首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pattern of right ventricular pressure (RVP) fall and its afterload dependence were examined by analyzing ventricular pressure curves and corresponding pressure dP/dt phase planes obtained in both ventricles in the rat heart in situ. Time and value of dP/dt(min), and the time constant tau were measured at baseline and during variable RV afterload elevations, induced by beat-to-beat pulmonary trunk constrictions. RVP and left ventricular pressure (LVP) decays were divided into initial accelerative and subsequent decelerative phases separated by corresponding dP/dt(min). At baseline, LVP fall was decelerative during 4/5 of its course, whereas only 1/3 of RVP decay occurred in a decelerative fashion. During RV afterload elevations, the absolute value of RV-dP/dt(min) and RV-tau increased, whilst time to RV dP/dt(min) decreased. Concomitantly, the proportion of RVP decay following a decelerative course increased, so that in highly RV afterloaded heartbeats RVP fall became more similar to LVP fall. In conclusion, RVP and LVP decline have distinct patterns, their major portion being decelerative in the LV and accelerative in the RV. In the RV, dP/dt(min), tau and the proportional contribution of accelerative and decelerative phases for ventricular pressure fall are afterload-dependent. Consequently, tau evaluates a relatively much shorter segment of RVP than LVP fall.  相似文献   

2.
Arterial pressure in most experimental and clinical hypertensions is exacerbated by salt. The effects of salt excess on right and left ventricular (RV and LV, respectively) functions and their respective coronary vasodilatory responses have been less explored. We therefore examined the effects of 8 wk of NaCl excess (8% in food) on arterial pressure, RV and LV functions (maximal rate of increase and decrease of ventricular pressure; dP/dt(max) and dP/dt(min)), coronary hemodynamics (microspheres), and collagen content (hydroxyproline assay and collagen volume fraction) in young adult normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), aged 16 wk by the end of the study. Prolonged salt excess in WKY and SHR elevated pressure only modestly, but it markedly increased LV mass, especially in SHR. Moreover, salt excess significantly impaired RV and LV diastolic function in SHR but only LV diastolic function in WKY rats. However, salt loading affected neither RV nor LV contractile function in both strains. Interstitial and perivascular collagen deposition was increased, whereas coronary vasodilatory responses to dipyridamole diminished in both ventricles in the salt-loaded SHR but not in WKY rats. Therefore, accumulation of ventricular collagen as well as altered myocardial perfusion importantly contributed to the development of salt-related RV and LV dysfunctions in this model of naturally occurring hypertension. The unique effects of salt loading on both ventricles in SHR, but not WKY rats, strongly suggest that nonhemodynamic mechanisms in hypertensive disease participate pathophysiologically with salt-loading hypertension. These findings point to the conclusion that the concept of "salt sensitivity" in hypertension is far more complex than simply its effects on arterial pressure or the LV.  相似文献   

3.
In various models of cardiac hypertrophy, e.g. treatment of rats with norepinephrine infusion or pressure overload, increased expression of cytokines together with increase in extracellular matrix proteins (ECMP) was reported. In this study the effect of triiodothyronine (T3) on the expression of mRNA for cytokines and ECMP was investigated. Female Sprague-Dawley rats were treated daily with T3 in a dose of 0.2 mg.kg–1 of body weight s.c. Changes in the left (LV) and right (RV) ventricular function were measured 6, 24, 48, 72 h and 7 and 14 days after the first T3-injection using Millar ultraminiature pressure catheter transducers. RNA was isolated from LV and RV tissue, and the expression of cytokines and ECMP was measured using the ribonuclease protection assay. T3-treatment induced a significant increase in LV dP/dtmax and RV dP/dtmax, (p < 0.05) 24 h after the first injection of T3 together with an increase in heart rate (p < 0.01). The RV systolic pressure increased 48 h after the first T3 injection, whereas the LV systolic pressure remained unchanged. After 48 h the heart weight to body weight ratio was increased (p< 0.01). Hypertrophy of the RV was more prominent than that of the LV (155.9 vs. 137.7%).In all groups the expression of mRNA for interleukins (IL) IL-6, IL-1, IL-1 and tumour necrosis factor (TNF)- in both ventricles did not change (p > 0.05). There was a significant increase in the mRNA for colligin 24 h after the T3 injection in both LV (p < 0.01) and RV (p< 0.05). This was followed by an increase in the mRNA for collagen I and III 72 h after the first T3-dose (p < 0.05 in RV; p < 0.01 in LV). At this point, the mRNA for tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) was increased (p < 0.01) in the LV only. Moreover, after 7 days also the mRNA for matrix metalloproteinase (MMP)-2 increased (p < 0.01) in the LV. Both, TIMP-2 and MMP-2 were increased in the RV only after 14 days (p < 0.05). The gelatinase activity of MMP-2, however, was unchanged in both ventricles. The T3-induced cardiac hypertrophy was not accompanied by fibrosis as measured by the Sirius red staining after 14-days of T3-treatment. The moderate increase in mRNA for ECMP and MMP may be attributed more to the increasing mass of the ventricles with the accompanying remodelling of the ECM than to increased fibrosis.  相似文献   

