首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PriA, a DEXH-type DNA helicase, binds specifically to the 3' end of DNA through its N-terminal domain, and is a candidate sensor protein that recognizes arrested DNA replication forks in bacteria. We crystallized an N-terminal fragment of PriA in the absence and the presence of oligonucleotides to elucidate the structural basis for the specific recognition of the 3' terminus of DNA.  相似文献   

2.
PriA protein is essential for RecA-dependent DNA replication induced by stalled replication forks in Escherichia coli. PriA is a DEXH-type DNA helicase, ATPase activity of which depends on its binding to structured DNA including a D-loop-like structure. Here, we show that the N-terminal 181-amino acid polypeptide can form a complex with D-loop in gel shift assays and have identified a unique motif present in the N-terminal segment of PriA that plays a role in its DNA binding. We have also identified residues in the C terminus proximal helicase domain essential for D-loop binding. PriA proteins mutated in this domain do not bind to D-loop, despite the presence of the N-terminal DNA-binding motif. Those mutants that cannot bind to D-loop in vitro do not support a recombination-dependent mode of DNA replication in vivo, indicating that binding to a D-loop-like structure is essential for the ability of PriA to initiate DNA replication and repair from stalled replication forks. We propose that binding of the PriA protein to stalled replication forks requires proper configuration of the N-terminal fork-recognition and C-terminal helicase domains and that the latter may stabilize binding and increase binding specificity.  相似文献   

3.
PriA helicase plays crucial roles in restoration of arrested replication forks. It carries a "3' terminus binding pocket" in its N-terminal DNA binding domain, which is required for high affinity binding of PriA to a fork carrying a 3'-end of a nascent leading strand at the branch. We show that the abrogation of the 3' terminus recognition either by a mutation in the 3' terminus binding pocket or by the bulky modification of the 3'-end leads to unwinding of the unreplicated duplex arm on this fork, causing potential fork destabilization. This indicates a critical role of the 3' terminus binding pocket of PriA in its "stable" binding at the fork for primosome assembly. In contrast, PriA unwinds the unreplicated duplex region on a fork without a 3'-end, potentially destabilizing the fork. However, this process is inhibited by RecG helicase, capable of regressing the fork until the 3'-end of the nascent leading strand reaches the branch. PriA now stably binds to this regressed fork, stabilizing it. Using a model arrest-fork-substrate, we reconstitute the above process in vitro with RecG and PriA proteins. Our results present a novel mechanism by which two helicases function in a highly coordinated manner to generate a structure in which an arrested fork is stabilized for further repair and/or replication restart.  相似文献   

4.
The Escherichia coli PriA protein loads the DnaB replicative helicase at branched DNA structures independently of the replication initiator protein, DnaA, and thereby facilitates assembly of functional replisomes at sites removed from oriC. It is therefore a critical factor in the rescue of replication forks stalled at DNA lesions. It is also a DNA helicase. We describe insertions near the 3' end of priA that interfere with PriA activity. These insertions and the previously described priA300 encoding helicase-defective PriA K230R are shown to be effective suppressors of the DNA repair defect in recG strains, but substantially reduce the ability of ruv mutants to survive DNA damage. The data presented suggest that PriA helicase in conjunction with RecG can promote direct rescue of stalled forks independently of the recombinational pathway promoted by the combined activities of the RuvABC, RecBCD and RecA proteins, which requires only the primosome assembly activity of PriA to load DnaB at D loops. In cells lacking the helicase activity of PriA, we propose that stalled forks can be redirected to the recombination pathway via a Holliday junction intermediate common to both pathways, thus explaining the resistance of these cells to DNA damage.  相似文献   

5.
Escherichia coli PriA protein plays crucial roles in processing of arrested replication forks. PriA serves as a sensor/stabilizer for an arrested replication fork and eventually promotes restart of DNA replication through assembly of a primosome. PriA carries a 3' terminus binding pocket required for its high affinity binding to a specific arrested fork as well as for its biological functions. We show here that PriA binds to DNA in a manner either dependent on or independent of 3' terminus recognition. The former mode of binding requires the 3' terminus binding pocket present at the N-terminal half of the 181-residue DNA binding domain and exhibits specific bipartite interaction on the template DNA. The latter mode is independent of the pocket function, but requires the C-terminal half of the same domain. ATP hydrolysis activity of PriA can be stimulated in vitro by either of the two binding modes. We propose architecture of PriA bound to various arrested replication fork structures and discuss its implication in helicase activation and ATP hydrolysis.  相似文献   

