首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolytic specificity of the neutral Zn-dependent proteinase from Thermoactinomyces sacchari was determined by analysis of the peptides obtained after incubation with the oxidized insulin B chain as a substrate. The enzyme is an endopeptidase with broad specificity. In total, 12 peptide bonds in the B chain of insulin were hydrolyzed. The major requirement is that a hydrophobic residue such as Leu, Val, or Phe should participate with the α-amino group in the bond to be cleaved. However, hydrolysis of bonds at the N-terminal side of His, Thr, and Gly was also observed. The peptide bond Leu 15–Tyr 16 in the oxidized insulin B chain, which is the major cleavage site for the alkaline microbial proteinases, is resistant to the attacks of the enzyme from Thermoactinomyces sacchari and other neutral proteinases. The proteolytic activity of the Zn-dependent proteinase from T. sacchari is different from those of other metalloendopeptidases from microorganisms. Received: 10 November 1999 / Accepted: 15 December 1999  相似文献   

2.
Proteinase secreted in the environment by bacilli on different growth stages was isolated by ion chromatography from the culture medium of Bacillus pumilus KMM 62. According to the hydrolysis character of specific chromogenic substrates and inhibition type, the enzyme belongs to subtilisin-like serine proteinases. The isolated proteinase with the molecular mass of 30 kDa displays maximum activity on hydrolysis of the peptide substrate Z-Ala-Ala-Leu-pNA at pH 8.0–8.5 and temperature 30°C. The protein is stable in the range of pH 7.5–10.0. It was shown that subtilisin-like serine proteinase from B. pumilus KMM 62 possessed thrombolytic activity.  相似文献   

3.
The production of a proteinase from Lactobacillus helveticus CRL 581 was studied. The highest specific activity was found at the early exponential growth phase of cells cultured in milk. The lowest levels of proteinase were detected in MRS broth, while in the casein–yeast extract–glucose broth enzyme production increased gradually during the fermentation and reached maximal values at the stationary phase. The proteinase, found to be associated with the cell membrane fraction, hydrolyzed β-casein more rapidly than α-casein. The enzyme was not released from washed cells in the presence or absence of calcium, which suggests that the enzyme did not undergo self-digestion. Received: 28 January 1997 / Accepted: 8 March 1997  相似文献   

4.
5.
Bacillus pumilus TYO-67 was isolated from tofu (soybean curd) as the best producer of a soybean-milk-coagulating enzyme, induced by the addition of soybean protein to the growth medium. The enzyme was purified approximately 30-fold with an 11% yield. The homogeneous preparation of the enzyme showed that it is a monomer with a molecular mass of about 30 kDa and has an isoelectric point at pH 9.75. The results of amino acid composition analyses showed that the enzyme is rich in alanine, aspartic acid, glycine, serine and valine. Although the amino-terminal amino acid (alanine) was identical with that of subtilisins, the amino-terminal sequence was different from those of subtilisins. The α-helix content of the enzyme was calculated to be 28.2%. The optimum pH and temperature were observed at 6.0–6.1 and 65 °C respectively. The enzyme was significantly activated by the addition of 1 mM Mn2+, Ca2+, Mg2+, and Sr2+ ions in the reaction mixture, and its thermal stability was significantly increased by Ca2+ ion. Received: 31 August 1998 / Received last revision: 1 December 1998 / Accepted: 20 December 1998  相似文献   

6.
The composition of seed storage proteins is regulated by sulfur and nitrogen supplies. Under conditions of a low sulfur-to-nitrogen ratio, accumulation of the β-subunit of β-conglycinin, a sulfur-poor seed storage protein of soybean (Glycine max [L.] Merr.), is elevated, whereas that of glycinin, a sulfur-rich storage protein, is reduced. Using transgenic Arabidopsis thaliana [L.] Heynh., it was found that the promoter from the gene encoding the β-subunit of β-conglycinin up-regulates gene expression under sulfur deficiency and down-regulates gene expression under nitrogen deficiency. To obtain an insight into the metabolic control of this regulation, the concentrations of metabolites related to the sulfur assimilation pathway were determined. Among the metabolites, O-acetyl-l-serine (OAS), one of the precursors of cysteine biosynthesis, accumulated to higher levels under low-sulfur and high-nitrogen conditions in siliques of transgenic A. thaliana. The pattern of OAS accumulation in response to various levels of sulfur and nitrogen was similar to that of gene expression driven by the β-subunit promoter. Elevated levels of OAS accumulation were also observed in soybean cotyledons cultured under sulfur deficiency. Moreover, OAS applied to in-vitro cultures of immature soybean cotyledons under normal sulfate conditions resulted in a high accumulation of the β-subunit mRNA and protein, whereas the accumulation of glycinin was reduced. These changes were very similar to the responses observed under conditions of sulfur deficiency. Our results suggest that the level of free OAS mediates sulfur- and nitrogen-regulation of soybean seed storage-protein composition. Received: 6 February 1999 / Accepted: 16 March 1999  相似文献   

