首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of nutrient enrichment on the release of dissolved organic carbon and nitrogen (DOC and DON, respectively) from the coral Montipora digitata were investigated in the laboratory. Nitrate (NO3 ) and phosphate (PO4 3−) were supplied to the aquarium to get the final concentrations of 10 and 0.5 μmol l−1, respectively, and the corals were incubated for 8 days. The release rate of DON per unit coral surface area significantly decreased after the nutrient enrichment, while the release rate of DOC was constant. Because the chlorophyll a (chl a) content of zooxanthellae per unit surface area increased, the release rate of DOC significantly decreased when normalized to unit chl a. These results suggested that the incorporation of NO3 and PO4 3− stimulated the synthesis of new cellular components in the coral colonies and consequently, reduced extracellular release of DOC and DON. Actually, significant increase in N and P contents relative to C content was observed in the coral’s tissue after the nutrient enrichment. The present study has concluded that inorganic nutrient enrichment not only affects coral-algal metabolism inside the colony but also affects a microbial community around the coral because the organic matter released from corals functions as energy carrier in the coral reef ecosystem.  相似文献   

2.
The zooxanthellate octocoral Sinularia flexibilis is a producer of potential pharmaceutically important metabolites such as antimicrobial and cytotoxic substances. Controlled rearing of the coral, as an alternative for commercial exploitation of these compounds, requires the study of species-specific growth requirements. In this study, phototrophic vs. heterotrophic daily energy demands of S. flexibilis was investigated through light and Artemia feeding trials in the laboratory. Rate of photosynthetic oxygen by zooxanthellae in light (≈200 μmol quanta m−2 s−1) was measured for the coral colonies with and without feeding on Artemia nauplii. Respiratory oxygen was measured in the dark, again with and without Artemia nauplii. Photosynthesis–irradiance curve at light intensities of 0, 50, 100, 200, and 400 μmol quanta m−2 s−1 showed an increase in photosynthetic oxygen production up to a light intensity between 100 and 200 μmol quanta m−2 s−1. The photosynthesis to respiration ratio (P/R > 1) confirmed phototrophy of S. flexibilis. Both fed and non-fed colonies in the light showed high carbon contribution by zooxanthellae to animal (host) respiration values of 111–127%. Carbon energy equivalents allocated to the coral growth averaged 6–12% of total photosynthesis energy (mg C g 1 buoyant weight day 1) and about 0.02% of the total daily radiant energy. “Light utilization efficiency (ε)” estimated an average ε value of 75% 12 h 1 for coral practical energetics. This study shows that besides a fundamental role of phototrophy vs. heterotrophy in daily energy budget of S. flexibilis, an efficient fraction of irradiance is converted to useable energy.  相似文献   

3.
The effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii were determined. Of the three temperatures tested, 10, 25 and 35°C, the maximal geosmin concentration and geosmin productivity were yielded at 10°C, while the highest chl a production was observed at 25°C. In the studies on light intensity, the maximal geosmin concentration and geosmin productivity were observed at 10 μmol m−2 s−1, while the highest chl a production was at 20 μmol m−2 s−1. It was suggested that more geosmin was synthesized with lower chl a demand. Meanwhile, the relative amounts of extra- and intracellular geosmin were investigated. Under optimum growth conditions (20 μmol m−2 s−1, 25°C; BG-11 medium), the amounts of extracellular geosmin increased as the growth progressed and reached the maximum in the stationary phase, while the intracellular geosmin reached its maximum value in the late exponential phase, and then began to decline. However, under the low temperature (10°C) or light (10 μmol m−2 s−1) conditions, more intracellular geosmin was synthesized and mainly accumulated in the cells. The proportions of extracellular geosmin were high, to 33.33 and 32.27%, respectively, during the stationary phase at 35°C and 20 μmol m−2 s−1. It was indicated that low temperature or light could stimulate geosmin production and favor the accumulation of geosmin in cells, while more intracellular geosmin may be released into the medium at higher temperatures or optimum light intensity.  相似文献   

