首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.  相似文献   

2.
SNARE‐dependent membrane fusion requires the disassembly of cis‐SNARE complexes (formed by SNAREs anchored to one membrane) followed by the assembly of trans‐SNARE complexes (SNAREs anchored to two apposed membranes). Although SNARE complex disassembly and assembly might be thought to be opposing reactions, the proteins promoting disassembly (Sec17p/Sec18p) and assembly (the HOPS complex) work synergistically to support fusion. We now report that trans‐SNARE complexes formed during vacuole fusion are largely associated with Sec17p. Using a reconstituted proteoliposome fusion system, we show that trans‐SNARE complex, like cis‐SNARE complex, is sensitive to Sec17p/Sec18p mediated disassembly. Strikingly, HOPS inhibits the disassembly of SNARE complexes in the trans‐, but not in the cis‐, configuration. This selective HOPS preservation of trans‐SNARE complexes requires HOPS:SNARE recognition and is lost when the apposed bilayers are dissolved in Triton X‐100; it is also observed during fusion of isolated vacuoles. HOPS thus directs the Sec17p/Sec18p chaperone system to maximize functional trans‐SNARE complex for membrane fusion, a new role of tethering factors during membrane traffic.  相似文献   

3.
We report a cell-free system that measures transport-coupled maturation of carboxypeptidase Y (CPY). Yeast spheroplasts are lysed by extrusion through polycarbonate filters. After differential centrifugation, a 125,000-g pellet is enriched for radiolabeled proCPY and is used as "donor" membranes. A 15,000-g pellet, harvested from nonradiolabeled cells and enriched for vacuoles, is used as "acceptor" membranes. When these membranes are incubated together with ATP and cytosolic extracts, approximately 50% of the radiolabeled proCPY is processed to mature CPY. Maturation was inhibited by dilution of donor and acceptor membranes during incubation, showed a 15-min lag period, and was temperature sensitive. Efficient proCPY maturation was possible when donor membranes were from a yeast strain deleted for the PEP4 gene (which encodes the principal CPY processing enzyme, proteinase A) and acceptor membranes from a PEP4 yeast strain, indicating intercompartmental transfer. Cytosol made from a yeast strain deleted for the VPS33 gene was less efficient at driving transport. Moreover, antibodies against Vps33p (a Sec1 homologue) and Vam3p (a Q-SNARE) inhibited transport >90%. Cytosolic extracts from yeast cells overexpressing Vps33p restored transport to antibody-inhibited assays. This cell-free system has allowed the demonstration of reconstituted intercompartmental transport coupled to the function of a VPS gene product.  相似文献   

4.
The accumulation of copper in organisms can lead to altered functions of various pathways and become cytotoxic through the generation of reactive oxygen species. In yeast, cytotoxic metals such as Hg+, Cd2+ and Cu2+ are transported into the lumen of the vacuole through various pumps. Copper ions are initially transported into the cell by the copper transporter Ctr1 at the plasma membrane and sequestered by chaperones and other factors to prevent cellular damage by free cations. Excess copper ions can subsequently be transported into the vacuole lumen by an unknown mechanism. Transport across membranes requires the reduction of Cu2+ to Cu+. Labile copper ions can interact with membranes to alter fluidity, lateral phase separation and fusion. Here we found that CuCl2 potently inhibited vacuole fusion by blocking SNARE pairing. This was accompanied by the inhibition of V‐ATPase H+ pumping. Deletion of the vacuolar reductase Fre6 had no effect on the inhibition of fusion by copper. This suggests that Cu2+ is responsible for the inhibition of vacuole fusion and V‐ATPase function. This notion is supported by the differential effects of chelators. The Cu2+‐specific chelator triethylenetetramine rescued fusion, whereas the Cu+‐specific chelator bathocuproine disulfonate had no effect on the inhibited fusion.  相似文献   

5.
The gene product of the Saccharomyces cerevisiae open reading frame YDR229w (named IVY1 for: Interacting with Vps33p and Ypt7p) was found to interact with both the GTPase Ypt7p and the Sec1-related Vps33 protein. While deletion of IVY1 does not lead to any recognized change in phenotype, overexpression of Ivy1p leads to fragmentation of the vacuole, missorting of the vacuolar enzyme carboxypeptidase Y (CPY) to the exterior of the cell, and an accumulation of multivesicular bodies inside the cell. All effects caused by the overexpression of Ivy1p can be reset by simultaneously raising the amount of Vps33p. This suppression activity of Vps33p suggests that Ivy1p and Vps33p at least partially counteract the action of each other in the cell. The intracellular level of Ivy1p increases in cells approaching stationary growth phase at which part of the protein is located at the rim of the vacuole. In addition to its specific interactions with members of two regulatory protein families, Ivy1p in vitro shows a marked propensity for binding phospholipids with high affinity.  相似文献   