6.
Arrest of replication forks by various internal and external threats evokes a myriad of cellular reactions, collectively known as DNA replication checkpoint responses. In bacteria, PriA is essential for restoration of stalled replication forks and recombinational repair of double-stranded DNA breaks and is a candidate sensor protein that may recognize arrested forks. Here, we report that PriA protein specifically recognizes 3' termini of arrested nascent DNA chains at model stalled replication forks in vitro. Mutations in the putative "3' terminus binding pocket" present in the N-terminal segment of PriA result in reduced binding to stalled replication fork structures and loss of its biological functions. The results suggest a mechanism by which stalled replication forks are recognized by a sensor protein for checkpoint responses.  相似文献   

7.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

8.
The frequency with which replication forks break down in all organisms requires that specific mechanisms ensure completion of genome duplication. In Escherichia coli a major pathway for reloading of the replicative apparatus at sites of fork breakdown is dependent on PriA helicase. PriA acts in conjunction with PriB and DnaT to effect loading of the replicative helicase DnaB back onto the lagging strand template, either at stalled fork structures or at recombination intermediates. Here we showed that PriB stimulates PriA helicase, acting to increase the apparent processivity of PriA. This stimulation correlates with the ability of PriB to form a ternary complex with PriA and DNA structures containing single-stranded DNA, suggesting that the known single-stranded DNA binding function of PriB facilitates unwinding by PriA helicase. This enhanced apparent processivity of PriA might play an important role in generating single-stranded DNA at stalled replication forks upon which to load DnaB. However, stimulation of PriA by PriB is not DNA structure-specific, demonstrating that targeting of stalled forks and recombination intermediates during replication restart likely resides with PriA alone.  相似文献   

9.
During origin-independent replisome assembly, the replication restart protein PriC prefers to load the replication fork helicase, DnaB, to stalled replication forks where there is a gap in the nascent leading strand. However, this activity can be obstructed if the 5'-end of the nascent lagging strand is near the template branch point. Here we provide biochemical evidence that the helicase activities of Rep and PriA function to unwind the nascent lagging strand DNA at such stalled replication forks. PriC then loads the replicative helicase, DnaB, onto the newly generated, single-stranded template for the purposes of replisome assembly and duplex unwinding ahead of the replication fork. Direct rescue of replication forks by the Rep-PriC and PriA-PriC pathways in this manner may contribute to genomic stability by avoiding the potential dangers of fork breakage inherent to recombination-dependent restart pathways.  相似文献   

10.
Blockage of replication fork progression often occurs during DNA replication, and repairing and restarting stalled replication forks are essential events in all organisms for the maintenance of genome integrity. The repair system employs processing enzymes to restore the stalled fork. In Archaea Hef is a well conserved protein that specifically cleaves nicked, flapped, and fork-structured DNAs. This enzyme contains two distinct domains that are similar to the DEAH helicase family and XPF nuclease superfamily proteins. Analyses of truncated mutant proteins consisting of each domain revealed that the C-terminal nuclease domain independently recognized and incised fork-structured DNA. The N-terminal helicase domain also specifically unwound fork-structured DNA and Holliday junction DNA in the presence of ATP. Moreover, the endonuclease activity of the whole Hef protein was clearly stimulated by ATP hydrolysis catalyzed by the N-terminal domain. These enzymatic properties suggest that Hef efficiently resolves stalled replication forks by two steps, which are branch point transfer to the 5'-end of the nascent lagging strand by the N-terminal helicase followed by template strand incision for leading strand synthesis by the C-terminal endonuclease.  相似文献   

11.
In bacteria, PriA protein, a conserved DEXH‐type DNA helicase, plays a central role in replication restart at stalled replication forks. Its unique DNA‐binding property allows it to recognize and stabilize stalled forks and the structures derived from them. Cells must cope with fork stalls caused by various replication stresses to complete replication of the entire genome. Failure of the stalled fork stabilization process and eventual restart could lead to various forms of genomic instability. The low viability of priA null cells indicates a frequent occurrence of fork stall during normal growth that needs to be properly processed. PriA specifically recognizes the 3′‐terminus of the nascent leading strand or the invading strand in a displacement (D)‐loop by the three‐prime terminus binding pocket (TT‐pocket) present in its unique DNA binding domain. Elucidation of the structural basis for recognition of arrested forks by PriA should provide useful insight into how stalled forks are recognized in eukaryotes.  相似文献   

