首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smad6 and Smad7 prevent ligand-induced activation of signal-transducing Smad proteins in the transforming growth factor-beta family. Here we demonstrate that both Smad6 and Smad7 are human bone morphogenetic protein-2 (hBMP-2)-inducible antagonists of hBMP-2-induced growth arrest and apoptosis in mouse B cell hybridoma HS-72 cells. Moreover, we confirmed that the ectopic expressions of Smad6 and Smad7 inhibited the hBMP-2-induced Smad1/Smad5 phosphorylation. We previously reported that Smad7 is an activin A-inducible antagonist of activin A-induced growth arrest and apoptosis in HS-72 cells. Interestingly, although mRNA expression of Smad6 was induced by activin A in HS-72 cells, Smad6 showed no antagonistic effect on activin A-induced growth arrest and apoptosis. Moreover, we found that the ectopic expression of Smad7, but not Smad6, inhibited the activin A-induced Smad2 phosphorylation in HS-72 cells. Thus, Smad6 and Smad7 exhibit differential inhibitory effects in bone morphogenetic protein-2- and activin A-mediated signaling in B lineage cells.  相似文献   

2.
We have previously found that bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta family, induces cell-cycle arrest in the G1 phase and apoptotic cell death of HS-72 mouse hybridoma cells. In this study, we show that BMP-2 did not alter expression of cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4, p27KIP1, p16INK4a, or p15INK4b, but enhanced expression of p21(CIP1/WAF1). Accumulation of p21(CIP1/WAF1) resulted in increased binding of p21(CIP1/WAF1) to CDK4 and concomitantly caused a profound decrease in the in vitro retinoblastoma protein (Rb) kinase activity of CDK4. Furthermore, the ectopic expression of human papilloma virus type-16 E7, an inhibitor of p21(CIP1/WAF1) and Rb, reverted G1 arrest induced by BMP-2. Expression of E6/E7, without increasing the p53 level, blocked inhibition of Rb phosphorylation and G1 arrest, but did not attenuate cell death in BMP-treated HS-72 cells. Taken together, these results suggest that inhibition of Rb phosphorylation by p21(CIP1/WAF1) is responsible for BMP-2-mediated G1 arrest and that BMP-2-induction of apoptosis might be independent of Rb hypophosphorylation.  相似文献   

3.
4.
The role of activin, a dimer of inhibin beta subunit, in mouse peritoneal macrophages was evaluated. Activin activity in the cultured macrophages was augmented in response to activation by LPS. In Western blot analysis, immunoreactive activin A was detected in the culture medium only when the macrophages were stimulated by LPS. Although mRNA expression of betaA subunit was detected, that of alpha and betaB subunit was not found in macrophages by reverse RT-PCR. The activin betaA mRNA level was increased in macrophages by LPS, suggesting that the activin production augmented by LPS is regulated at the mRNA level of the betaA gene. The mRNAs of four activin receptors (ActRI, ActRIB, ActRII, and ActRIIB) were also detected in the peritoneal macrophages, and the mRNA levels, except for ActRIB, were decreased during the LPS treatment. Exogenous activin A stimulated the mRNA expression and gelatinolytic activity of matrix metalloproteinase-2 (MMP-2) in macrophages in both the presence and the absence of LPS. In contrast, activin did not affect the production of MMP-9 in macrophages. These results suggested that 1) mouse peritoneal macrophages produced activin A; 2) expression of activin A was enhanced with activation of the macrophages; 3) the macrophages also expressed activin receptors; and 4) exogenous activin A stimulated MMP-2 expression and activity, implicating activin A as an positive regulator of MMP-2 expression. Considering that MMP-2 constitutes the rate-limiting proteinase governing the degradation of basement membrane collagens, activin A may be involved in migration and infiltration of macrophages through the basement membrane in an inflammatory state.  相似文献   

