首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We present the first single-molecule atomic force microscopy study on the effect of chemical denaturants on the mechanical folding/unfolding kinetics of a small protein GB1 (the B1 immunoglobulin-binding domain of protein G from Streptococcus). Upon increasing the concentration of the chemical denaturant guanidinium chloride (GdmCl), we observed a systematic decrease in the mechanical stability of GB1, indicating the softening effect of the chemical denaturant on the mechanical stability of proteins. This mechanical softening effect originates from the reduced free-energy barrier between the folded state and the unfolding transition state, which decreases linearly as a function of the denaturant concentration. Chemical denaturants, however, do not alter the mechanical unfolding pathway or shift the position of the transition state for mechanical unfolding. We also found that the folding rate constant of GB1 is slowed down by GdmCl in mechanical folding experiments. By combining the mechanical folding/unfolding kinetics of GB1 in GdmCl solution, we developed the “mechanical chevron plot” as a general tool to understand how chemical denaturants influence the mechanical folding/unfolding kinetics and free-energy diagram in a quantitative fashion. This study demonstrates great potential in combining chemical denaturation with single-molecule atomic force microscopy techniques to reveal invaluable information on the energy landscape underlying protein folding/unfolding reactions.  相似文献   

2.
Proteins constructed from linear arrays of tandem repeats provide a simplified architecture for understanding protein folding. Here, we examine the folding kinetics of the ankyrin repeat domain from the Drosophila Notch receptor, which consists of six folded ankyrin modules and a seventh partly disordered N-terminal ankyrin repeat sequence. Both the refolding and unfolding kinetics are best described as a sum of two exponential phases. The slow, minor refolding phase is limited by prolyl isomerization in the denatured state (D). The minor unfolding phase, which appears as a lag during fluorescence-detected unfolding, is consistent with an on-pathway intermediate (I). This intermediate, although not directly detected during refolding, is shown to be populated by interrupted refolding experiments. When plotted against urea, the rate constants for the major unfolding and refolding phases define a single non-linear v-shaped chevron, as does the minor unfolding phase. These two chevrons, along with unfolding amplitudes, are well-fitted by a sequential three-state model, which yields rate constants for the individual steps in folding and unfolding. Based on these fitted parameters, the D to I step is rate-limiting, and closely matches the major observed refolding phase at low denaturant concentrations. I appears to be midway between N and D in folding free energy and denaturant sensitivity, but has Trp fluorescence properties close to N. Although the Notch ankyrin domain has a simple architecture, folding is slow, with the limiting refolding rate constant as much as seven orders of magnitude smaller than expected from topological predictions.  相似文献   

3.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

4.
We describe the guanidinium hydrochloride induced folding kinetics of the four-helix-bundle protein Rop wild-type (wt) under equilibrium conditions at three temperatures. The choice of appropriate denaturant conditions inside the transition range permitted, in combination with equilibrium transition curves, the determination of both unfolding and refolding rate constants. The ratio of the rate constants at zero denaturant concentration provided equilibrium constants and standard free energy changes that are in good agreement with values obtained in previous differential scanning calorimetry studies. The DeltaG0D values for 19, 25 and 40 degrees C calculated from the present kinetic studies are, respectively, 66.8, 70.8 and 57.2 kJ.mol-1. The unfolding reactions are extremely slow under these conditions. Equilibrium was reached only after 18, 12 and 6 days at 19, 25 and 40 degrees C. These results demonstrate that for Rop wt high stability correlates with slow folding kinetics.  相似文献   

5.
The folding pathway of human FKBP12, a 12 kDa FK506-binding protein (immunophilin), has been characterised. Unfolding and refolding rate constants have been determined over a wide range of denaturant concentrations and data are shown to fit to a two-state model of folding in which only the denatured and native states are significantly populated, even in the absence of denaturant. This simple model for folding, in which no intermediate states are significantly populated, is further supported from stopped-flow circular dichroism experiments in which no fast "burst" phases are observed. FKBP12, with 107 residues, is the largest protein to date which folds with simple two-state kinetics in water (kF=4 s(-1)at 25 degrees C). The topological crossing of two loops in FKBP12, a structural element suggested to cause kinetic traps during folding, seems to have little effect on the folding pathway.The transition state for folding has been characterised by a series of experiments on wild-type FKBP12. Information on the thermodynamic nature of, the solvent accessibility of, and secondary structure in, the transition state was obtained from experiments measuring the unfolding and refolding rate constants as a function of temperature, denaturant concentration and trifluoroethanol concentration. In addition, unfolding and refolding studies in the presence of ligand provided information on the structure of the ligand-binding pocket in the transition state. The data suggest a compact transition state relative to the unfolded state with some 70 % of the surface area buried. The ligand-binding site, which is formed mainly by two loops, is largely unstructured in the transition state. The trifluoroethanol experiments suggest that the alpha-helix may be formed in the transition state. These results are compared with results from protein engineering studies and molecular dynamics simulations (see the accompanying paper).  相似文献   