4.
Data on sexual reproduction of scleractinian coral species living in temperate zones, particularly in the Mediterranean Sea, are quite scarce. This paper describes sexual reproduction of the colonial coral Cladocora caespitosa from Veliko jezero (Mljet Island) in the Adriatic Sea. Spawned orange eggs and white sperm bundles were observed on the coral bank of C. caespitosa two nights before the full moon (20 June 2005) coinciding with increasing water temperature and correlated with the lunar cycle. Spawning was observed during five nights, involving about 30% of the colonies from the coral bank. Different colonies on the bank released only one type of gamete during the reproductive period. The diameter of the sperm bundles ranged from 100 to 200 μm (average 163 μm; SD = 47.08), while the female gametes diameter ranged from 300 to 500 μm (average 416 μm; SD = 73.12).  相似文献   

5.
Frequent occurrences of coral bleaching and the ensuing damage to coral reefs have generated interest in documenting stress responses that precede bleaching. The objective of this study was to assess and compare physiological changes in healthy, semi-bleached and totally bleached colonies of two coral species, Porites lutea and Acropora formosa, during a natural bleaching event in the Lakshadweep Archipelago in the Arabian Sea to determine the traits that will be useful in the diagnosis of coral health. In April 2002, three “health conditions” were observed as “appearing healthy,” “semi-bleached” and “bleached” specimens for two dominant and co-occurring coral species in these islands. Changes in the pigment composition, zooxanthellae density (ZD), mitotic index (MI) of zooxanthellae, RNA/DNA ratios and protein profile in the two coral species showing different levels of bleaching in the field were compared to address the hypothesis of no difference in health condition between species and bleaching status. The loss in chlorophyll (chl) a, chl c and ZD in the transitional stage of semi-bleaching in the branched coral A. formosa was 80, 75 and 80%, respectively. The losses were much less in the massive coral P. lutea, being 20, 50 and 25%, respectively. The decrease in zooxanthellar density and chl a was accompanied by an increased MI of zooxanthellae and RNA/DNA ratios in both the species. There was an increase in accumulation of lipofuscin granules in partially bleached P. lutea tissue, which is an indication of cellular senescence. Multivariate statistical analyses showed that colonies of P. lutea ranked in different health conditions differed significantly in chl a, chl c, ZD, RNA/DNA ratios, and protein concentrations, whereas in A. formosa chl a, chl c, chl a/c, phaeopigments and MI contributed to the variance between health conditions.  相似文献   

6.
Summary The Mediterranean coralCladocora caespitosa often occurs in large beds, i.e. populations of hemispherical clonies with stock densities varying between 1.9 and 4 coloneis ·m−2. Laboratory measurements of volume, skeleton weight, surface and number of corallites per colony, coupled with mean annual growth rates evaluated through sclerochronology, allowed for the estimation of biomass, skeleton bulk density, calcimass (carbonate standing stock) and secondary production (both organic and inorganic) of twoC. caespitosa beds at 4 and 9 m depth. The mean colony biomass varied between 0.73 and 0.99 kg dw ·m−2, corresponding to a calcimass between 2 and 5 kg CaCO3·m−2. Organic secondary production was 215.5–305.4 g dw of polyps ·m−2·y−1, while the potential (mineral) production was 1.1–1.7 kg CaCO3·m−2·y−1, for the year 1996–1997. These values show thatC. caespitosa is one of the major carbonate producers within the Mediterranean and one of the major epibenthic species originating stable carbonate frameworks both in recent and past times.  相似文献   

7.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

8.
Bleaching is generally expected to produce detrimental impacts on coral reproduction. This study compared the fecundity of bleached and unbleached colonies of the Hawaiian coral Montipora capitata. It was hypothesized that bleaching would have no effect on reproduction because previous studies have shown that Montipora capitata can increase heterotrophic feeding following bleaching. Reproductive parameters, total reproductive output (bundles released ml−1 coral colony), number of eggs bundle−1, and egg size, measured in the summer of 2005 did not differ between colonies that bleached or did not bleach during 2004. These data were collected following a single bleaching event and cannot be used to predict the outcome should bleaching episodes become more frequent or severe.  相似文献   