7.
8.
N-Carbamoyl-d-α-amino acid amidohydrolase (d-carbamoylase) was found to distinguish stereochemistry not only at the α-carbon but also at the β-carbon of N-carbamoyl-d-α-amino acids. The enzyme selectively acted on one of the four stereoisomers of N-carbamoyl-α,β-diastereomeric amino acids. This simultaneous recognition of two chiral centers by d-carbamoylase was useful for the fine stereoselective synthesis of α,β-diastereomeric amino acids such as threonine, isoleucine, 3,4-methylenedioxyphenylserine and β-methylphenylalanine. The stereoselectivity for the β-carbon was influenced by the pH of the reaction mixture and by the bulk of the substituent at the β-carbon. Received: 18 June 1999 / Received revision: 30 July 1999 / Accepted: 6 August 1999  相似文献   

9.
Low-specificity l-threonine aldolase, catalyzing the reversible cleavage/condensation reaction between l-threonine/l-allo-threonine and glycine plus acetaldehyde, was purified to homogeneity from Pseudomonas sp. NCIMB 10558. The enzyme has an apparent molecular mass of approximately 145 kDa and consists of four identical subunits with a molecular mass of 38 kDa. The enzyme, requiring pyridoxal- 5′-phosphate as a coenzyme, is strictly l-specific at the α position, whereas it can not distinguish between threo and erythro forms at the β position. Besides the reversible cleavage/condensation of threonine, the enzyme also catalyzes the reversible interconversion between glycine plus various aldehydes and l-β-hydroxy-α-amino acids, including l-β-(3,4-dihydroxyphenyl)serine, l-β-(3,4-met‐hylenedioxyphenyl)serine and l-β-phenylserine, providing a new route for the industrial production of these important amino acids. Received: 10 November 1997 / Received revision: 7 January 1998 / Accepted 30 January 1998  相似文献   

10.
Using a model system, the activities of α-L-arabinofuranosidase, β-glucosidase, and α-L-rhamonopyranosidase were determined in 32 strains of yeasts belonging to the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Hansenula, Kloeckera, Metschnikowia, Pichia, Saccharomyces, Torulaspora and Brettanomyces (10 strains); and seven strains of the bacterium Leuconostoc oenos. Only one Saccharomyces strain exhibited β-glucosidase activity, but several non-Saccharomyces yeast species showed activity of this enzyme. Aureobasidium pullulans hydrolyzed α-L-arabinofuranoside, β-glucoside, and α-L-rhamnopyranoside. Eight Brettanomyces strains had β-glucosidase activity. Location of enzyme activity was determined for those species with enzymatic activity. The majority of β-glucosidase activity was located in the whole cell fraction, with smaller amounts found in permeabilized cells and released into the growth medium. Aureobasidium pullulans hydrolyzed glycosides found in grapes. Received 02 February 1999/ Accepted in revised form 26 June 1999  相似文献   

11.
Casein kinase II from the yeast Yarrowia lipolytica is a heterotetramer of the form αα′β2. We report on the cloning and sequencing of a partial cDNA and of the complete genomic DNA coding for the catalytic α subunit of the casein kinase II from this yeast species. The sequence of the gene coding for this enzyme has been analyzed. No intron was found in the gene, which is present in a single copy. The deduced amino acid sequence of the gene shows high similarity with those of α subunit described in other species, although, uniquely, Y. lipolytica CKIIα lacks cysteines. We find that the α subunit sequence of Y. lipolytica CKII is shown greater homology with the corresponding protein from S. pombe than with that from S. cerevisiae. We have analyzed CKIIα expression and CKIIα activity. We show that expression of this enzyme is regulated. The catalytic subunit is translated from a single mRNA, and the enzyme is present at a very low level in Y. lipolytica, as in other yeasts. Received: 20 December1997 / Accepted: 19 June 1997  相似文献   