4.
Temporary sequential biventricular pacing (BiVP) is a promising treatment for postoperative cardiac dysfunction, but the mechanism for improvement in right ventricular (RV) dysfunction is not understood. In the present study, cardiac output (CO) was optimized by sequential BiVP in six anesthetized, open-chest pigs during control and acute RV pressure overload (RVPO). Ventricular contractility was assessed by the maximum rate of increase of ventricular pressure (dP/dt(max)). Mechanical interventricular synchrony was measured by the area of the normalized RV-left ventricular (LV) pressure diagram (A(PP)). Positive A(PP) indicates RV pressure preceding LV pressure, whereas zero indicates complete synchrony. In the control state, CO was maximized with nearly simultaneous stimulation of the RV and LV, which increased RV (P = 0.006) and LV dP/dt(max) (P = 0.002). During RVPO, CO was maximized with RV-first pacing, which increased RV dP/dt(max) (P = 0.007), but did not affect LV dP/dt(max), and decreased the left-to-right, end-diastolic pressure gradient (P = 0.023). Percent increase of RV dP/dt(max) was greater than LV dP/dt(max) (P = 0.014). There were no increases in end-diastolic pressure to account for increases in dP/dt(max). In control and RVPO, RV dP/dt(max) was linearly related to A(PP) (r = 0.779, P < 0.001). The relation of CO to A(PP) was curvilinear, with a peak in CO with positive A(PP) in the control state (P = 0.004) and with A(PP) approaching zero during RVPO (P = 0.001). These observations imply that, in our model, BiVP optimization improves CO by augmenting RV contractility. This is mediated by changes in mechanical interventricular synchrony. Afterload increases during RVPO exaggerate this effect, making CO critically dependent on simultaneous pressure generation in the RV and LV, with support of RV contractility by transmission of LV pressure across the interventricular septum.  相似文献   

5.
The quantification of mechanical interventricular asynchrony (IVA) was investigated. In 12 dogs left bundle branch block (LBBB) was induced by radio frequency ablation. Left ventricular (LV) and right ventricular (RV) pressures were recorded before and after induction of LBBB and during LBBB + LV apex pacing at different atrioventricular (AV) delays. Four IVA measures were validated using computer simulations on experimentally obtained pressure signals. The most robust measure for IVA was the time delay between the upslope of the LV and RV pressure signals (DeltaT(up)), estimated by cross correlation. The induction of experimental LBBB decreased DeltaT(up) from -6.9 +/- 7.0 ms (RV before LV) to -33.9 +/- 7.6 ms (P < 0.05) in combination with a significant decrease of LV maximal first derivative of pressure development over time (dP/dt(max)). During LV apex pacing, DeltaT(up) increased with decreasing AV delay up to +20.9 +/- 14.6 ms (P < 0.05). Interventricular resynchronization (DeltaT(up) = 0 ms) significantly improved LV dP/dt(max) by 15.1 +/- 5.9%. QRS duration increased significantly after induction of LBBB but did not change during LV apex pacing. In conclusion, DeltaT(up) is a reliable measure of mechanical IVA, which adds valuable information concerning the nature of asynchronous activation of the ventricles.  相似文献   