9.
Food limitation was tested in the laboratory by individual growth and reproduction of two cladoceran species, Ceriodaphnia richardi and Daphnia gessneri, from the shallow tropical Brazilian Lake Monte Alegre. The cladocerans were fed cultivated green alga Scenedesmus spinosus in concentrations of 0.20, 0.10, 0.05, and 0.025 mg C l−1. Higher biomass and growth rates occurred in the two highest-food concentrations; the two lowest ones negatively affected clutch size and first reproduction. The threshold food concentration is lower than 0.025 mg C l−1 and the incipient limiting level is a value between 0.10 and 0.20 mg C l−1. The largest species, D. gessneri, was more sensitive to low food concentrations. The effects of low and high temperatures (19 and 27°C) were evaluated by life table experiments with three cladocerans from the lake—Daphnia ambigua, D. gessneri, and Moina micrura—with no food limitation (1 mg C l−1 of S. spinosus). Higher population growth rates for the three species were found at 27°C; better performance in most life table parameters was observed for the former two species at the highest temperature, D. gessneri being the most sensitive to the lowest temperature. There are indications that temperature is an important abiotic factor that constrains populations of cladocerans for a short period in winter in the lake, when temperature decreases to 18–19°C. However, its influence cannot be separated from a biotic factor such as food, whose effect is stronger in the cool season, when concentrations are lower and contribution of inedible algae is relatively higher.  相似文献   

10.
We examined the morphology and pigment composition of zooxanthellae in corals subjected to normal temperature (27°C) and thermal stress (32°C). We observed several normal and abnormal morphological types of zooxanthellar cells. Normal cells were intact and their chloroplasts were unbroken (healthy); abnormal cells were shrunken and had partially degraded or broken chloroplasts, or they were bleached and without chloroplasts. At 27°C, most healthy zooxanthellar cells were retained in the coral tissue, whereas shrunken zooxanthellae were expelled. Under thermal stress, the abundance of healthy zooxanthellae declined and the proportion of shrunken/abnormal cells increased in coral tissues. The rate of algal cell expulsion was reduced under thermal stress. Within the shrunken cells, we detected the presence of a chl‐like pigment that is not ordinarily found in healthy zooxanthellae. Analysis of the absorption spectrum, absorption maxima, and retention time (by HPLC) indicated that this pigment was 132, 173‐cyclopheophorbide a enol (cPPB‐aE), which is frequently found in marine and lacustrine sediments, and in protozoans that graze on phytoplankton. The production of cPPB‐aE in shrunken zooxanthellae suggests that the chls have been degraded to cPPB‐aE, a compound that is not fluorescent. The lack of a fluorescence function precludes the formation of reactive oxygen species. We therefore consider the formation of cPPB‐aE in shrunken zooxanthellae to be a mechanism for avoiding oxidative stress.  相似文献   

11.
The influence of light intensity on the fatty acid profiles of the scyphozoan jellyfish Cassiopea sp. and its endosymbiotic zooxanthellae was investigated using a manipulative experiment. The aims of the study were to: 1) identify changes related to light intensity in the fatty acid profiles of the host jellyfish and zooxanthellae; 2) determine if jellyfish exposed to low light intensities compensated for reduced rates of photosynthesis by increasing heterotrophic feeding; and 3) determine if concentrations of zooxanthellae and chlorophyll a (chl a) increased in jellyfish exposed to reduced light intensity. Jellyfish were collected from an artificial urban tidal lake in southeast Queensland, Australia. Two were frozen for immediate analysis and 15 were randomly allocated to each of nine mesocosms. Three replicate mesocosms were then randomly allocated to each of three light treatments: 100%, 25%, and 10% PAR. The mesocosms were supplied with unfiltered, continuous flowing seawater and jellyfish fed on natural zooplankton, supplemented with frozen Mysis shrimp. Three jellyfish were sampled, with replacement, from each mesocosm 3, 15, 22, 39 and 69 days after the experiment commenced. Fatty acids as methyl esters in the host tissue (mesoglea) and zooxanthellae were determined separately using gas chromatography and verified by mass spectrometry. The fatty acid profiles of the host jellyfish and zooxanthellae remained unchanged in the 100% PAR treatment throughout the experiment but varied in the lower light treatments. A decrease in light intensity caused a reduction in the concentrations of some polyunsaturated fatty acids such as 18:1ω9 and 18:4ω3 in the zooxanthellae, the latter being abundant in dinoflagellates. Concomitantly, the concentrations of these fatty acids increased in the host tissues, suggesting a possible transfer of zooxanthellate fatty acids to the jellyfish. Jellyfish in the 10% PAR treatment shrank during the experiment and their fatty acid profiles did not reflect any shift towards increased heterotrophy. On days 22 and 69 concentrations of chl a, zooxanthellae and [chl a] zooxanthella− 1 were determined. [chl a] and [chl a] zooxanthella− 1, initially increased in the lower light treatments but decreased by the end of the experiment indicating that jellyfish may adapt to reduced light intensity in the short-term but that long-term exposure to reduced light results in compromised performance.  相似文献   