12.
Protein kinase CK2 is a ubiquitous, highly pleiotropic, and constitutively active phosphotransferase that phosphorylates mainly serine and threonine residues. CK2 has been studied and characterized in many organisms, from yeast to mammals. The holoenzyme is generally composed of two catalytic (α and/or α′) and two regulatory (β) subunits, forming a differently assembled tetramer. The free and catalytically active α/α′ subunits can be present in cells under some circumstances. We present here the isolation of a putative catalytic CK2α subunit and holoenzyme from gills of the mussel Mytilus galloprovincialis capable of phosphorylating the purified recombinant ribosomal protein rMgP1. For further analysis of M. galloprovincialis protein kinase CK2, the cDNA molecules of CK2α and CK2β subunits were constructed and cloned into expression vectors, and the recombinant proteins were purified after expression in Escherichia coli. The recombinant MgCK2β subunit and MgP1 were phosphorylated by the purified recombinant MgCK2α subunit. The mussel enzyme presented features typical for CK2: affinity for GTP, inhibition by both heparin and ATP competitive inhibitors (TBBt, TBBz), and sensitivity towards NaCl. Predicted amino acid sequence comparison showed that the M. galloprovincialis MgCK2α and MgCK2β subunits have similar features to their mammalian orthologs.  相似文献   

13.
Methyl ent-17-hydroxy-16β-kauran-19-oate was fed to a 2-day-old culture of the fungus Rhizopus stolonifer, fermenting at room temperature (25 °C) in an orbital shaker (2 l). After 11 days, both broth and mycelia were extracted with ethyl acetate. Two novel compounds were isolated from this experiment: methyl ent-9α,17-dihydroxy-16β-kauran-19-oate and methyl ent-7α,17-dihydroxy-16β-kauran-19-oate. Their structures were fully confirmed by spectroscopic methods. Received: 22 July 1999 / Received revision: 2 November 1999 / Accepted: 12 November 1999  相似文献   

14.
Sarcosine oxidase (SOX) catalyzes the oxidation of the methyl group in sarcosine and transfer of the oxidized methyl group into the one-carbon metabolic pool. Here, we separately cloned and expressed α and β subunit of SOX from Thermococcus kodakarensis KOD1 (TkSOX) in Escherichia coli and the recombinant proteins were purified to homogeneity. Gel filtration chromatography and transmission electron microscopy analysis showed that the α subunit formed a dimeric structure and behaved as an NADH dehydrogenase; β subunit was a tetramer that had sarcosine oxidase and l-proline dehydrogenase activity. The TkSOX complex assembled into the hetero-octameric (αβ)4 form and had NADH dehydrogenase activity. Gold-label analysis indicated that α and β subunits were oriented in the alternative form. Based on these results, we suggested that TkSOX was a multifunctional enzyme and that each subunit and (αβ)4 complex may separately exist as a function enzyme in different conditions.  相似文献   

15.
The stereoselective nitrile hydratase (NHase) from Pseudomonas putida 5B has been over-produced in Escherichia coli. Maximal enzyme activity requires the co-expression of a novel downstream gene encoding a protein (P14K) of 127 amino acids, which shows no significant homology to any sequences in the protein database. Nitrile hydratase produced in transformed E. coli showed activity as high as 472 units/mg dry cell (sixfold higher than 5B), and retained the stereoselectivity observed in the native organism. Separated from the end of the β subunit by only 51 bp, P14K appears to be part of an operon that includes the α and β structural genes of nitrile hydratase, and other potential coding sequences. Received: 13 May 1997 / Received revision: 22 August 1997 / Accepted: 15 September 1997  相似文献   

16.
The effect of soy protein subunit composition on the acid-induced aggregation of soymilk was investigated by preparing soymilk from different soybean lines lacking specific glycinin and β-conglycinin subunits. Acid gelation was induced by glucono-δ-lactone (GDL) and analysis was done using diffusing wave spectroscopy and rheology. Aggregation occurred near pH 5.8 and the increase in radius corresponded to an increase in the elastic modulus measured by small deformation rheology. Diffusing wave spectroscopy was also employed to follow acid gelation, and data indicated that particle interactions start to occur at a higher pH than the pH of onset of gelation (corresponding to the start of the rapid increase in elastic modulus). The protein subunit composition significantly affected the development of structure during acidification. The onset of aggregation occurred at a higher pH for soymilk samples containing group IIb (the acidic subunit A3) of glycinin, than for samples prepared from Harovinton (a commercial variety containing all subunits) or from genotypes null in glycinin. The gels made from lines containing group I (A1, A2) and group IIb (A3) of glycinin resulted in stiffer acid gels compared to the lines containing only β-conglycinin. These results confirmed that the ratio of glycinin/β-conglycinin has a significant effect on gel structure, with an increase in glycinin causing an increase in gel stiffness. The type of glycinin subunits also affected the aggregation behavior of soymilk.  相似文献   