6.
Positive responses to left (LV) and biventricular (BV) stimulation observed in heart failure patients with left bundle branch block (LBBB) suggest a possible mechanism of LV resynchronization. An anesthetized canine LBBB model was developed using radio frequency ablation. Before and after ablation, LV pressure derivative over time (dP/dt) and aortic pulse pressure (PP) were assessed during normal sinus rhythm with right ventricle (RV), LV, or BV stimulation combined with four atrioventricular delays in six dogs. In three more dogs, M-mode echocardiograms of septal and LV posterior wall motion were obtained before and after LBBB and during LV stimulation. LBBB caused QRS widening and hemodynamics deterioration. Before ablation, stimulation alone worsened LV dP/dt and PP. After ablation, LV and BV stimulation maximally increased LV dP/dt by 16% and PP by 7% (P < 0.001), whereas little improvement was observed during RV stimulation. M-mode echocardiogram showed that LBBB resulted in a paradoxical septal wall motion that was corrected by LV stimulation. In conclusion, LV and BV stimulation improved cardiac function in a canine LBBB model via resynchronization of LV excitation and contraction.  相似文献   

7.
Right ventricular (RV) failure is a major cause of mortality in acute or chronic lung disease and left heart failure. The objective of this study was to demonstrate a percutaneous approach to study biventricular hemodynamics in murine models of primary and secondary RV pressure overload (RVPO) and further explore biventricular expression of two key proteins that regulate cardiac remodeling: calcineurin and transforming growth factor beta 1 (TGFβ1).

Methods

Adult, male mice underwent constriction of the pulmonary artery or thoracic aorta as models of primary and secondary RVPO, respectively. Conductance catheterization was performed followed by tissue analysis for changes in myocyte hypertrophy and fibrosis.

Results

Both primary and secondary RVPO decreased biventricular stroke work however RV instantaneous peak pressure (dP/dtmax) and end-systolic elastance (Ees) were preserved in both groups compared to controls. In contrast, left ventricular (LV) dP/dtmax and LV-Ees were unchanged by primary, but reduced in the secondary RVPO group. The ratio of RV:LV ventriculo-arterial coupling was increased in primary and reduced in secondary RVPO. Primary and secondary RVPO increased RV mass, while LV mass decreased in primary and increased in the secondary RVPO groups. RV fibrosis and hypertrophy were increased in both groups, while LV fibrosis and hypertrophy were increased in secondary RVPO only. RV calcineurin expression was increased in both groups, while LV expression increased in secondary RVPO only. Biventricular TGFβ1 expression was increased in both groups.

Conclusion

These data identify distinct effects of primary and secondary RVPO on biventricular structure, function, and expression of key remodeling pathways.  相似文献   

8.
The right ventricular working heart preparation   总被引:1,自引:0,他引:1  
An isolated working rat heart preparation was modified to study right ventricular (RV) performance. All hearts were perfused with a Krebs-Henseleit bicarbonate buffer via a Langendorff column at 90 mm Hg. Right atrial filling (preload) was varied by raising a buffer reservoir from 5 cm below to 10 cm above the right atrium while pulmonary artery outflow resistance remained fixed. RV systolic pressure and the maximum rise and decrease in pressure development (+/- dP/dt) were measured via a catheter in the RV. Cardiac output was collected with a catheter placed in the pulmonary artery. One group of hearts, monitored at a fixed preload (0 cm H2O) for 2 hr, and another group of hearts, in which two ventricular function curves were performed, demonstrated the stability and reproducibility of the preparation. Additionally, the ability of this preparation to measure changes in inotropy was studied. A negative inotropic effect was measured after verapamil (5 X 10(-8) M) treatment. Positive dP/dt showed the greatest depression (30%) and was significantly lower at every preload. A positive inotropic effect was demonstrated by reducing the buffer Ca2+ concentration to 1.9 mM for the first work curve followed by an addition of Ca2+ (2.8 mM final concentration) or ouabain (5 X 10(-5) M) for the second work curve. Again, the greatest effect was found in the dP/dt measurements (elevated by 20 and 30%, respectively). Thus, this preparation manifests qualities similar to those used in studying the left ventricle and allows investigation of various cardiac diseases which may affect RV pump function.  相似文献   

9.

Background

The real-time and continuous assessment of left ventricular (LV) myocardial contractility through an implanted device is a clinically relevant goal. Transvalvular impedance (TVI) is an impedentiometric signal detected in the right cardiac chambers that changes during stroke volume fluctuations in patients. However, the relationship between TVI signals and LV contractility has not been proven. We investigated whether TVI signals predict changes of LV inotropic state during clinically relevant loading and inotropic conditions in swine normal heart.

