首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The stoichiometry and dissociation constant for the binding of homogeneous chicken heart mitochondrial creatine kinase (MiMi-CK) to mitoplasts was examined under a variety of conditions. Salts and substrates release MiMi-CK from mitoplasts in a manner that suggests an ionic interaction. The binding of MiMi-CK to mitoplasts is competitively inhibited by Adriamycin, suggesting that they compete for the same binding site. Fluorescence measurements also show that Adriamycin binds to MiMi-CK so that the effect of Adriamycin on the binding of MiMi-CK to mitoplasts is not simple. Titrating mitoplasts with homogeneous MiMi-CK at different pH values shows a pH-dependent equilibrium involving a group(s) on either the membrane or the enzyme with a pKa = 6. Extrapolating these titrations to infinite MiMi-CK concentration gives 14.6 IU bound/nmol cytochrome aa3 corresponding to 1.12 mol MiMi-CK/mol cytochrome aa3. Chicken heart mitochondria contain, after isolation, 2.86 +/- 0.42 IU/nmol cytochrome aa3. Titrating respiring mitoplasts with carboxyatractyloside gives at saturation 3.3 mol ADP/ATP translocase/mol cytochrome aa3. Therefore, chicken heart mitoplasts can maximally bind about 1 mol of MiMi-CK per 3 mol translocase; in normal chicken heart mitochondria about 1 mol of MiMi-CK is present per 13 mol translocase.  相似文献   

2.
The state of mitochondrial creatine kinase (CKmi-mi) in intact dog heart mitochondria and mitoplasts and the mechanism of its functional coupling with the oxidative phosphorylation system have been reinvestigated under different osmotic conditions and ionic compositions of the medium. It has been established that in a medium which mimics the cardiac cell cytoplasma, dissociation of CKmi-mi from the membrane of mitoplasts increases when the mitoplasts are swollen due to hypoosmotic treatment. It was shown by EPR that hypoosmotic treatment results in the enhancement of the mobility of phospholipids in the membrane bilayer. It has been also shown that when CKmi-mi is detached from the inner membrane in intact mitochondria in isotonic KCl solution, the effects of the coupling between CKmi-mi and oxidative phosphorylation via ATP/ADP translocase disappear in spite of the presence of CKmi-mi in the intermembrane space and intactness of the outer mitochondrial membrane. Therefore, this coupling cannot be explained by the "compartmented coupling" mechanism or "dynamic adenine nucleotide compartmentation" in the intermembrane space due to diffusion limitation for adenine nucleotides through the outer mitochondrial membrane, as has been supposed by several authors (F.N. Gellerich et al. (1987) Biochim. Biophys. Acta 890, 117-126; S.P.J. Brooks and C.H. Suelter (1987) Arch. Biochem. Biophys. 253, 122-132). The data obtained show that the displacement of the enzyme from the membrane results in significantly increased sensitivity of the coupled processes of aerobic phosphocreatine synthesis to inhibition by the product, phosphocreatine. Thus, all results show that under physiological osmotic and ionic conditions CKmi-mi remains firmly attached to the inner mitochondrial membrane and effectively coupled with ATP/ADP translocase due to intimate dynamic interaction between those proteins.  相似文献   