12.
The abundance and composition of phytoplankton were investigated at six stations along a transect from the Barguzin River inflow to the central basin of Lake Baikal in August 2002 to clarify the effect of the river inflow on the phytoplankton community in the lake. The water temperature in the epilimnion was high near the shore at Station 1 (17.3°C), probably due to the higher temperature of the river water, and gradually decreased offshore at Station 6 (14.5°C). Thermal stratification developed at Stations 2–6, and a thermocline was observed at a 17–22-m depth at Stations 2–4 and an 8–12-m depth at Stations 5 and 6. The concentrations of nitrogen and phosphorus nutrients in the epilimnion at all stations were <1.0 μmol N l−1 and <0.16 μmol P l−1, respectively. Relatively high concentrations of nutrients (0.56–7.38 μmol N l−1 and 0.03–0.28 μmol P l−1) were detected in the deeper parts of the euphotic zone. Silicate was not exhausted at all stations (>20 μmol Si l−1). The chlorophyll a (chl. a) concentration was high (>10 μg l−1) near the shore at Station 1 and low (<3 μg l−1) at five other stations. The <2 μm fraction of chl. a in Stations 2–6 ranged between 0.80 and 1.85 μg l−1, and its contribution to total chl. a was high (>60%). In this fraction, picocyanobacteria were abundant at all stations and ranged between 5 × 104 and 5 × 105 cells ml−1. In contrast, chl. a in the >2 μm fraction varied significantly (0.14–11.17 μg l−1), and the highest value was observed at Station 1. In this fraction, the dominant phytoplankton was Aulacoseira and centric diatoms at Station 1 and Cryptomonas, Ankistrodesmus, Asterionella, and Nitzschia at Stations 2–6. The present study demonstrated the dominance of picophytoplankton in the pelagic zone, while higher abundance of phytoplankton dominated by diatoms was observed in the shallower littoral zone. These larger phytoplankters in the littoral zone probably depend on nutrients from the Barguzin River.  相似文献   

13.
The reproductive phenology of Chondrus ocellatus and the effects of temperature and light on its growth were examined in Cheongsapo near Busan, Korea, from September 1994 to August 1995. The vegetative plants dominated over the year, with a peak occurrence in January. Gameto- and tetrasporophytes were most abundant in November and August. All vegetative and reproductive plants had a peak both in length and weight in October, when seawater temperature was highest (24°C). In laboratory culture, the maximum relative growth rate (RGR) of 2.94% day−1 was obtained at 20°C and 100 μmol photons m−2 s−1, whereas the lowest value was recorded at 25°C and 100 μmol photons m−2 s−1 in a 12: 12 h LD photoperiod regime. Among the three photoperiod regimes (8:16 h, 12:12 h, 16:8 h LD) tested, there was evidence of a higher RGR in the 12:12 h LD cycle. This result suggests that the growth and reproduction of C. ocellatus are correlated with the seawater temperature based on laboratory culture and field observations.  相似文献   