Methods

The assessment of RVTVI signals was performed in anesthetized adult healthy anesthetized pigs (n = 6) instrumented for measurement of aortic and LV pressure, dP/dtmax and LV volumes. Myocardial contractility was assessed with the slope (Ees) of the LV end systolic pressure-volume relationship. Effective arterial elastance (Ea) and stroke work (SW) were determined from the LV pressure-volume loops. Pigs were studied at rest (baseline), after transient mechanical preload reduction and afterload increase, after 10-min of low dose dobutamine infusion (LDDS, 10 ug/kg/min, i.v), and esmolol administration (ESMO, bolus of 500 µg and continuous infusion of 100 µg·kg−1·min−1).

Results

We detected a significant relationship between ESTVI and dP/dtmax during LDDS and ESMO administration. In addition, the fluctuations of ESTVI were significantly related to changes of the Ees during afterload increase, LDDS and ESMO infusion.

Conclusions

ESTVI signal detected in right cardiac chamber is significantly affected by acute changes in cardiac mechanical activity and is able to predict acute changes of LV inotropic state in normal heart.  相似文献   

10.
The haemodynamic response to premature excitation was studied in open-chest dog hearts. Intraventricular pressure, dP/dt and outflow rate of the left and right heart (5 experiments each) were compared at variable preextrasystolic intervals and with the stimulation at three different sites (left ventricle--LV apex and base, right ventricle--RV free wall). In both ventricles and at any driving interval the reduction of all extrasystolic parameters is significantly more pronounced on ipsilateral stimulation. This reduction is apparent even at the fusion interval, demonstrating the importance of normal spread of excitation. The differences between apex and base stimulation are, however, only insignificant. The outflow valves opening interval greatly differs in aorta and pulmonary artery, namely if LV is stimulated, which results in a considerable disproportion between LV and RV extrasystolic stroke volumes. The extrasystolic augmentation is revealed by all parameters in the right heart but is surprisingly absent in the peak pressure and relaxation rate (dP/dt) in the LV.  相似文献   

11.
Mice are a widely used animal model for investigating cardiovascular disease. Novel technologies have been used to quantify left ventricular function in this species, but techniques appropriate for determining right ventricular (RV) function are less well demonstrated. Detecting RV dysfunction is critical to assessing the progression of pulmonary vascular diseases such as pulmonary hypertension. We used an admittance catheter to measure pressure-volume loops in anesthetized, open-chested mice before and during vena cava occlusion. Mice exposed to chronic hypoxia for 10 days, which causes hypoxia-induced pulmonary hypertension (HPH), were compared with control (CTL) mice. HPH resulted in a 27.9% increase in RV mass (P < 0.005), a 67.5% increase in RV systolic pressure (P < 0.005), and a 61.2% decrease in cardiac output (P < 0.05). Preload recruitable stroke work (PRSW) and slope of the maximum derivative of pressure (dP/dt(max))-end-diastolic volume (EDV) relationship increased with HPH (P < 0.05). Although HPH increased effective arterial elastance (E(a)) over fivefold (from 2.7 ± 1.2 to 16.4 ± 2.5 mmHg/μl), only a mild increase in the ventricular end-systolic elastance (E(es)) was observed. As a result, a dramatic decrease in the efficiency of ventricular-vascular coupling occurred (E(es)/E(a) decreased from 0.71 ± 0.27 to 0.35 ± 0.17; P < 0.005). Changes in cardiac reserve were evaluated by dobutamine infusion. In CTL mice, dobutamine significantly enhanced E(es) and dP/dt(max)-EDV but also increased E(a), causing a decrease in E(es)/E(a). In HPH mice, slight but nonsignificant decreases in E(es), PRSW, dP/dt(max)-EDV, and E(a) were observed. Thus 10 days of HPH resulted in RV hypertrophy, ventricular-vascular decoupling, and a mild decrease in RV contractile reserve. This study demonstrates the feasibility of obtaining RV pressure-volume measurements in mice. These measurements provide insight into ventricular-vascular interactions healthy and diseased states.  相似文献   