6.
The yeast cytochrome bc1 complex, a component of the mitochondrial respiratory chain, is composed of ten distinct protein subunits. In the assembly of the bc1 complex, some ancillary proteins, such as the chaperone Bcs1p, are actively involved. The deletion of the nuclear gene encoding this chaperone caused the arrest of the bc1 assembly and the formation of a functionally inactive bc1 core structure of about 500-kDa. This immature bc1 core structure could represent, on the one hand, a true assembly intermediate or, on the other hand, a degradation product and/or an incorrect product of assembly. The experiments here reported show that the gradual expression of Bcs1p in the yeast strain lacking this protein was progressively able to rescue the bc1 core structure leading to the formation of the functional homodimeric bc1 complex. Following Bcs1p expression, the mature bc1 complex was also progressively converted into two supercomplexes with the cytochrome c oxidase complex. The capability of restoring the bc1 complex and the supercomplexes was also possessed by the mutated yeast R81C Bcsp1. Notably, in the human ortholog BCS1L, the corresponding point mutation (R45C) was instead the cause of a severe bc1 complex deficiency. Differently from the yeast R81C Bcs1p, two other mutated Bcs1p's (K192P and F401I) were unable to recover the bc1 core structure in yeast. This study identifies for the first time a productive assembly intermediate of the yeast bc1 complex and gives new insights into the molecular mechanisms involved in the last steps of bc1 assembly.  相似文献   

7.
Proteins of the Sec1 family have been shown to interact with target-membrane t-SNAREs that are homologous to the neuronal protein syntaxin. We demonstrate that yeast Sec1p coprecipitates not only the syntaxin homologue Ssop, but also the other two exocytic SNAREs (Sec9p and Sncp) in amounts and in proportions characteristic of SNARE complexes in yeast lysates. The interaction between Sec1p and Ssop is limited by the abundance of SNARE complexes present in sec mutants that are defective in either SNARE complex assembly or disassembly. Furthermore, the localization of green fluorescent protein (GFP)-tagged Sec1p coincides with sites of vesicle docking and fusion where SNARE complexes are believed to assemble and function. The proposal that SNARE complexes act as receptors for Sec1p is supported by the mislocalization of GFP-Sec1p in a mutant defective for SNARE complex assembly and by the robust localization of GFP-Sec1p in a mutant that fails to disassemble SNARE complexes. The results presented here place yeast Sec1p at the core of the exocytic fusion machinery, bound to SNARE complexes and localized to sites of secretion.  相似文献   

8.
9.
Fusion of transport vesicles with their target organelles involves specific membrane proteins, SNAREs, which form tight complexes bridging the membranes to be fused. Evidence from yeast and mammals indicates that Sec1 family proteins act as regulators of membrane fusion by binding to the target membrane SNAREs. In experiments with purified proteins, we now made the observation that the ER to Golgi core SNARE fusion complex could be assembled on syntaxin Sed5p tightly bound to the Sec1-related Sly1p. Sly1p also bound to preassembled SNARE complexes in vitro and was found to be part of a vesicular/target membrane SNARE complex immunoprecipitated from yeast cell lysates. This is in marked contrast to the exocytic SNARE assembly in neuronal cells where high affinity binding of N-Sec1/Munc-18 to syntaxin 1A precluded core SNARE fusion complex formation. We also found that the kinetics of SNARE complex formation in vitro with either Sly1p-bound or free Sed5p was not significantly different. Importantly, several presumably nonphysiological SNARE complexes easily generated with Sed5p did not form when the syntaxin was first bound to Sly1p. This indicates for the first time that a Sec1 family member contributes to the specificity of SNARE complex assembly.  相似文献   