3.
To define more clearly the interactions between mitochondrial creatine kinase and the adenine nucleotide translocase, the outer membrane of rat heart mitochondria was removed by digitonin, producing an inner membrane-matrix (mitoplast) preparation. This mitoplast fracton was well-coupled and contained a high specific activity of mitochondrial creatine kinase. Outer membrane permeabilization was documented by the loss of adenylate kinase, a soluble intermembrane enzyme, and by direct antibody inhibition of mitochondrial creatine kinase activity. With this preparation, we documented four important aspects of functional coupling. Kinetic studies showed that oxidative phosphorylation decreased the value of the ternary enzyme-substrate complex dissociation constant for MgATP from 140 to 16 microM. Two approaches were used to document the adenine nucleotide translocase specificity for ADP generated by mitochondrial creatine kinase. Exogenous pyruvate kinase (20 IU/ml) could not readily phosphorylate ADP produced by creatine kinase, since added pyruvate kinase did not markedly inhibit creatine + ATP-stimulated respiration. Additionally, when ADP was produced by mitochondrial creatine kinase, the inhibition of the translocase required 2 nmol of atractyloside/mg of mitoplast protein, while only 1 nmol/mg was necessary when exogenous ADP was added. Finally, the mass action ratio of the mitochondrial creatine kinase reaction exceeded the apparent equilibrium constant when ATP was supplied to the creatine kinase reaction by oxidative phosphorylation. Overall, these results are consistent with much data from intact rat heart mitochondria, and suggest that the outer membrane plays a minor role in the compartmentation of adenine nucleotides. Furthermore, since the removal of the outer membrane does not alter the unique coupling between oxidative phosphorylation and mitochondrial creatine kinase, we suggest that this cooperation is the result of protein-protein proximity at the inner membrane surface.  相似文献   

4.
This paper demonstrates that the mitochondrial isoenzyme of creatine kinase (CKm) can be solubilized from rabbit heart mitochondria, the outer membrane of which has been removed or at least broken by a digitonin treatment or a short hypotonic exposure, but which has retained an important part of the capacity to phosphorylate ADP. Phosphate, ADP, or ATP, at concentrations which are used to study oxidative phosphorylation and creatine phosphate synthesis, solubilize CKm; the same is true with MgCl2 and KCl. The effect of adenine nucleotides does not seem to be due to their interaction with the adenine nucleotide translocase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that CKm is the main protein released in the described conditions; however, it does not amount to more than 1% of the total protein content of the mitoplasts. When the apparent Km for ATP of CKm was estimated by measuring creatine phosphate synthesis, the values obtained using water-treated mitochondria (0.21 mM) were slightly higher than those of intact mitochondria (0.12 mM) but the difference was not significant. In the former preparation 77% of CKm was in a soluble state. If we can extrapolate these results to intact mitochondria and suppose that in this case a fraction of CKm is also soluble in the intermembrane space, this does not support the theory of functional association between CKm and the adenine nucleotide translocase.  相似文献   

5.
A probability approach was used to describe mitochondrial respiration in the presence of substrates, ATP, ADP, Cr and PCr. Respiring mitochondria were considered as a three-component system, including: 1) oxidative phosphorylation reactions which provide stable ATP and ADP concentrations in the mitochondrial matrix; 2) adenine nucleotide translocase provides exchange transfer of matrix adenine nucleotides for those from outside, supplied from medium and by creatine kinase; 3) creatine kinase, starting these reactions when activated by the substrates from medium. The specific feature of this system is close proximity of creatine kinase and translocase molecules. This results in high probability of direct activations of translocase by creatine kinase-derived ADP or ATP without their leak into the medium. In turn, the activated translocase with the same high probability directly provides creatine kinase with matrix-derived ATP or ADP. The catalytic complexes of creatine kinase formed with ATP from matrix together with those formed from medium ATP provide activation of the forward creatine kinase reaction coupled to translocase activation. Simultaneously the catalytic complexes of creatine kinase formed with ADP from matrix together with those formed from medium ADP provide activation of the reverse creatine kinase reaction coupled to translocase activation. The considered probabilities were arranged into a mathermatical model. The model satisfactorily simulates the available experimental data by several groups of investigators. The results allow to consider the observed kinetic and thermodynamic iriegularities in behavior of structurally bound creatine kinase as a direct consequence of its tight coupling to translocase.  相似文献   