12.
This study explores the use of interventricular asynchrony (interVA) for optimizing cardiac resynchronization therapy (CRT), an idea emerging from a simple pathway model of conduction in the ventricles. Measurements were performed in six dogs with chronic left bundle branch block (LBBB) and in 29 patients of the Pacing Therapies for Congestive Heart Failure (PATH-CHF)-I study. In the dogs, intraventricular asynchrony (intraVA) was determined using left ventricular (LV) endocardial activation maps. In dogs and patients, the maximum rate of rise of LV pressure (LV dP/dt(max)) and the pulse pressure (PP) and interVA [time delay between upslope of LV and right ventricular (RV) pressure curves] were measured during LV, RV, and biventricular (BiV) pacing with various atrioventricular (AV) delays. Measurements in the canine hearts supported the pathway model in that optimal resynchronization occurred at approximately 50% reduction of intraVA and at an interVA value halfway that during LBBB and LV pacing. In patients with significant hemodynamic response during pacing (n = 22), intrinsic interVA and interVA at peak improvement (interVA(p)) varied widely between patients (from -83 to -15 ms and from -42 to +31 ms, respectively). However, the model predicted individual interVA(p) accurately (SD of +/-6 ms and +/-12 ms for LV dP/dt(max) and PP, respectively). At equal interVA, LV and BiV pacing produced equal hemodynamic response, but in 11 of 22 responders, BiV pacing reduced interVA insufficiently to reach the maximum hemodynamic response. LV pacing at short AV delay proved to result in better hemodynamics than predicted by the model, indicating that additional factors determine hemodynamics during LV preexcitation. Guided by a simple pathway model, interVA measurements accurately predict optimal hemodynamic performance in individual CRT patients.  相似文献   

13.
This study evaluated right ventricular (RV) and left ventricular (LV) diastolic tolerance to afterload and SERCA2a, phospholamban and sodium-calcium exchanger (NCX) gene expression in Wistar rats. Time constant tau and end diastolic pressure-dimension relation (EDPDR) were analyzed in response to progressive RV or LV afterload elevations, induced by beat-to-beat pulmonary trunk or aortic root constrictions, respectively. Afterload elevations decreased LV- tau, but increased RV-tau. Whereas LV- tau analyzed the major course of pressure fall, RV- tau only assessed the last fourth. Furthermore, RV afterload elevations progressively upward shifted RV EDPDR, whilst LV afterload elevations did not change LV-EDPDR. SERCA2a and phospholamban mRNA were similar in both ventricles. NCX-mRNA was almost 50 % lower in RV than in LV. Left ventricular afterload elevations, therefore, accelerated the pressure fall and did not induce diastolic dysfunction, indicating high LV diastolic tolerance to afterload. On the contrary, RV afterload elevations decelerated the late RV pressure fall and induced diastolic dysfunction, indicating small RV diastolic tolerance to afterload. These results support previous findings relating NCX with late Ca(2+) reuptake, late relaxation and diastolic dysfunction.  相似文献   

14.
Among the various cardiac contractility parameters, left ventricular (LV) ejection fraction (EF) and maximum dP/dt (dP/dt(max)) are the simplest and most used. However, these parameters are often reported together, and it is not clear if they are complementary or redundant. We sought to compare the discriminative value of EF and dP/dt(max) in assessing systolic dysfunction after myocardial infarction (MI) in swine. A total of 220 measurements were obtained. All measurements included LV volumes and EF analysis by left ventriculography, invasive ventricular pressure tracings, and echocardiography. Baseline measurements were performed in 132 pigs, and 88 measurements were obtained at different time points after MI creation. Receiver operator characteristic (ROC) curves to distinguish the presence or absence of an MI revealed a good predictive value for EF [area under the curve (AUC): 0.998] but not by dP/dt(max) (AUC: 0.69, P < 0.001 vs. EF). Dividing dP/dt(max) by LV end-diastolic pressure and heart rate (HR) significantly increased the AUC to 0.87 (P < 0.001 vs. dP/dt(max) and P < 0.001 vs. EF). In na?ve pigs, the coefficient of variation of dP/dt(max) was twice than that of EF (22.5% vs. 9.5%, respectively). Furthermore, in n = 19 pigs, dP/dt(max) increased after MI. However, echocardiographic strain analysis of 23 pigs with EF ranging only from 36% to 40% after MI revealed significant correlations between dP/dt(max) and strain parameters in the noninfarcted area (circumferential strain: r = 0.42, P = 0.05; radial strain: r = 0.71, P < 0.001). In conclusion, EF is a more accurate measure of systolic dysfunction than dP/dt(max) in a swine model of MI. Despite the variability of dP/dt(max) both in na?ve pigs and after MI, it may sensitively reflect the small changes of myocardial contractility.  相似文献   