14.
To study the effect of water flow on coral growth, four series of ten coral nubbins of Galaxea fascicularis were exposed to four different flow regimes (0, 10, 20, and 25 cm s−1, bidirectional flow) for 42 weeks. Buoyant weight, surface area, and polyp number were measured at regular intervals. Net photosynthesis and dark respiration were measured at the corresponding flow speeds, and daily amount of photosynthetic carbon left for coral growth was calculated. Finally, skeletal density and CN content, chlorophyll concentration and dry weight of coral tissue were determined for each coral. Specific growth rate (in day−1) decreased with time in each flow treatment. Absence of flow resulted in significantly lower growth rates. Average specific growth rate calculated over the entire experiment was not significantly different between 10 and 20 cm s−1, while it was significantly higher at 25 cm s−1. From 10 to 25 cm s−1, average net photosynthetic rate decreased and average dark respiration rate did not change significantly. Scope for growth based on phototrophic carbon decreased with increasing flow. Growth was not positively correlated with either photosynthesis or respiration, or scope for growth. It is suggested that higher flow rates reduce the chance of disturbance of coral growth by competing algae or cyanobacteria, allowing corals to grow more readily with the maximum specific growth rate possible under the given environmental conditions. Notably, other effects of increased flow, such as increased respiratory rates and increased (in)organic nutrient uptake, might have been equally responsible for the increased growth of the corals in 25 cm s−1.  相似文献   

15.
Exogenous food can increase protein levels of coral host tissue, zooxanthellae densities, chlorophyll (chl) concentrations and rates of photosynthesis and is thought to play an important role in the resilience of bleached corals. There is however no information about the effect of heterotrophy on the bleaching susceptibility of corals under elevated temperature conditions. This study investigates potential interactions between food availability, basal metabolic functions (photosynthesis and respiration), energy status (lipid concentrations), total protein concentrations and the bleaching susceptibility (loss of chl and/or zooxanthellae) of the scleractinian corals Stylophora pistillata (Esper) and Galaxea fascicularis (Linnaeus) in response to elevated temperature (daily temperature rises of 3-4 °C) over 15 days. Feeding experiments were carried out in which the corals were either fed daily with zooplankton or starved. Compared to fed corals, starvation of both species resulted in a significant decrease in daily photosynthetic oxygen evolution over time. Gross (Pg) and net (Pn) photosynthetic production of starved corals of both species between 10:00-11:00 hrs had declined by ~50% at day 15 while there were no marked changes in Pg and Pn of fed corals. After 15 days, starved S. pistillata contained significantly lower zooxanthellae densities, lipid and protein concentrations than fed corals. Starved G. fascicularis also displayed a decrease in zooxantllae densities which was accompanied by a significant decline in algal chl concentrations. Contrary to S. pistillata, feeding treatment had no effect on the lipid concentrations of G. fascicularis. Total protein concentrations however were significantly lower in straved than in fed G. fascicularis. Furthermore, starvation resulted in a significant decrease in respiration of S. pistillata during the last four days of the experiment while treatment had no effect on the respiration rates of G. fascicularis. Overall the oxygen consumption of S. pistillata of both treatments was about 39-67% higher than the respiration of G. fascicularis indicating that low metabolic rates may have allowed starved G. fascicularis to conserve energy reserves over the course of the experiment. The combined results reveal a strong positive relationship between food availability, sustained photosynthetic activity and reduced loss in pigmentation of both species under elevated temperature conditions.  相似文献   

16.
Dimethylsulfoniopropionate (DMSP) is an important component of the global sulfur cycle and may be involved, via its cleavage product dimethylsulfide, in climate regulation. Although it is common in many algae, reports of DMSP in animals, particularly tropical invertebrates, are limited. This study examined the distribution of DMSP in a diverse group of coral reef invertebrates. DMSP was present in all 22 species of cnidarians and ranged from 9 to 723 μmol g−1 of dry mass (DM) with a mean (± 1SD) of 110 ± 180 μmol g−1 DM. It was not detected in a flatworm and an ascidian or in two of five sponges. Concentrations in sponges ranged from undetectable to 16 μmol g−1 DM with a mean of 4 ± 7 μmol g−1 DM. Within the cnidarians, DMSP concentrations did not differ among orders. Among cnidarian species, DMSP concentrations were correlated with symbiotic zooxanthellae densities. Within cnidarian species, DMSP concentrations of individuals were positively correlated with zooxanthellae densities in three of the four species examined. We speculate that DMSP is dietarily derived in sponges and derived from zooxanthellae in the cnidarians. The functions of DMSP in coral reef invertebrates are not known.  相似文献   

