFT formation, we have studied a transgenic (Tg) mouse model of tauopathy, JNPL3, that expresses P301L mutant tau, and bigenic mice, TAPP, generated by cross-breeding of JNPL3 with Tg2576 mice. Age-matched non-Tg mice (NTg), wild-type human tau Tg mice (JN25), and Tg2576 mice were used as controls. Phosphorylated p38MAPK (active form) immunoreactivity was consistently located in NFT and granulovaculolar degeneration in JNPL3 and TAPP mice older than 5 months of age. Unphosphorylated/total-p38MAPK was not detectable in spinal cord and brain sections from 2- to 11-month-old mice, even though JNPL3 mice, but not controls had an age-dependent increase of total-p38MAPK by western blotting. Spinal cord/brain extracts from mice and human with tauopathy were demonstrated to have insignificant amount of active-p38MAPK. However, they contained antiactive-p38MAPK cross-reactive proteins insoluble in sarkosyl and similar to phosphorylated tau in size. Consistently, antiactive-p38MAPK immunoprecipitates displayed tau immunoreactivity, but not total-p38MAPK, and antitau immunoprecipitates displayed active-p38MAPK immunoreactivity. Together, the results indicate that the cross-reactivity of antiactive-p38MAPK antibody with phosphorylated tau is responsible for the immunolabeling of tau-positive inclusion.  相似文献   

5.
Apoptosis in transgenic mice expressing the P301L mutated form of human tau   总被引:3,自引:0,他引:3  
The rTg4510 mouse is a tauopathy model, characterized by massive neurodegeneration in Alzheimer's disease (AD)-relevant cortical and limbic structures, deficits in spatial reference memory, and progression of neurofibrillary tangles (NFT). In this study, we examined the role of apoptosis in neuronal loss and associated tau pathology. The results showed that DNA fragmentation and caspase-3 activation are common in the hippocampus and frontal cortex of young rTg4510 mice. These changes were associated with cleavage of tau into smaller intermediate fragments, which persist with age. Interestingly, active caspase-3 was often co-localized with cleaved tau. In vitro, fibrillar Abeta(1-42) resulted in nuclear fragmentation, caspase activation, and caspase-3-induced cleavage of tau. Notably, incubation with the antiapoptotic molecule tauroursodeoxycholic acid abrogated apoptosis-mediated cleavage of tau in rat cortical neurons. In conclusion, caspase-3-cleaved intermediate tau species occurred early in rTg54510 brains and preceded cell loss in Abeta-exposed cultured neurons. These results suggest a potential role of apoptosis in neurodegeneration.  相似文献   

6.
The carboxyl terminus of heat-shock cognate (Hsc)70-interacting protein (CHIP) is a ubiquitin E3 ligase that can collaborate with molecular chaperones to facilitate protein folding and prevent protein aggregation. Previous studies showed that, together with heat-shock protein (Hsp)70, CHIP can regulate tau ubiquitination and degradation in a cell culture system. Ubiquitinated tau is one component in neurofibrillary tangles (NFTs), which are a major histopathological feature of Alzheimer's disease (AD). However, the precise sequence of events leading to NFT formation and the mechanisms involved remain unclear. To confirm CHIP's role in suppressing NFT formation in vivo, we performed a quantitative analysis of CHIP in human and mouse brains. We found increased levels of CHIP and Hsp70 in AD compared with normal controls. CHIP levels in both AD and controls corresponded directly to Hsp90 levels, but not to Hsp70 or Hsc70 levels. In AD samples, CHIP was inversely proportional to sarkosyl-insoluble tau accumulation. In a JNPL3 mouse brain tauopathy model, CHIP was widely distributed but weakly expressed in spinal cord, which was the most prominent region for tau inclusions and neuronal loss. Protein levels of CHIP in cerebellar regions of JNPL3 mice were significantly higher than in non-transgenic littermates. Human tau was more highly expressed in this region of mouse brains, but only moderate levels of sarkosyl-insoluble tau were detected. This was confirmed when increased insoluble tau accumulation was found in mice lacking CHIP. These findings suggest that increases in CHIP may protect against NFT formation in the early stages of AD. If confirmed, this would indicate that the quality-control machinery in a neuron might play an important role in retarding the pathogenesis of tauopathies.  相似文献   