15.
The aim was to determine whether treatment of rats with cyclosporin A (CsA) leads to deleterious side effects on heterotopically iso- or allotransplanted hearts when compared with recipient native in situ hearts. Four experimental groups were employed: inbred (Lewis) rats receiving either no immunosuppression or CsA at a dose of 15 mg.kg–1 per day for 7 days after surgery, and outbred (Wistar) rats receiving CsA at the same daily dose for either 7 or 21 days. One month following surgery, the mass of all transplanted hearts decreased and resulting atrophy was associated with relative myocardial fibrosis. Treatment with CsA significantly increased the concentration and content of collagen in the right and left ventricles of all transplanted and recipient hearts. No appreciable difference was observed between corresponding hearts of inbred and outbred groups receiving the identical dose of CsA, and between hearts in outbred groups treated for either 7 or 21 days. No signs of right ventricular mechanical dysfunction, as assessed on the isolated perfused working preparation, were observed after CsA treatment in both transplanted and recipient hearts. The maximal steady state developed pressure (RVDevP) and the rate of its development [(+dP/dt)max] were slightly higher in transplants than in the corresponding recipients, and in CsA-treated versus untreated hearts, while the index of contractile state [(+dP/dt)/P] was similar in all groups. The data suggest that treatment of rats with CsA can induce a similar degree of fibrosis both in heterotopic cardiac transplants and in recipient native hearts without impairment of their contractile performance.  相似文献   

16.
A comparative study of hemodynamic and structural-metabolic changes in the myocardium of the right (RV) and left ventricles (LV) in acute massive pulmonary artery embolism was made in 19 mongrel dogs. In the control group the activity of SDH, MDH, GDH, NADH-DH in LV were higher than in RV. The numeral density and relative area of mitochondrial profile surface in LV was higher that in RV. A significant increase in afterload on RV causes intensification of cell respiration, a rise in numeral density and relative area of mitochondrial profile surface. Weakening of LV work leads to contrary structural-metabolic changes. Thus, contrary changes in hemodynamic loads on RV and LV in acute compensative massive pulmonary artery embolism correlated with contrary changes in their cell metabolism.  相似文献   

17.
Diastolic function is a major determinant of ventricular performance, especially when loading conditions are altered. We evaluated biventricular diastolic function in lambs and studied possible load dependence of diastolic parameters [minimum first derivative of pressure vs. time (dP/dt(min)) and time constant of isovolumic relaxation (tau)] in normal (n = 5) and chronic right ventricular (RV) pressure-overloaded (n = 5) hearts by using an adjustable band on the pulmonary artery (PAB). Pressure-volume relations were measured during preload reduction to obtain the end-diastolic pressure-volume relationship (EDPVR). In normal lambs, absolute dP/dt(min) and tau were lower in the RV than in the left ventricle whereas the chamber stiffness constant (b) was roughly the same. After PAB, RV tau and dP/dt(min) were significantly higher compared with control. The RV EDPVR indicated impaired diastolic function. During acute pressure reduction, both dP/dt(min) and tau showed a relationship with end-systolic pressure. These relationships could explain the increased dP/dt(min) but not the increased tau-value after banding. Therefore, the increased tau after banding reflects intrinsic myocardial changes. We conclude that after chronic RV pressure overload, RV early relaxation is prolonged and diastolic stiffness is increased, both indicative of impaired diastolic function.  相似文献   

18.

Background

Cardiac remodelling after AMI is characterized by molecular and cellular mechanisms involving both the ischemic and non-ischemic myocardium. The extent of right ventricular (RV) dilatation and dysfunction and its relation to pulmonary hypertension (PH) following AMI are unknown. The aim of the current study was to evaluate changes in dimensions and function of the RV following acute myocardial infarction (AMI) involving the left ventricle (LV).