12.
Functional interactions of the Escherichia coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein--double-stranded DNA (dsDNA) complex. Only one monomer of the domain dimer binds the DNA; i.e., the dimer has one effective DNA-binding site. Although the total site size of the dimer--single-stranded DNA (ssDNA) complex is ~13 nucleotides, the DNA-binding subsite engages in direct interactions with approximately five nucleotides. A small number of interacting nucleotides indicates that the DNA-binding subsites of the PriA helicase, i.e., the strong subsite on the helicase domain and the weak subsite on the N-terminal domain, are spatially separated in the intact enzyme. Contrary to current views, the subsite has an only slight preference for the 3'-end OH group of the ssDNA and lacks any significant base specificity, although it has a significant dsDNA affinity. Unlike the intact helicase, the DNA-binding subsite of the isolated domain is in an open conformation, indicating the presence of the direct helicase domain--N-terminal domain interactions. The discovery that the 181N-terminal domain possesses a nucleotide-binding site places the allosteric, weak nucleotide-binding site of the intact PriA on the N-terminal domain. The specific effect of ADP on the domain DNA-binding subsite indicates that in the intact helicase, the bound ADP not only opens the DNA-binding subsite but also increases its intrinsic DNA affinity.  相似文献   

13.
PriA, a 3′  5′ superfamily 2 DNA helicase, acts to remodel stalled replication forks and as a specificity factor for origin-independent assembly of a new replisome at the stalled fork. The ability of PriA to initiate replication at stalled forked structures ensures complete genome replication and helps to protect the cell from illegitimate recombination events. This review focuses on the activities of PriA and its role in replication fork assembly and maintaining genomic integrity.  相似文献   

14.
The initiation of DNA synthesis on forked DNA templates is a vital process in the replication and maintenance of cellular chromosomes. Two proteins that promote replisome assembly on DNA forks have so far been identified. In phage T4 development the gene 59 protein (gp59) assembles replisomes at D-loops, the sites of homologous strand exchange. Bacterial PriA protein plays an analogous function, most probably restarting replication after replication fork arrest with the aid of homologous recombination proteins, and PriA is also required for phage Mu replication by transposition. Gp59 and PriA exhibit similar DNA fork binding activities, but PriA also has a 3' to 5' helicase activity that can promote duplex opening for replisome assembly. The helicase activity allows PriA's repertoire of templates to be more diverse than that of gp59. It may give PriA the versatility to restart DNA replication without recombination on arrested replication forks that lack appropriate duplex openings.  相似文献   

15.
The PriA protein of Escherichia coli plays a key role in the rescue of replication forks stalled on the template DNA. One attractive model of rescue relies on homologous recombination to establish a new fork via PriA-mediated loading of the DnaB replicative helicase at D loop intermediates. We provide genetic and biochemical evidence that PriA helicase activity can also rescue a stalled fork by an alternative mechanism that requires manipulation of the fork before loading of DnaB on the lagging strand template. This direct rescue depends on RecG, which unwinds forks and Holliday junctions and interconverts these structures. The combined action of PriA and RecG helicase activities may thus avoid the potential dangers of rescue pathways involving fork breakage and recombination.  相似文献   

16.
Primosome assembly protein PriA functions in the assembly of the replisome at forked DNA structures. Whereas its N-terminal DNA binding domain (DBD) binds independently to DNA, the affinity of DBD protein for forked structures is relatively weak. Although the PriA helicase domain (HD) is required for high affinity fork binding, HD protein had very low affinity for DNA. It had only low levels of ATPase activity, and it hydrolyzed ATP when DNA was absent whereas PriA did not. HD catalyzed unwinding of a minimal substrate composed of a duplex with a 3' single-stranded tail. Single-strand binding protein (SSB) bound to the tail of this substrate inhibited this reaction by full-length PriA but enhanced the reaction by HD. SSB stabilized binding of PriA but not of DBD or HD to duplexes with a 5' or 3' single-stranded tail. On forked substrates SSB enhanced helicase action on the lagging-strand arm by PriA but not by HD. The results indicate that synergy of the DBD and HD allows stable binding at the interface between duplex and single-stranded DNA bound by SSB. This mode of binding may be analogous to fork binding, which orients the helicase to act on the lagging-strand side of the fork.  相似文献   