7.
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion‐like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans‐synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau‐overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau‐null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.  相似文献   

8.
Neurofibrillary tangles (NFTs) are classic lesions of Alzheimer's disease. NFTs are bundles of abnormally phosphorylated tau, the paired helical filaments. The initiating mechanisms of NFTs and their role in neuronal loss are still unknown. Accumulating evidence supports a role for the activation of proteolytic enzymes, caspases, in neuronal death observed in brains of patients with Alzheimer's disease. Alterations in tau phosphorylation and tau cleavage by caspases have been previously reported in neuronal apoptosis. However, the links between the alterations in tau phosphorylation and its proteolytic cleavage have not yet been documented. Here, we show that, during staurosporine-induced neuronal apoptosis, tau first undergoes transient hyperphosphorylation, which is followed by dephosphorylation and cleavage. This cleavage generated a 10-kDa fragment in addition to the 17- and 50-kDa tau fragments previously reported. Prior tau dephosphorylation by a glycogen synthase kinase-3beta inhibitor, lithium, enhanced tau cleavage and sensitized neurons to staurosporine-induced apoptosis. Caspase inhibition prevented tau cleavage without reversing changes in tau phosphorylation linked to apoptosis. Furthermore, the microtubule depolymerizing agent, colchicine, induced tau dephosphorylation and caspase-independent tau cleavage and degradation. Both phenomena were blocked by inhibiting protein phosphatase 2A (PP2A) by okadaic acid. These experiments indicate that tau dephosphorylation precedes and is required for its cleavage and degradation. We propose that the absence of cleavage and degradation of hyperphosphorylated tau (due to PP2A inhibition) may lead to its accumulation in degenerating neurons. This mechanism may contribute to the aggregation of hyperphosphorylated tau into paired helical filaments in Alzheimer's disease where reduced PP2A activity has been reported.  相似文献   

9.
Mutations in presenilins are the major cause of familial Alzheimer's disease, but the pathogenic mechanism by which presenilin mutations cause memory loss and neurodegeneration remains unclear. Here we demonstrate that conditional double knockout mice lacking both presenilins in the postnatal forebrain exhibit impairments in hippocampal memory and synaptic plasticity. These deficits are associated with specific reductions in NMDA receptor-mediated responses and synaptic levels of NMDA receptors and alphaCaMKII. Furthermore, loss of presenilins causes reduced expression of CBP and CREB/CBP target genes, such as c-fos and BDNF. With increasing age, mutant mice develop striking neurodegeneration of the cerebral cortex and worsening impairments of memory and synaptic function. Neurodegeneration is accompanied by increased levels of the Cdk5 activator p25 and hyperphosphorylated tau. These results define essential roles and molecular targets of presenilins in synaptic plasticity, learning and memory, and neuronal survival in the adult cerebral cortex.  相似文献   

10.

Background

Recent epidemiological evidence suggests that modifying lifestyle by increasing physical activity could be a non-pharmacological approach to improving symptoms and slowing disease progression in Alzheimer’s disease and other tauopathies. Previous studies have shown that exercise reduces tau hyperphosphorylation, however, it is not known whether exercise reduces the accumulation of soluble or insoluble tau aggregates and neurofibrillary tangles, which are both neuropathological hallmarks of neurodegenerative tauopathy. In this study, 7-month old P301S tau transgenic mice were subjected to 12-weeks of forced treadmill exercise and evaluated for effects on motor function and tau pathology at 10 months of age.