17.
The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.  相似文献   

18.
The allocation of energy to growth and reproduction, in relation to temperature and food availability, was investigated in laboratory experiments with the mosquitofish,Gambusia affinis. At constant temperature of 20, 25 and 30°C and ad libitum feeding, specific growth rates increased with increasing temperature at 1.7, 3.1 and 3.4% dry mass day−1, respectively. Growth rates in a cycling temperature regime (20–30°C, ) were faster than in a 25°C constant temperature. As temperature increased from 20 to 30°C, mean age at first reproduction decreased from 191 to 56 days and brood size and mass of offspring increased significantly. Interbrood interval was also temperature dependent; estimates at 25 and 30°C for females >1000 mg were 22.6 and 18.6 days, respectively. Interbrood interval could not be calculated at 20°C. Although fitness was highest at 30°C, females at 25°C invested a greater proportion of surplus energy (growth and reproduction) to reproduction (38%) than at 20 (17%) or 30°C (36%) during the 32-week study. Fish at cooler temperatures began reproduction at a smaller size. Where rations were controlled at low, medium, and ad libitum levels, somatic and gonadal growth increased with increasing temperatures and food availability. The proportion of energy invested in reproduction was highest at 25°C for each comparable ration level. Calculated energy budgets indicated that over the 10-week study, 17–22% of the food energy was invested in growth, 0–7% in reproduction, and 75–83% in respiration and excretory losses, depending on feeding and temperature conditions.  相似文献   

19.
Volder  Astrid  Bliss  Lawrence C.  Lambers  Hans 《Plant and Soil》2000,227(1-2):139-148
Polar-desert plants experience low average air temperatures during their short growing season (4–8 °C mean July temperature). In addition, low availability of inorganic nitrogen in the soil may also limit plant growth. Our goals were to elucidate which N sources can be acquired by polar-desert plants, and how growth and N-uptake are affected by low growth temperatures. We compared rates of N-uptake and increases in mass and leaf area of two polar-desert species (Cerastium alpinum L. and Saxifraga caespitosa L.) over a period of 3 weeks when grown at two temperatures (6 °C vs. 15 °C) and supplied with either glycine, NH4 + or NO3 . At 15 °C, plants at least doubled their leaf area, whereas there was no change in leaf area at 6 °C. Measured mean N-uptake rates varied between 0.5 nmol g−1 root DM s−1 on glycine at 15 °C and 7.5 nmol g−1 root DM s−1 on NH4 + at 15 °C. Uptake rates based upon increases in mass and tissue N concentrations showed that plants had a lower N-uptake rate at 6 °C, regardless of N source or species. We conclude that these polar-desert plants can use all three N sources to increase their leaf area and support flowering when grown at 15 °C. Based upon short-term (8 h) uptake experiments, we also conclude that the short-term capacity to take up inorganic or organic N is not reduced by low temperature (6 °C). However, net N-uptake integrated over a three-week period is severely reduced at 6 °C. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.

We analysed the patterns of genetic variability of eastern Mediterranean populations of the scleractinian coral Cladocora caespitosa, from the Aegean and Levantine seas, using 19 polymorphic microsatellite loci, 11 of which were newly characterized. The observed genetic pattern reflects a scenario of isolation by environment: FST comparisons showed a higher degree of genetic differentiation between the two Cypriot populations that are separated by only 11 km than between these two Levantine populations and the Aegean population in Greece, which are separated by 1300 km. We hypothesize that local-scale oceanographic factors influenced the dispersal of planulae between the geographically close populations, playing a crucial role in the genetic structure of this coastal coral. Yet, despite being characterized as a species with limited dispersal and high self-recruitment, large-scale migration does eventually occur as first-generation migrants were identified between the most distant populations. In line with previous findings of reproductive plasticity in C. caespitosa, we also found localized differences in reproduction mode (sexual vs. asexual) within a geographically limited context. Several individuals were identified as clones, indicating the predominance of asexual reproduction in one of the Cypriot populations. We interpret this predominance either as a direct response to or as an indirect consequence of perturbations suffered by this C. caespitosa population. These perturbations are caused by unfavourable environmental conditions that threatened local survival, in particular water temperature changes and windstorm swells. Asexual reproduction may be a mechanism used by C. caespitosa to counteract mortality events and recolonize devastated areas, and likely accounts for the occasional high levels of clonality and low levels of genetic diversity. Local adaptations such as these should therefore be considered in conservation and management strategies to maintain and preserve the gene pool of this endangered species.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号