6.
The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.  相似文献   

7.
1. The kinetic properties of mitochondrial creatine phosphokinase (Km for all substrates and maximal rates of the forward and reverse reaction) have been studied. Since (a) Km value for MgADP- (0.05 mM) and creatine phosphate (0.5 mM) are significantly lower than Km for MgATP2- (0.7 mM) and creatine (5.0 mM) and (b) maximal rate of the reverse reaction (creatine phosphate + ADP leads to ATP + creatine) equal to 3.5 mumol times min-1 times mg-1 is essentially higher than maximal rate of the forward reaction (0.8 mumol times min-1 times mg-1), ATP synthesis from ADP and creatine phosphate is kinetically preferable over the forward reaction. 2. A possible regulatory role of Mg2+ ions in the creatine phosphokinase reaction has been tested. It has been shown that in the presence of all substrates and products of the reaction the ratio of the rates of forward and reverse reactions can be effectively regulated by the concentration of Mg2+ ions. At limited Mg2+ concentrations creatine phosphate is preferably synthesized while at high Mg2+ concentrations (more ATP in the reaction medium) ATP synthesis takes place. 3. The kinetic (mathematical) model of the mitochondrial creatine phosphokinase reaction has been developed. This model accounts for the existence of a variety of molecular forms of adenine nucleotides in solution and the formation of their complexes with magnesium. It is based on the assumption that the mitochondrial creatine phosphokinase reactions mechanism is analogous to that for soluble isoenzymes. 4. The dependence of the overall rate of the creatine phosphokinase reaction on the concentration of total Mg2+ ions calculated from the kinetic model quantitatively correlates with the experimentally determined dependence through a wide range of substrates (ATP, ADP, creatine and creatine phosphate) concentration. The analysis of the kinetic model demonstrates that the observed regulatory effect of Mg2+ on the overall reaction rate can be expained by (a) the sigmoidal variation in the concentration of the MgADP- complex resulting from the competition between ATP AND ADP for Mg2+ and (b) the high affinity of the enzyme to MgADP-. 5. The results predicted by the model for the behavior of mitochondrial creatine phosphokinase under conditions of oxidative phosphorylation point to an intimate functional interaction of mitochondrial creatine phosphokinase and ATP-ADP translocase.  相似文献   

8.
It was found that in the octameric form of mitochondrial creatine kinase (Mr = 340 kD), only 52% of active centers bind Mg-ADP into a E-Mg-ADP-creatine complex with the dissociation constant, K(Cr)ADP, of 0.105 mM, which is close to the Km value for the enzyme (0.072 mM). In the dimeric form of cytoplasmic creatine kinase (Mr = 82 kD), 100% of active centers bind Mg--ADP; the K(Cr)ADP value (0.11 mM) is close to the Km value for the given enzyme preparation (0.083 mM). All active centers of rabbit muscle cytoplasmic creatine kinase were shown to form an analog of the transition state complex (ATSC) - E-Mg-ADP-NO3- -creatine. The constant for Mg-ADP dissociation from ATSC is identical for all centers of cytoplasmic creatine kinase and equals to 6.0 microM. The curves for ATSC saturation with Mg-ADP in the presence of iodacetamide for mitochondrial creatine kinase were constructed and computer analyzed. It was shown that in the octameric form of the enzyme only 54 +/- 13% of subunits can form ATSC. The constant for Mg-ADP dissociation from ATSC, KATSCADP is equal to 1.9 +/- 0.8 microM. It was concluded that 50% of subunits of the octameric form of mitochondrial creatine kinase are not involved in the catalytic act due to masking of their active centres and their inability to form transition state complexes. A model of regulation of cell supply with high energy compounds, e.g., ATP, creatine phosphate, via association-dissociation of mitochondrial creatine kinase oligomers is proposed.  相似文献   