Results

Exercise improved general locomotor and exploratory activity and resulted in significant reductions in full-length and hyperphosphorylated tau in the spinal cord and hippocampus as well as a reduction in sarkosyl-insoluble AT8-tau in the spinal cord. Exercise did not attenuate significant neuron loss in the hippocampus or cortex. Key proteins involved in autophagy—microtubule-associated protein 1A/1B light chain 3 and p62/sequestosome 1 —were also measured to assess whether autophagy is implicated in the exercised-induced reduction of aggregated tau protein. There were no significant effects of forced treadmill exercise on autophagy protein levels in P301S mice.

Conclusions

Our results suggest that forced treadmill exercise differently affects the brain and spinal cord of aged P301S tau mice, with greater benefits observed in the spinal cord versus the brain. Our work adds to the growing body of evidence that exercise is beneficial in tauopathy, however these benefits may be more limited at later stages of disease.
  相似文献   

11.
The stepwise progression of tau pathology [NFTs (neurofibrillary tangles) and NTs (neuropil threads)] in AD (Alzheimer's disease) is generally assumed to begin in the transentorhinal region (entorhinal stage) from which it progresses to the hippocampus (limbic stage) and to neocortical regions (neocortical stage). This stepwise progression is reflected in the NFT Braak stages. However, it has been shown recently that tau pathology is frequently seen in subcortical nuclei, in particular the LC (locus coeruleus) in over 90% of individuals under 30 years of age, suggesting that AD-associated tau pathology begins in the LC and not in the transentorhinal region. On the other hand, only minimal amounts of tau pathology are seen in the LC in cases with considerable entorhinal tau pathology, while the severity of tau pathology in the LC significantly increases with increasing NFT Braak stages. These findings suggest that the LC becomes increasingly involved during AD progression rather than representing the site initially affected. Further studies are warranted to answer the question of whether tau pathology in the LC of young individuals is associated with AD or whether it rather reflects non-specific neuronal damage.  相似文献   

12.
In Alzheimer's disease (AD), oxidative damage leads to the formation of amyloid plaques while low PP2A activity results in hyperphosphorylated tau that polymerizes to form neurofibrillary tangles. We probed these early events, using brain tissue from a rat model for AD that develops memory deterioration and AD-like behaviors in old age after chronically ingesting 1.6 mg aluminum/kg bodyweight/day, equivalent to the high end of the human dietary aluminum range. A control group consumed 0.4 mg aluminum/kg/day. We stained brain sections from the cognitively-damaged rats for evidence of amyloid plaques, neurofibrillary tangles, aluminum, oxidative damage, and hyperphosphorylated tau. PP2A activity levels measured 238.71+/-17.56 pmol P(i)/microg protein and 580.67+/-111.70 pmol P(i)/microg protein (p<0.05) in neocortical/limbic homogenates prepared from cognitively-damaged and control rat brains, respectively. Thus, PP2A activity in cognitively-damaged brains was 41% of control value. Staining results showed: (1) aluminum-loading occurs in some aged rat neurons as in some aged human neurons; (2) aluminum-loading in rat neurons is accompanied by oxidative damage, hyperphosphorylated tau, neuropil threads, and granulovacuolar degeneration; and (3) amyloid plaques and neurofibrillary tangles were absent from all rat brain sections examined. Known species difference can reasonably explain why plaques and tangles are unable to form in brains of genetically-normal rats despite developing the same pathological changes that lead to their formation in human brain. As neuronal aluminum can account for early stages of plaque and tangle formation in an animal model for AD, neuronal aluminum could also initiate plaque and tangle formation in humans with AD.  相似文献   