10.
11.
The localization of ASH1 mRNA to the distal tip of budding yeast cells is essential for the proper regulation of mating type switching in Saccharomyces cerevisiae. A localization element that is predominantly in the 3'-untranslated region (UTR) can direct this mRNA to the bud. Using this element in the three-hybrid in vivo RNA-binding assay, we identified a protein, Loc1p, that binds in vitro directly to the wild-type ASH1 3'-UTR RNA, but not to a mutant RNA incapable of localizing to the bud nor to several other mRNAs. LOC1 codes for a novel protein that recognizes double-stranded RNA structures and is required for efficient localization of ASH1 mRNA. Accordingly, Ash1p gets symmetrically distributed between daughter and mother cells in a loc1 strain. Surprisingly, Loc1p was found to be strictly nuclear, unlike other known RNA-binding proteins involved in mRNA localization which shuttle between the nucleus and the cytoplasm. We propose that efficient cytoplasmic ASH1 mRNA localization requires a previous interaction with specific nuclear factors.  相似文献   

12.
Chemical modifications of transfer RNA (tRNA) molecules are evolutionarily well conserved and critical for translation and tRNA structure. Little is known how these nucleoside modifications respond to physiological stress. Using mass spectrometry and complementary methods, we defined tRNA modification levels in six yeast species in response to elevated temperatures. We show that 2-thiolation of uridine at position 34 (s2U34) is impaired at temperatures exceeding 30°C in the commonly used Saccharomyces cerevisiae laboratory strains S288C and W303, and in Saccharomyces bayanus. Upon stress relief, thiolation levels recover and we find no evidence that modified tRNA or s2U34 nucleosides are actively removed. Our results suggest that loss of 2-thiolation follows accumulation of newly synthesized tRNA that lack s2U34 modification due to temperature sensitivity of the URM1 pathway in S. cerevisiae and S. bayanus. Furthermore, our analysis of the tRNA modification pattern in selected yeast species revealed two alternative phenotypes. Most strains moderately increase their tRNA modification levels in response to heat, possibly constituting a common adaptation to high temperatures. However, an overall reduction of nucleoside modifications was observed exclusively in S288C. This surprising finding emphasizes the importance of studies that utilize the power of evolutionary biology, and highlights the need for future systematic studies on tRNA modifications in additional model organisms.  相似文献   

13.
We have established an in vitro system for the formation of the endoplasmic reticulum (ER). Starting from small membrane vesicles prepared from Xenopus laevis eggs, an elaborate network of membrane tubules is formed in the presence of cytosol. In the absence of cytosol, the vesicles only fuse to form large spheres. Network formation requires a ubiquitous cytosolic protein and nucleoside triphosphates, is sensitive to N-ethylmaleimide and high cytosolic Ca(2+) concentrations, and proceeds via an intermediate stage in which vesicles appear to be clustered. Microtubules are not required for membrane tubule and network formation. Formation of the ER network shares significant similarities with formation of the nuclear envelope. Our results suggest that the ER network forms in a process in which cytosolic factors modify and regulate a basic reaction of membrane vesicle fusion.  相似文献   

14.
Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5‐bisphosphate [PI(4,5)P2 ], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P2 , and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1. Previously we found that pah1 Δ vacuoles were fragmented, blocked in SNARE priming and showed arrested endosomal maturation. In other pathways the effects of deleting PAH1 can be compensated for by additionally deleting DGK1 ; however, deleting both genes did not rescue the pah1 Δ vacuolar defects. Deleting DGK1 alone caused a marked increase in vacuole fusion that was attributed to elevated DAG levels. This was accompanied by a gain in resistance to the inhibitory effects of PA as well as inhibitors of Ypt7 activity. Together these data show that Dgk1 function can act as a negative regulator of vacuole fusion through the production of PA at the cost of depleting DAG and reducing Ypt7 activity.  相似文献   

15.
The regulation of membrane traffic involves the Rab family of Ras-related GTPases, of which there are a total of 11 members in the yeast Saccharomyces cerevisiae. Previous work has identified PRA1 as a dual prenylated Rab GTPase and VAMP2 interacting protein [Martinic et al. (1999) J. Biol. Chem. 272, 26991-26998]. In this study we demonstrate that the yeast counterpart of PRA1 interacts with Rab proteins and with Yip1p, a membrane protein of unknown function that has been reported to interact specifically with the Rab proteins Ypt1p and Ypt31p. Yeast Pra1p/Yip3p is a factor capable of biochemical interaction with a panel of different Rab proteins and does not show in vitro specificity for any particular Rab. The interactions between Pra1p/Yip3p and Rab proteins are dependent on the presence of the Rab protein C-terminal cysteines and require C-terminal prenylation.  相似文献   