5.
Activins, members of the transforming growth factor-beta family, are pleiotropic growth and differentiation factors. Activin A induces B-cell apoptosis. To identify the genes responsible for activin-induced apoptosis, we performed retrovirus-mediated gene trap screening in a mouse B-cell line. We identified the rasGAP-binding protein Dok-1 (p62) as an essential molecule that links activin receptors with Smad proteins. In B cells overexpressing Dok-1, activin A-induced apoptotic responses were augmented. The expression of bcl-X(L) was down-regulated by inhibition of the ras/Erk pathway. Activin stimulation triggered association of Dok-1 with Smad3, as well as association of Smad3 with Smad4. Dok-1 also associated with both the type I and type II activin receptors. Dok-1 has been characterized previously as a tyrosine-phosphorylated protein acting downstream of the protein tyrosine kinase pathway: intriguingly, activin signaling did not induce tyrosine phosphorylation of Dok-1. These findings indicate that Dok-1 acts as an adaptor protein that links the activin receptors with the Smads, suggesting a novel function for Dok-1 in activin signaling leading to B-cell apoptosis.  相似文献   

6.
Bone morphogenetic proteins, including growth/differentiation factor-5 (GDF-5), are multifunctional cytokines. Recent studies of intracellular signal transduction mechanisms for the transforming growth factor-beta superfamily have focused on Smad proteins. However, scant attention has been given to the mechanism by which GDF-5 exerts its negative growth effect on immunological competent cells. In the present study, we demonstrated that GDF-5 induced cell cycle arrest in the G1 phase before the appearance of apoptosis in mouse B cell hybridoma HS-72 cells, while the ectopic expression of Smad6 and Smad7 in HS-72 cells suppressed the GDF-5-induced G1 cell cycle arrest by abolishing the expression of p21(CIP-1/WAF-1) and hypophosphorylation of retinoblastoma protein. Moreover, we found that Smad6 and Smad7 suppressed GDF-5-induced apoptosis in HS-72 cells. These findings indicated that Smad6 and Smad7 exhibit inhibitory effects toward GDF-5-mediated signaling in B lineage cells.  相似文献   

7.
Truncated activin type II receptors have been reported to inhibit activin receptor signaling inXenopusembryos, although the mechanism of action for this effect has not been fully understood. In the present study we demonstrate that in P19 embryonal carcinoma cells both the induction of the activin responsive 3TP-lux reporter construct and the inhibition of retinoic acid-induced neuronal differentiation by activin are blocked by expression of a truncated activin receptor. To reveal the mechanism of action of truncated activin receptors, the interaction between different activin receptors has been investigated upon coexpression in COS cells followed by cross-linking of125I-activin A and subsequent immunoprecipitation. Complexes between a truncated activin type IIA receptor and activin type IA and type IB receptors can be formed, as demonstrated by coimmunoprecipitation of these type I receptors with the truncated activin type IIA receptor. Other type I receptors known as ALK-1 and ALK-6 also coimmunoprecipitate with the truncated type IIA receptor, whereas ALK-3 and ALK-5 do not. Furthermore, the activin type IIB2receptor does not coimmunoprecipitate with the truncated type IIA receptor, but decreases activin binding to the truncated type IIA receptor. In double immunoprecipitation experiments with cell lysates from COS cells, in which full-length activin type IIA and type IIB2receptors were cotransfected, no interaction between these receptors was found. In contrast, homomeric complexes of full-length activin type IIA receptors were detected. These results implicate that truncated activin receptors can interfere with activin signaling by interacting with activin type I receptors. Additionally, truncated activin type IIB2receptors might also interfere with type IIA receptor signaling by decreasing activin binding to the type IIA receptor and therefore might be more potent in inhibiting activin signal transduction. Furthermore, our data indicate that truncated type IIA receptors can interact with other type I receptors and as such might inhibit signal transduction by type I receptors other than activin type IA and type IB receptors.  相似文献   