13.
Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) is an autosomal dominant neurodegenerative disorder caused by mutations in the gene that encodes for tau, a microtubule-binding protein. Neuropathologically the disease is characterized by extensive neuronal loss in the frontal and temporal lobes and the filamentous accumulation of hyperphosphorylated tau. The R406W missense mutation was originally described in an American and a Dutch family. Although R406W tau is hyperphosphorylated in FTDP-17 cases, R406W tau expressed in cell model systems has not shown increased phosphorylation. The purpose of this study was to establish a neuronal model system in which the phosphorylation of R406W tau is increased and thus more representative of the in vivo situation. To accomplish this goal immortalized mouse cortical cells that express low levels of endogenous tau were stably transfected with human wild type or R406W tau. In this neuronal model R406W tau was more highly phosphorylated at numerous epitopes and showed decreased microtubule binding compared with wild type tau, an effect that could be reversed by dephosphorylation. In addition the expression of R406W tau in the cortical cells resulted in increased cell death as compared with wild type tau-expressing cells when the cells were exposed to an apoptotic stressor. These results indicate that in an appropriate cellular context R406W tau is hyperphosphorylated, which leads to decreased microtubule binding. Furthermore, expression of R406W tau sensitized cells to apoptotic stress, which may contribute to the neuronal cell loss that occurs in this FTDP-17 tauopathy.  相似文献   

14.
The neuropathological hallmark shared between Alzheimer's disease (AD) and familial frontotemporal dementia (FTDP-17) are neurofibrillary tangles (NFT) which are composed of filamentous aggregates of the microtubule-associated protein tau. Their formation has been reproduced in transgenic mice, which express the FTDP-17-associated mutation P301L of tau. In these mice, tau aggregates are found in many brain areas including the hippocampus and the amygdala, both of which are characterized by NFT formation in AD. Previous studies using an amygdala-specific test battery revealed an increase in exploratory behavior and an accelerated extinction of conditioned taste aversion in these mice. Here, we assessed P301L mice in behavioral tests known to depend on an intact hippocampus. Morris water maze and Y-maze revealed intact spatial working memory but impairment in spatial reference memory at 6 and 11 months of age. In addition, a modest disinhibition of exploratory behavior at 6 months of age was confirmed in the open field and the elevated O-maze and was more pronounced during aging.  相似文献   

15.
The intraneuronal accumulation of the microtubule associated protein tau in a hyperphosphorylated state and the extracellular deposit of ?amyloid protein constitute the defining neuropathological signature of Alzheimer's disease, the most common type of dementia in ageing Homo sapiens.There is accumulating evidence suggesting that transplantation of embryonic and adult derived neuronal precursor cells (NPCs) has a major role for cell based repair strategies in models of acute and chronic injury. In order to determine whether NPCs could rescue tau related neuronal cell death NPCs were transplanted into the transgenic mouse cortex of transgenic mice expressing human P301S tau protein at 2 month of age and the effect followed 2 and 3 months after transplantation. The results demonstrated that following transplantation mouse NPCs differentiated into astrocytes and exerted a neuroprotective effect. In particular, the expression of ciliary neurotrophic factor, nerve growth factor and glial cell derived neurotrophic factor was increased near the transplanted cells. A nonsignificant increase of brain derived neurotrophic factor expression was instead found in the area of the cortex where neuronal death was rescued.  相似文献   

16.
Middle cerebral artery occlusion (MCAO) induces secondary damages in the hippocampus that is remote from primary ischemic regions. Tau hyperphosphorylation is an important risk for neurodegenerative diseases. Increased tau phosphorylation has been identified in ischemic cortex, but little is known regarding the changes in the hippocampus. We showed that unilateral transient MCAO induced accumulation of hyperphosphorylated tau and concurrent dephosphorylation of glycogen synthase kinase‐3β at Ser 9 in the ipsilateral hippocampus. These MCAO‐induced changes were not reproduced when glutamatergic inputs from the entorhinal cortex to the hippocampus were transected; however, the changes were mimicked by intrahippocampal N‐methyl‐d ‐aspartate (NMDA) administration. Inhibition of NMDA receptor (NMDAR) subunit NR2B, but not NR2A activity in the hippocampus attenuated the accumulation of hyperphosphorylated tau and spatial cognitive impairment in MCAO rats. Together, our data suggest that overactivation of NR2B‐containing NMDARs through entorhinal–hippocampal connection plays an important role in the accumulation of hyperphosphorylated tau in the hippocampus following MCAO. Glycogen synthase kinase‐3β is an important protein kinase involved in NMDARs‐mediated tau hyperphosphorylation. This study indicates that early inhibition of NR2B‐containing NMDARs may represent a potential strategy to prevent or delay the occurrence of post‐stroke dementia.