16.
We have identified a novel centromere-associated gene product from Saccharomyces cerevisiae that plays a role in spindle assembly and stability. Strains with a deletion of SLK19 (synthetic lethal Kar3p gene) exhibit abnormally short mitotic spindles, increased numbers of astral microtubules, and require the presence of the kinesin motor Kar3p for viability. When cells are deprived of both Slk19p and Kar3p, rapid spindle breakdown and mitotic arrest is observed. A functional fusion of Slk19p to green fluorescent protein (GFP) localizes to kinetochores and, during anaphase, to the spindle midzone, whereas Kar3p-GFP was found at the nuclear side of the spindle pole body. Thus, these proteins seem to play overlapping roles in stabilizing spindle structure while acting from opposite ends of the microtubules.  相似文献   

17.
High affinity iron uptake in yeast is carried out by a multicomponent system formed by the ferroxidase Fet3p and the iron permease Ftr1p. The currently accepted model predicts that Fet3p and Ftr1p are functionally associated, however, a structural interaction between these two proteins has not been proven yet. The methylotrophic yeast Pichia pastoris has been used to perform cross-linking studies aimed to demonstrate the existence of a Fet3p-Ftr1p complex. Cross-linking of membrane suspensions with the membrane-impermeable reagents DTSSP and BS(3) has evidenced the presence of a high molecular weight band with Fet3p oxidase activity. This band has been purified and subjected to N-terminal sequence analysis. Two sequences were found in the cross-linked species, one of which could be assigned to Fet3p and the other to Ftr1p. This is the first experimental demonstration that Fet3p and Ftr1p are physically associated.  相似文献   

18.
Autophagy is essential for nutrient recycling and intracellular housekeeping in plants by removing unwanted cytoplasmic constituents, aggregated polypeptides, and damaged organelles. The autophagy-related (ATG)1-ATG13 kinase complex is an upstream regulator that integrates metabolic and environmental cues into a coherent autophagic response directed by other ATG components. Our recent studies with Arabidopsis thaliana revealed that ATG11, an accessory protein of the ATG1-ATG13 complex, acts as a scaffold that connects the complex to autophagic membranes. We showed that ATG11 encourages proper behavior of the ATG1-ATG13 complex and faithful delivery of autophagic vesicles to the vacuole, likely through its interaction with ATG8. In addition, we demonstrated that Arabidopsis mitochondria are degraded during senescence via an autophagic route that requires ATG11 and other ATG components. Together, ATG11 appears to be an important modulator of the ATG1-ATG13 complex and a multifunctional scaffold required for bulk autophagy and the selective clearance of mitochondria.  相似文献   

19.
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.  相似文献   

20.
Summary The vacuole is one of the most prominent compartments in yeast cells. The wild-type yeast cells have a large vacuolar compartment which occupies approximately a quarter of the cell volume, while thevam4 mutant cells exhibit highly fragmented vacuolar morphology. We isolated theVAM4 gene and found that theVAM4 is identical to theYPT7 which encodes a member of small GTP-binding protein superfamily. We introduced mutations to theVAM4/YPT7 which alter nucleotide binding characteristics of the gene product specifically, and their activities for the vacuolar morphogenesis were examined by transforming the mutant genes into yeast cells. The Thr22Asn mutation, which was expected to fix the protein in the GDP-bound state, resulted in loss of function in the vacuolar morphogenesis. Subcellular fractionation analysis indicated that the mutant molecule did not associate with intracellular membranes efficiently. In contrast, Vam4/Ypt7p with the Gln68Leu mutation, which was expected to be the GTP-bound form, complemented the fragmented vacuolar morphology of vam4 mutant cells. Vam4/Ypt7p with the Gln68Leu mutation also complemented the defects in the biogenesis of vacuolar alkaline phosphatase whose maturation requires the proper function of Vam4/Ypt7p. Overexpression of the mutant proteins in wild-type cells did not develop dominant-negative effects on the vacuolar assembly. These results indicated that the GTP-bound form of Vam4/Ypt7p promotes the biogenesis and morphogenesis of the yeast vacuolar compartment.Abbreviations ALP alkaline phosphatase - CDE centromeric - DNA element - CPY carboxypeptidase Y - GST glutathione S-transferase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号