Methods

We assessed changes in RV dimensions and function 1 week following experimental AMI involving the LV free wall in 10 mice and assessed for LV and RV dimensions and function and for the presence and degree of PH.

Results

RV fractional area change and tricuspidal annular plane systolic excursion significantly declined by 33% (P = 0.021) and 28% (P = 0.001) respectively. Right ventricular systolic pressure measured invasively in the mouse was within the normal values and unchanged following AMI.

Conclusion

AMI involving the LV and sparing the RV induces a significant acute decline in RV systolic function in the absence of pulmonary hypertension in the mouse indicating that RV dysfunction developed independent of changes in RV afterload.  相似文献   

19.
Tissue Doppler imaging (TDI) is effective in assessing right ventricular (RV) function, but the relationship between invasive measurements and RV-TDI remains unclear. We investigated the RV systolic function by using the TDI-derived systolic myocardial (Sa) velocity and myocardial performance index (MPI). Beagles (n = 7) were anesthetized in the right lateral recumbent position. A 3.5-Fr micromanometer-tipped catheter was placed in the RV to determine the hemodynamic changes. Dobutamine (5.0 and 10 microg.kg(-1).min(-1)) and esmolol (50 and 100 microg.kg(-1).min(-1)) were infused intravenously. Pulsed Doppler (PD) and TDI measurements were performed in the apical four-chamber view. Compared with baseline, the PD-MPI decreased significantly with the dobutamine infusion at 5 microg.kg(-1).min(-1) (P < 0.05). Both dobutamine infusions significantly decreased the TDI-MPI (P < 0.01, P < 0.05). Esmolol increased the PD- and TDI-MPI but not significantly. Dobutamine significantly increased the Sa velocity (both P < 0.001), whereas esmolol had no effect. The Sa velocity was strongly correlated with the peak positive derivative of the RV pressure (+dP/dt; r = 0.93). The negative correlation between the +dP/dt and TDI-MPI (r = -086) was greater that with the PD-MPI (r = -0.54). Stepwise regression analysis showed that the Sa velocity and PD-derived isovolumic contraction time were identified to predict the +dP/dt (r = 0.94, r(2) = 0.89; P < 0.001). We determined that the systolic myocardial velocity and TDI-MPI were strongly correlated with the RV contractility. These results suggest that the TDI-derived systolic myocardial velocity and MPI predict RV systolic function.  相似文献   

20.
Concern about the effects of anesthesia on physiological measurements led us to develop methodology to assess left ventricular (LV) pressure in conscious mice. Polyethylene-50 tubing filled with heparinized saline was implanted in the LV cavity through its apex via an abdominal approach and exteriorized to the back of the animal. This surgery was done under anesthesia with either an intraperitoneal injection of ketamine (80 mg/kg) and xylazine (5 mg/kg) (K+X) in 11 mice or isoflurane (ISF; 1.5 vol%) by inhalation in 14 mice. Postoperatively, mice were trained daily to lie quietly head first in a plastic cone. LV pressure, the first derivative of LV pressure (dP/dt), and heart rate (HR) in the conscious state were compared between the two groups at 3 days and 1 wk after recovery from surgery using a 1.4-Fr Millar catheter inserted into the LV through the tubing, with the mice lying quietly in the plastic cone. Acutely during anesthesia, K+X decreased HR (from 698 to 298 beats/min), LV systolic pressure (from 107 to 65 mmHg), and maximal dP/dt (dP/dt(max)) (from 15,724 to 4,445 mmHg/s), all P < 0.01. Similar but less marked negative chronotropic and inotropic effects were seen with ISF. HR and dP/dt(max) were decreased significantly in K+X mice 3 days after surgery compared with those anesthetized with ISF (655 vs. 711 beats/min, P < 0.05; 14,448 vs. 18,048 mmHg/s, P < 0.001) but increased to the same level as in ISF mice 1 wk after surgery. In ISF mice, recovery of function occurred rapidly and there were no differences in LV variables between 3 days and 1 wk. LV pressure and dP/dt can be measured in conscious mice with a micromanometer catheter inserted through tubing implanted permanently in the LV apex. Anesthesia with either K+X or, to a lesser extent, ISF, depressed LV function acutely. This depression of function persisted for 3 days after surgery with K+X (but not ISF) and did not recover completely until 1 wk postanesthesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号