  相似文献   


17.
The perforant pathway projection from layer II of the entorhinal cortex to the hippocampal dentate gyrus is especially important for long-term memory formation, and is preferentially vulnerable to developing a degenerative tauopathy early in Alzheimer’s disease (AD) that may spread over time trans-synaptically. Despite the importance of the perforant pathway to the clinical onset and progression of AD, a therapeutic has not been identified yet that protects it from tau-mediated toxicity. Here, we used an adeno-associated viral vector-based mouse model of early-stage AD-type tauopathy to investigate effects of the mTOR inhibitor and autophagy stimulator rapamycin on the tau-driven loss of perforant pathway neurons and synapses. Focal expression of human tau carrying a P301L mutation but not eGFP as a control in layer II of the lateral entorhinal cortex triggered rapid degeneration of these neurons, loss of lateral perforant pathway synapses in the dentate gyrus outer molecular layer, and activation of neuroinflammatory microglia and astroglia in the two locations. Chronic systemic rapamycin treatment partially inhibited phosphorylation of a mechanistic target of rapamycin substrate in brain and stimulated LC3 cleavage, a marker of autophagic flux. Compared with vehicle-treated controls, rapamycin protected against the tau-induced neuronal loss, synaptotoxicity, reactive microgliosis and astrogliosis, and activation of innate neuroimmunity. It did not alter human tau mRNA or total protein levels. Finally, rapamycin inhibited trans-synaptic transfer of human tau expression to the dentate granule neuron targets for the perforant pathway, likely by preventing the synaptic spread of the AAV vector in response to pathway degeneration. These results identify systemic rapamycin as a treatment that protects the entorhinal cortex and perforant pathway projection from tau-mediated neurodegeneration, axonal and synapse loss, and neuroinflammatory reactive gliosis. The findings support the potential for slowing the progression of AD by abrogating tau-mediated neurotoxicity at its earliest neuropathological stages.  相似文献   

18.
Pinning down phosphorylated tau and tauopathies   总被引:4,自引:0,他引:4  
Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.  相似文献   

19.
Lithium is an anti-psychotic that has been shown to prevent the hyperphosphorylation of tau protein through the inhibition of glycogen-synthase kinase 3-beta (GSK3β). We recently developed a mouse model that progresses from amyloid pathology to tau pathology and neurodegeneration due to the genetic deletion of NOS2 in an APP transgenic mouse; the APPSwDI/NOS2-/- mouse. Because this mouse develops tau pathology, amyloid pathology and neuronal loss we were interested in the effect anti-tau therapy would have on amyloid pathology, learning and memory. We administered lithium in the diets of APPSwDI/NOS2-/- mice for a period of eight months, followed by water maze testing at 12 months of age, immediately prior to sacrifice. We found that lithium significantly lowered hyperphosphorylated tau levels as measured by Western blot and immunocytochemistry. However, we found no apparent neuroprotection, no effect on spatial memory deficits and an increase in histological amyloid deposition. Aβ levels measured biochemically were unaltered. We also found that lithium significantly altered the neuroinflammatory phenotype of the brain, resulting in enhanced alternative inflammatory response while concurrently lowering the classical inflammatory response. Our data suggest that lithium may be beneficial for the treatment of tauopathies but may not be beneficial for the treatment of Alzheimer's disease.  相似文献   

20.
Neurofibrillary tangles are composed of insoluble aggregates of the microtubule-associated protein tau. In Alzheimer's disease the accumulation of neurofibrillary tangles occurs in the absence of tau mutations. Here we present mice that develop pathology from non-mutant human tau, in the absence of other exogenous factors, including beta-amyloid. The pathology in these mice is Alzheimer-like, with hyperphosphorylated tau accumulating as aggregated paired helical filaments. This pathologic tau accumulates in the cell bodies and dendrites of neurons in a spatiotemporally relevant distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号