8.
9.
We previously reported that concanamycin A, a specific inhibitor of vacuolar type H+-ATPases, induces DNA fragmentation in B cell hybridoma HS-72 cells. In the present study, we found that the cytosol from concanamycin A-treated HS-72 cells had a cytotoxic effect on intact cells in a cell viability assay. While activin A also induced apoptosis in HS-72 cells, the cytosol from activin A-treated HS-72 cells had no effect on cell viability. We purified the cytosol from concanamycin A-treated HS-72 cells by a four-step procedure: ultracentrifugation; HiTrap heparin column chromatography; HiTrap Q column chromatography; and reverse-phase high performance liquid chromatography on a C18 hydrophobic support. The biologically active fraction, which was used as partially purified cytosol, gave a specific band of protein with a molecular mass of 33 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The mechanism of cell death was examined by observing changes in nuclear morphology, an increase in the proportion of fragmented DNA, and the typical ladder pattern of degraded chromosomal DNA, indicating the induction of apoptosis in cells cultured with the partially purified cytosol. The overexpression of human Bcl-2 suppressed apoptosis, indicating that the cytosol from concanamycin A-treated HS-72 cells induces apoptosis by a Bcl-2-inhibiting mechanism. These findings suggest that concanamycin A, a vacuolar type H+-ATPase inhibitor, produces intracellular apoptosis-inducing factor in B cell hybridoma.  相似文献   

10.
Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer.  相似文献   

11.
In response to induced DNA damage, proliferating cells arrest in their cell cycle or go into apoptosis. Ionizing radiation is known to induce degeneration of mammalian male germ cells. The effects on cell-cycle progression, however, have not been thoroughly studied due to lack of methods for identifying effects on a particular cell-cycle phase of a specific germ cell type. In this study, we have utilized the technique for isolation of defined segments of seminiferous tubules to examine the cell-cycle progression of irradiated rat mitotic (type B spermatogonia) and meiotic (preleptotene spermatocytes) G1/S cells. Cells irradiated as type B spermatogonia in mitotic S phase showed a small delay in progression through meiosis. Thus, it seems that transient arrest in the progression can occur in the otherwise strictly regulated progression of germ cells in the seminiferous epithelium. Contrary to the arrest observed in type B spermatogonia and in previous studies on somatic cells, X-irradiation did not result in a G1 delay in meiotic cells. This lack of arrest occurred despite the presence of unrepaired DNA damage that was measured when the cells had progressed through the two meiotic divisions.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) vpr gene encodes a protein which induces arrest of cells in the G2 phase of the cell cycle. Here, we demonstrate that following the arrest of cells in G2, Vpr induces apoptosis in human fibroblasts, T cells, and primary peripheral blood lymphocytes. Analysis of various mutations in the vpr gene revealed that the extent of Vpr-induced G2 arrest correlated with the levels of apoptosis. However, the alleviation of Vpr-induced G2 arrest by treatment with the drug pentoxifylline did not abrogate apoptosis. Together these studies indicate that induction of G2 arrest, but not necessarily continued arrest in G2, was required for Vpr-induced apoptosis to occur. Finally, Vpr-induced G2 arrest has previously been correlated with inactivation of the Cdc2 kinase. Some models of apoptosis have demonstrated a requirement for active Cdc2 kinase for apoptosis to occur. Here we show that accumulation of the hypophosphorylated or active form of the Cdc2 kinase is not required for Vpr-induced apoptosis. These studies indicate that Vpr is capable of inducing apoptosis, and we propose that both the initial arrest of cells and subsequent apoptosis may contribute to CD4 cell depletion in HIV-1 disease.  相似文献   