17.
Primosomes are nucleoprotein assemblies designed for the activation of DNA replication forks. Their primary role is to recruit the replicative helicase onto single-stranded DNA. The "replication restart" primosome, defined in Escherichia coli, is involved in the reactivation of arrested replication forks. Binding of the PriA protein to forked DNA triggers its assembly. PriA is conserved in bacteria, but its primosomal partners are not. In Bacillus subtilis, genetic analysis has revealed three primosomal proteins, DnaB, DnaD, and DnaI, that have no obvious homologues in E. coli. Interestingly, they are involved in primosome function both at arrested replication forks and at the chromosomal origin. Our biochemical analysis of the DnaB and DnaD proteins unravels their role in primosome assembly. They are both multimeric and bind individually to DNA. Furthermore, DnaD stimulates DnaB binding activities. DnaD alone and the DnaD/DnaB pair interact specifically with PriA of B. subtilis on several DNA substrates. This suggests that the nucleoprotein assembly is sequential in the PriA, DnaD, DnaB order. The preferred DNA substrate mimics an arrested DNA replication fork with unreplicated lagging strand, structurally identical to a product of recombinational repair of a stalled replication fork.  相似文献   

18.
WRN exonuclease is involved in resolving DNA damage that occurs either during DNA replication or following exposure to endogenous or exogenous genotoxins. It is likely to play a role in preventing accumulation of recombinogenic intermediates that would otherwise accumulate at transiently stalled replication forks, consistent with a hyper-recombinant phenotype of cells lacking WRN. In humans, the exonuclease domain comprises an N-terminal portion of a much larger protein that also possesses helicase activity, together with additional sites important for DNA and protein interaction. By contrast, in Drosophila, the exonuclease activity of WRN (DmWRNexo) is encoded by a distinct genetic locus from the presumptive helicase, allowing biochemical (and genetic) dissection of the role of the exonuclease activity in genome stability mechanisms. Here, we demonstrate a fluorescent method to determine WRN exonuclease activity using purified recombinant DmWRNexo and end-labeled fluorescent oligonucleotides. This system allows greater reproducibility than radioactive assays as the substrate oligonucleotides remain stable for months, and provides a safer and relatively rapid method for detailed analysis of nuclease activity, permitting determination of nuclease polarity, processivity, and substrate preferences.  相似文献   

19.
The PriA replication protein of Escherichia coli (formerly replication factor Y or protein n') is multifunctional. It is a site-specific, single-stranded DNA-dependent ATPase (dATPase), a 3'----5' DNA helicase, and guides the ordered assembly of the primosome, a mobile, multiprotein DNA replication priming/helicase complex. Although PriA is not absolutely required for viability, priA null mutant cells grow very slowly, have poor viability, and form extensive filaments. In order to assess which of the multiple activities of PriA are required for normal replication and growth, site-directed mutagenesis was employed to introduce single amino acid substitutions for the invariant lysine within the consensus nucleotide-binding motif found in PriA. Biochemical characterization of the representative purified mutant PriA proteins revealed them to be completely deficient in nucleotide hydrolysis, incapable of translocation along a single-stranded DNA binding protein-coated single-stranded DNA template, and unable to manifest the 3'----5' DNA helicase activity of wild-type PriA. These mutant proteins were, however, capable of catalyzing the assembly of active primosomes in vitro. Furthermore, when supplied in trans to insertionally inactivated priA cells, plasmids containing a copy of these mutant priA genes restored the wild-type growth rate, viability, and cell morphology. Based on these results, a model for PriA function in vivo is discussed.  相似文献   

20.
Heller RC  Marians KJ 《DNA Repair》2007,6(7):945-952
Reactivation of stalled or collapsed replication forks is an essential process in bacteria. Restart systems operate to restore the 5'-->3' replicative helicase, DnaB, to the lagging-strand template. However, other non-replicative 3'-->5' helicases play an important role in the restart process as well. Here we examine the DNA-binding specificity of three of the latter group, PriA, Rep, and UvrD. Only PriA and Rep display structure-specific fork binding. Interestingly, their specificity is opposite: PriA binds a leading-strand fork, presumably reflecting its restart activity in directing loading of DnaB to the lagging-strand template. Rep binds a lagging-strand fork, presumably reflecting its role in partially displacing Okazaki fragments that originate near the fork junction. This activity is necessary for generating a single-stranded landing pad for DnaB. While UvrD shows little structure-specificity, there is a slight preference for lagging-strand forks, suggesting that there might be some redundancy between Rep and UvrD and possibly explaining the observed synthetic lethality that occurs when mutations in the genes encoding these two proteins are combined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号