9.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   

10.
Relative diffusivities of ADP and creatine in cardiomyocytes were studied. The isolated rat cardiomyocytes were lysed with saponin (40 micrograms/ml) to perforate or completely disrupt sarcolemma that was evidenced by leakage of 80-100% lactate dehydrogenase. In these cardiomyocytes mitochondria were used as 'enzymatic probes' to determine the average local concentration of substrates exerting acceptor control of respiration--ADP or creatine (the latter activates respiration via mitochondrial creatine kinase reaction)--when their concentrations in the surrounding medium were changed. The kinetic parameters for ADP and creatine in control of respiration of saponin-treated cardiomyocytes were compared with those determined in isolated mitochondria and skinned cardiac fibers. The apparent Km for creatine (at 0.2 mM ATP) was very close and in a range of 6.0-6.9 mM in all systems studied, showing the absence of diffusion difficulties for this substrate. On the contrary, the apparent Km for ADP increased from 18 +/- 1 microM for isolated mitochondria to 250 +/- 59 microM for cardiomyocytes with the lysed sarcolemma and to 264 +/- 57 microM for skinned fibers. This elevation of Km was not eliminated by inhibition of myokinase with diadenosine pentaphosphate. When 25 mM creatine was present, the apparent Km for ADP decreased to 36 +/- 6 microM. These data are taken to indicate specific restrictions of diffusion of ADP most probably due to its interaction with intermediate binding sites in cardiomyocytes. The important role of phosphocreatine-creatine kinase system of energy transport is to overcome the restrictions in regulation of energy fluxes due to decreased diffusivity of ADP.  相似文献   

11.
The interaction of mitochondrial creatine kinase and ATP-ADP translocase with 2.3-dialdehyde derivatives of ADP and ATP (oADP and oATP) has been studied. It was shown that these compounds are irreversible and specific inhibitors of creatine kinase (KioADP = 0.6mM, KioATP = 1.12 mM) and ATP-ADP translocase (KioADP = 0.065mM, KioATP = 0.14 mM). The substrates protect both enzymes from inactivation by these compounds. The maximal pseudo-first order rate constants for the 2,3-dialdehyde nucleotide derivative interaction with creatine kinase are 0.2 min-1 for oADP (pH 6.5) and 0.11 min-1 for oATP (pH 7.0). A decrease in the creatine kinase activity correlates with the incorporation of the reagent into the protein. The completely inactivated, isolated and purified enzyme contains 1 mol of oADP per mole of active sites. A procedure for simultaneous determination of the creatine kinase and translocase content in mitochondria and mitoplasts has been developed, which is based on the application of [3H]oADP in combination with specific treatment of mitochondria (or mitoplasts) with carboxyatractyloside 2,4-dinitrofluorobenzene and a mixture of creatine kinase substrates (MgADP + phosphocreatine). It has been found that for heart mitochondria from different animals the content of creatine kinase and translocase is 2.1-2.6 and 2.4-2.9 mol per mol of cytochrome c oxidase, respectively. Thus, the stoiochiometric ratio of creatine kinase and ATP-ADP translocase is close to 1.0 for all mitochondrial preparations under study (i.e. rat, dog, rabbit and chicken).  相似文献   

12.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

13.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine was studied in normoxic control, isoprenaline-stimulated and potassium-arrested guinea-pig hearts as well as during ischemia and after reperfusion. The mitochondrial creatine phosphate/creatine ratio was closely correlated to the oxidative activity of the hearts. This was interpreted as an indication of a close coupling of mitochondrial creatine kinase to oxidative phosphorylation. To further investigate the functional coupling of mitochondrial creatine kinase to oxidative phosphorylation, rat or guinea-pig heart mitochondria were isolated and the mass action ratio of creatine kinase determined at active or inhibited oxidative phosphorylation or in the presence of high phosphate, conditions which are known to change the functional state of the mitochondrial enzyme. At active oxidative phosphorylation the mass action ratio was one-third of the equilibrium value whereas at inhibited oxidative phosphorylation (N2, oligomycin, carboxyatractyloside) or in the presence of high phosphate, the mass action ratio reached equilibrium values. These findings show that oxidative phosphorylation is essential for the regulation of the functional state of mitochondrial creatine kinase. The functional coupling of the mitochondrial creatine kinase and oxidative phosphorylation indicated from the correlation of mitochondrial creatine phosphate/creatine ratios with the oxidative activity of the heart in situ as well as from the deviation of the mass action ratio of the mitochondrial enzyme from creatine kinase equilibrium at active oxidative phosphorylation in isolated mitochondria is in accordance with the proposed operation of a creatine shuttle in heart tissue.  相似文献   