13.
Both growth-factor deprivation and contact inhibition suppress cell growth; however, the mechanisms by which they inhibit cell proliferation may not be identical. The function of antiproliferative genes and the induction of programmed cell death are among the potential differences between these growth-arrest mechanisms. Specifically, an inverse relation between the expression of cyclin-dependent kinase inhibitors (CDKIs) and the susceptibility to apoptosis has been reported. To test this relation, we examined the features of growth arrest in a canine melanoma cell line, TLM1. Both contact inhibition and serum deprivation halted cell-cycle progression of TLM1 cells in the G1 phase. Prolonged growth arrest of the cells without restimulation resulted in apoptosis; conversely, the cells reentered the cell cycle after release from contact inhibition or on restimulation with serum. Cell-to-cell contact, but not serum deprivation, led to the expression of p53 and p21/Waf-1. The expression of p21/Waf-1 did not prevent apoptosis. Moreover, the ectopic overexpression of CDKIs increased apoptosis. These results support the premise that growth arrest induced by contact inhibition and serum deprivation are mediated through distinct mechanisms. Furthermore, CDKIs are not universal inhibitors of apoptosis, and in some cases, they may initiate or enhance the apoptotic program.  相似文献   

14.
Activin is known to play an important regulatory role in reproduction, including pregnancy. To further examine the role and signaling mechanism of activin in regulating placental function, the steady-state level of activin type I receptor (ActRI) mRNA in immortalized extravillous trophoblasts (IEVT) cells was measured using competitive PCR (cPCR). An internal standard of ActRI cDNA for cPCR was constructed for the quantification of ActRI mRNA levels in IEVT cells. ActRI mRNA levels were increased in a dose-dependent manner by activin-A with the maximal effect observed at the dose of 10 ng/ml. Time course studies revealed that activin-A had maximal effects on ActRI mRNA levels at 6 hours after treatment. The effects of activin-A on ActRI mRNA levels was blocked by follistatin, an activin binding protein, in a dose-dependent manner. In addition, inhibin-A inhibited basal, as well as activin-A-induced ActRI mRNA levels. These findings provide evidence, for the first time, that activin-A modulates ActRI mRNA levels in human trophoblast cells.  相似文献   

15.
Topo II poisons, which target topoisomerase II (topo II) to generate enzyme mediated DNA damage, have been commonly used for anti-cancer treatment. While clinical evidence demonstrate a capability of topo II poisons in inducing apoptosis in cancer cells, accumulating evidence also show that topo II poison treatment frequently results in cell cycle arrest in cancer cells, which was associated with subsequent resistance to these treatments. Results in this report indicate that treatment of MCF-7 and T47D breast cancer cells with topo II poisons resulted in an increased phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and an subsequent induction of G2/M cell cycle arrest. Furthermore, inhibition of ERK1/2 activation using specific inhibitors markedly attenuated the topo II poison-induced G2/M arrest and diminished the topo II poison-induced activation of ATR and Chk1 kinases. Moreover, decreased expression of ATR by specific shRNA diminished topo II poison-induced G2/M arrest but had no effect on topo II poison-induced ERK1/2 activation. In contrast, inhibition of ERK1/2 signaling had little, if any, effect on topo II poison-induced ATM activation. In addition, ATM inhibition by either incubation of cells with ATM specific inhibitor or transfection of cells with ATM specific siRNA did not block topo II poison-induced G2/M arrest. Ultimately, inhibition of ERK1/2 signaling greatly enhanced topo II poison-induced apoptosis. These results implicate a critical role for ERK1/2 signaling in the activation of G2/M checkpoint response following topo II poison treatment, which protects cells from topo II poison-induced apoptosis.  相似文献   