17.
Indolepyruvate ferredoxin oxidoreductase (IOR) catalyzes the oxidative decarboxylation of arylpyruvates. Gene cloning and sequencing analysis of the IOR gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was performed. Two genes, iorA and iorB, encoding α and β subunits of IOR were found to be tandemly arranged, which suggests that gene expression is translationaly coupled. Sequence analysis showed the C-terminal region of the α subunit to have a typical ferredoxin-type [4Fe-4S] cluster motif (CXXCXXCXXCXXXCP), which is similar to that present in the δ subunits of other oxidoreductases such as pyruvate ferredoxin oxidoreductase (POR) and 2-ketoisovalerate ferredoxin oxidoreductase (VOR). We suggest that the α subunit of KOD1-IOR has a mosaic structure composed of features characteristic of the α, β and δ subunits from POR and VOR. KOD1-IOR was overproduced in anaerobically incubated Escherichia coli cells and the crude enzyme was extracted under anaerobic conditions. The optimal temperature for activity of recombinant IOR was 70° C and the half-life of this enzyme in the presence of air was 15 min at 25° C. Received: 25 September 1996 / Accepted: 20 December 1996  相似文献   

18.
19.
Subunit 3 (Rpb3) of eukaryotic RNA polymerase II is a homologue of the α subunit of prokaryotic RNA polymerase, which plays a key role in subunit assembly of this complex enzyme by providing the contact surfaces for both β and β′ subunits. Previously we demonstrated that the Schizosaccharomyces pombe Rpb3 protein forms a core subassembly together with Rpb2 (the β homologue) and Rpb11 (the second α homologue) subunits, as in the case of the prokaryotic α2β complex. In order to obtain further insight into the physiological role(s) of Rpb3, we subjected the S. pombe rpb3 gene to mutagenesis. A total of nine temperature-sensitive (Ts) and three cold-sensitive (Cs) S. pombe mutants have been isolated, each (with the exception of one double mutant) carrying a single mutation in the rpb3 gene in one of the four regions (A–D) that are conserved between the homologues of eukaryotic subunit 3. The three Cs mutations were all located in region A, in agreement with the central role of the corresponding region in the assembly of prokaryotic RNA polymerase; the Ts mutations, in contrast, were found in all four regions. Growth of the Ts mutants was reduced to various extents at non-permissive temperatures. Since the metabolic stability of most Ts mutant Rpb3 proteins was markedly reduced at non-permissive temperature, we predict that these mutant Rpb3 proteins are defective in polymerase assembly or the mutant RNA polymerases containing mutant Rpb3 subunits are unstable. In accordance with this prediction, the Ts phenotype of all the mutants was suppressed to varying extents by over-expression of Rpb11, the pairing partner of Rpb3 in the core subassembly. We conclude that the majority of rpb3 mutations affect the assembly of Rpb3, even though their effects on subunit assembly vary depending on the location of the mutation considered. Received: 25 January 1999 / Accepted: 27 April 1999  相似文献   

20.
A new unique lectin (galactose-specific) purified from the seeds of Dolichos lablab, designated as DLL-II is a heterodimer composed of closely related subunits α and β. These were separated by SDS-PAGE and isolated by electroelution. By ESI-MS analysis their molecular masses were found to be 30.746 kDa (α) and 28.815 kDa (β) respectively. Both subunits were glycosylated and displayed similar amino acid composition. Using advanced mass spectrometry in combination with de novo sequencing and database searches for the peptides derived by enzymatic and chemical cleavage of these subunits, the primary sequence was deduced. This revealed DLL-II to be made of two polypeptide chains of 281(α) and 263(β) amino acids respectively. The β subunit differed from the α subunit by the absence of some amino acids at the carboxy terminal end. This structural difference suggests that possibly, the β subunit is derived from the α subunit by posttranslational proteolytic modification at the COOH-terminus. Comparison of the DLL-II sequence to other leguminous seed lectins indicates a high degree of structural conservation. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号