14.
The dependence of the rate of creatine phosphate synthesis in the mitochondrial creatine phosphokinase reaction upon the rate of oxidative phosphorylation and ATP translocation from the matrix to outside of the mitochondria has been studied. It has been experimentally shown that mitochondrial creatine phosphokinase reacts slowly with ATP in the medium but is very active in utilization of ATP synthesized by the oxidative phosphorylation process. From these data, it is postulated, therefore, that the ATP-ADP translocase transports ATP molecules directly to the active site of creatine phosphokinase localized on the outer site of the inner membrane. This results in an increase in the effective concentration of ATP in the vinicity of the active sites of creatine kinase and in acceleration of the forward reaction (creatine phosphate synthesis). The kinetic theory based on this assumption allows a quantitative explanation of the observed dependences. These data indicate the tight functional coupling between ATP-ADP translocase and creatine phosphokinase in heart mitochondria. It is concluded that in heart cells energy can be transported by creatine phosphate molecules only.  相似文献   

15.
The cytoplasmic leucyl-tRNA synthetases were purified from a wild-type Neurospora crassa and from a temperature-sensitive leucine-auxotroph (leu-5) mutant. A detailed steady-state kinetic study of the aminoacylation of the tRNALeu from N. crassa by the purified synthetases was carried out. These enzymes need preincubation with dithioerythritol and spermine before the assay in order to become fully active. The Kappm value for leucine was lowered by high ATP concentrations and correspondingly the Kappm,ATP was lowered by high leucine concentrations. The Kappm,Leu was lowered by high pH, a pK value of 6.7 (at 30 degrees C) was calculated for the ionizable group affecting the Km. At the concentrations of 2 mM ATP, 20 microM leucine, 0.3 microM tRNALeu, and pH 7 the apparent Km values were Kappm,ATP = 1.3 mM, Kappm,Leu = 49 microM and Kappm,tRNA = 0.15 microM. No essentially altered cytoplasmic leucyl-tRNA synthetase was produced by the temperature-sensitive mutant strain when kept at 37 degrees C. In none of these experiments could we find any difference between the wild-type enzyme and the enzyme from the mutant strain (whether grown at permissive temperature, 28 degrees C, or grown at permissive temperature for 24 h followed by growth at 37 degrees C). We therefore think that the small difference in the Km value for leucine of the wild-type and mutant enzyme, established in some earlier investigations, is not due to a difference in the kinetic properties of the enzyme molecules but to an external influence. The almost total lack of the mitochondrial leucyl-tRNA synthetase in the mutant strain besides the leucine autotrophy remains the only difference between the wild-type and mutant strains.  相似文献   

16.
A steady-state kinetic analysis with evaluation of product inhibition was accomplished with purified rat liver flavokinase and FAD synthetase. For flavokinase, Km values were calculated as approximately 11 microM for riboflavin and 3.7 microM for ATP. Ki values were calculated for FMN as 6 microM against riboflavin and for ZnADP as 120 microM against riboflavin and 23 microM against ZnATP. From the inhibition pattern, the flavokinase reaction followed an ordered bi bi mechanism in which riboflavin binds first followed by ATP; ADP is released first followed by FMN. For FAD synthetase, Km values were calculated as 9.1 microM for FMN and 71 microM for MgATP. Ki values were calculated for FAD as 0.75 microM against FMN and 1.3 microM against MgATP and for pyrophosphate as 66 microM against FMN. The product inhibition pattern suggests the FAD synthetase reaction also followed an ordered bi bi mechanism in which ATP binds to enzyme prior to FMN, and pyrophosphate is released from enzyme before FAD. Comparison of Ki values with physiological concentrations of FMN and FAD suggests that the biosynthesis of FAD is most likely regulated by this coenzyme as product at the stage of the FAD synthetase reaction.  相似文献   