16.
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.  相似文献   

17.
The myostatin/activin type II receptor (ActRII) pathway has been identified to be critical in regulating skeletal muscle size. Several other ligands, including GDF11 and the activins, signal through this pathway, suggesting that the ActRII receptors are major regulatory nodes in the regulation of muscle mass. We have developed a novel, human anti-ActRII antibody (bimagrumab, or BYM338) to prevent binding of ligands to the receptors and thus inhibit downstream signaling. BYM338 enhances differentiation of primary human skeletal myoblasts and counteracts the inhibition of differentiation induced by myostatin or activin A. BYM338 prevents myostatin- or activin A-induced atrophy through inhibition of Smad2/3 phosphorylation, thus sparing the myosin heavy chain from degradation. BYM338 dramatically increases skeletal muscle mass in mice, beyond sole inhibition of myostatin, detected by comparing the antibody with a myostatin inhibitor. A mouse version of the antibody induces enhanced muscle hypertrophy in myostatin mutant mice, further confirming a beneficial effect on muscle growth beyond myostatin inhibition alone through blockade of ActRII ligands. BYM338 protects muscles from glucocorticoid-induced atrophy and weakness via prevention of muscle and tetanic force losses. These data highlight the compelling therapeutic potential of BYM338 for the treatment of skeletal muscle atrophy and weakness in multiple settings.  相似文献   

18.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

19.
Through a detailed study of cell cycle progression, protein expression, and kinase activity in gamma-irradiated synchronized cultures of human skin fibroblasts, distinct mechanisms of initiation and maintenance of G2-phase and subsequent G1-phase arrests have been elucidated. Normal and E6-expressing fibroblasts were used to examine the role of TP53 in these processes. While G2 arrest is correlated with decreased cyclin B1/CDC2 kinase activity, the mechanisms associated with initiation and maintenance of the arrest are quite different. Initiation of the transient arrest is TP53-independent and is due to inhibitory phosphorylation of CDC2 at Tyr15. Maintenance of the G2 arrest is dependent on TP53 and is due to decreased levels of cyclin B1 mRNA and a corresponding decline in cyclin B1 protein level. After transiently arresting in G2 phase, normal cells chronically arrest in the subsequent G1 phase while E6-expressing cells continue to cycle. The initiation of this TP53-dependent G1-phase arrest occurs despite the presence of substantial levels of cyclin D1/CDK4 and cyclin E/CDK2 kinase activities, hyperphosphoryated RB, and active E2F1. CDKN1A (also known as p21(WAF1/CIP1)) levels remain elevated during this period. Furthermore, CDKN1A-dependent inhibition of PCNA activity does not appear to be the mechanism for this early G1 arrest. Thus the inhibition of entry of irradiated cells into S phase does not appear to be related to DNA-bound PCNA complexed to CDKN1A. The mechanism of chronic G1 arrest involves the down-regulation of specific proteins with a resultant loss of cyclin E/CDK2 kinase activity.  相似文献   

20.
Activin A induces growth arrest of rat hepatocytes in vitro and in vivo. The alpha(1)-adrenergic agonist, norepinephrine (NE), enhances epidermal growth factor-stimulated DNA synthesis and inhibits activin A-induced growth inhibition, but the mechanisms of these actions are unclear. Smad proteins have recently been identified as intracellular signaling mediators of transforming growth factor-beta family members. In the present study, we explored how NE modulates the Smad signaling pathway in rat cultured hepatocytes. We demonstrate that NE inhibits activin A-induced nuclear accumulation of Smad2/3 and that NE rapidly induces inhibitory Smad7 mRNA expression. Infection of Smad7 adenovirus into rat hepatocytes inhibited activin A-induced nuclear accumulation of Smad2/3, enhanced epidermal growth factor-stimulated DNA synthesis, and abolished the growth inhibitory effect of activin A. We also demonstrated that the induction of Smad7 by NE is dependent on nuclear factor-kappa B (NF-kappa B). The amount of active NF-kappa B complex rapidly increased after NE treatment. Preincubation of the cells with an NF-kappa B pathway inhibitor N-tosyl-l-phenylalanine chloromethyl ketone or infection of the cells with an adenovirus expressing an I kappa B super-repressor (Ad5I kappa B) abolished the NE-induced Smad7 expression. These results indicate a mechanism of transmodulation between the Smad and trimeric G protein signaling pathways in rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号