17.
Initial rates of succinate-dependent ATP synthesis catalyzed by submitochondrial particles from bovine heart substoichiometrically coupled with oligomycin were found to have hyperbolic dependencies on contents of Mg x ADP, free Mg2+, and phosphate. The results suggest that Mg x ADP complex and free phosphate are true substrates of the enzyme; and an unordered ternary complex of Fo x F1-ATPase, Mg x ADP, and phosphate is generated during the catalysis. The presence of free Mg2+ is required for the reaction. Mg2+ was a noncompetitive activator of ATP synthesis relative to Mg x ADP and a competitive activator relative to phosphate. The decrease in steady-state values of Deltamu(H)+ (by the inhibition of succinate oxidase with malonate) results in the decreased value of Vmax and in a slight decrease in Km for the substrates and Mg2+ without changes in affinity for the substrates. Based on these results, a kinetic scheme of ATP synthesis is proposed.  相似文献   

18.
The formation of creatine phosphate by isolated rabbit heart mitochondria in the presence of creatine, α-ketoglutarate, ATP, and inorganic phosphate was studied. Creatine phosphate formation was inhibited by oligomycin. This was most probably due to increased concentration of ADP favoring the reverse reaction (formation of creatine and ATP from phosphocreatine and ADP). The inhibitory effect of oligomycin disappeared in the presence of phosphoenolpyruvate and pyruvate kinase. The results do not indicate any direct coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase as has been suggested for rat heart mitochondria.  相似文献   

19.
Two interconvertible kinetic modes are described for ATP synthesis by bovine heart submitochondrial particles. One mode is characterized by low apparent Km values for ADP (6-10 microM) and Pi (less than or equal to 0.25 mM), and a limited capacity for ATP synthesis (apparent Vmax approximately 500 nmol ATP.min-1.mg of protein-1). ATP synthesis occurs predominantly in this mode when the coupled activity of the respiratory chain relative to the number of functional ATP synthase complexes is low. The second kinetic mode is characterized by high apparent Km values for ADP (50-100 microM) and Pi (approximately 2.0 mM) and a high capacity for ATP synthesis (Vmax greater than 1800 nmol ATP.min-1.mg of protein-1). This mode of ATP synthesis predominates when the available free energy relative to the number of functional ATP synthase units is high. These results suggest that energy pressure in mitochondria might regulate ATP synthesis such that at low levels of energy the ATP synthase operates economically (low substrate Km values, low turnover capacity for ATP synthesis), while at high levels of energy these kinetic constraints are relaxed (high substrate Km values, high turnover capacity for ATP synthesis). The implications of these findings are discussed in relation to the cooperative-type kinetics of ATP synthesis and hydrolysis, the differential effects of a number of F0-F1 inhibitors on the rates of ATP synthesis and hydrolysis, and the controversy as to whether protonic energy in mitochondria is localized or delocalized.  相似文献   

20.
The aim of this study was to measure energy fluxes from mitochondria in isolated permeabilized cardiomyocytes. Respiration of permeabilized cardiomyocytes and mitochondrial membrane potential were measured in presence of MgATP, pyruvate kinase – phosphoenolpyruvate and creatine. ATP and phosphocreatine concentrations in medium surrounding cardiomyocytes were determined. While ATP concentration did not change in time, mitochondria effectively produced phosphocreatine (PCr) with PCr/O2 ratio equal to 5.68 ± 0.14. Addition of heterodimeric tubulin to isolated mitochondria was found to increase apparent Km for exogenous ADP from 11 ± 2 μM to 330 ± 47 μM, but creatine again decreased it to 23 ± 6 μM. These results show directly that under physiological conditions the major energy carrier from mitochondria into cytoplasm is PCr, produced by mitochondrial creatine kinase (MtCK), which functional coupling to adenine nucleotide translocase is enhanced by selective limitation of permeability of mitochondrial outer membrane within supercomplex ATP Synthasome-MtCK-VDAC-tubulin, Mitochondrial Interactosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号