6.
Extensive measurements and analysis of thermodynamic stability and kinetics of urea-induced unfolding and folding of hisactophilin are reported for 5-50 degrees C, at pH 6.7. Under these conditions hisactophilin has moderate thermodynamic stability, and equilibrium and kinetic data are well fit by a two-state transition between the native and the denatured states. Equilibrium and kinetic m values decrease with increasing temperature, and decrease with increasing denaturant concentration. The betaF values at different temperatures and urea concentrations are quite constant, however, at about 0.7. This suggests that the transition state for hisactophilin unfolding is native-like and changes little with changing solution conditions, consistent with a narrow free energy profile for the transition state. The activation enthalpy and entropy of unfolding are unusually low for hisactophilin, as is also the case for the corresponding equilibrium parameters. Conventional Arrhenius and Eyring plots for both folding and unfolding are markedly non-linear, but these plots become linear for constant DeltaG/T contours. The Gibbs free energy changes for structural changes in hisactophilin have a non-linear denaturant dependence that is comparable to non-linearities observed for many other proteins. These non-linearities can be fit for many proteins using a variation of the Tanford model, incorporating empirical quadratic denaturant dependencies for Gibbs free energies of transfer of amino acid constituents from water to urea, and changes in fractional solvent accessible surface area of protein constituents based on the known protein structures. Noteworthy exceptions that are not well fit include amyloidogenic proteins and large proteins, which may form intermediates. The model is easily implemented and should be widely applicable to analysis of urea-induced structural transitions in proteins.  相似文献   

7.
The thermodynamics and kinetics of folding of common-type acylphosphatase have been studied under a variety of experimental conditions and compared with those of the homologous muscle acylphosphatase. Intrinsic fluorescence and circular dichroism have been used as spectroscopic probes to follow the folding and unfolding reactions. Both proteins appear to fold via a two-state mechanism. Under all the conditions studied, common-type acylphosphatase possesses a lower conformational stability than the muscle form. Nevertheless, common-type acylphosphatase folds more rapidly, suggesting that the conformational stability and the folding rate are not correlated in contrast to recent observations for a number of other proteins. The unfolding rate of common-type acylphosphatase is much higher than that of the muscle enzyme, indicating that the differences in conformational stability between the two proteins are primarily determined by differences in the rate of unfolding. The equilibrium m value is markedly different for the two proteins in the pH range of maximum conformational stability (5. 0-7.5); above pH 8.0, the m value for common-type acylphosphatase decreases abruptly and becomes similar to that of the muscle enzyme. Moreover, at pH 9.2, the dependencies of the folding and unfolding rate constants of common-type acylphosphatase on denaturant concentration (mf and mu values, respectively) are notably reduced with respect to pH 5.5. The pH-induced decrease of the m value can be attributed to the deprotonation of three histidine residues that are present only in the common-type isoenzyme. This would decrease the positive net charge of the protein, leading to a greater compactness of the denatured state. The folding and unfolding rates of common-type acylphosphatase are not, however, significantly different at pH 5.5 and 9.2, indicating that this change in compactness of the denatured and transition states does not have a notable influence on the rate of protein folding.  相似文献   

8.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

9.
Zhou Z  Feng H  Zhou H  Zhou Y  Bai Y 《Biochemistry》2005,44(36):12107-12112
To test whether the folding process of a large protein can be understood on the basis of the folding behavior of the domains that constitute it, we coupled two well-studied small -helical proteins, the B-domain of protein A (60 amino acids) and Rd-apocytochrome b562 (Rd-apocyt b562, 106 amino acids), by fusing the C-terminal helix of the B-domain of protein A with the N-terminal helix of Rd-apocyt b562 without changing their hydrophobic core residues. The success of the design was confirmed by determining the structure of the engineered protein with multidimensional NMR methods. Kinetic studies showed that the logarithms of the folding/unfolding rate constants of the engineered protein are linearly dependent on concentrations of guanidinium chloride in the measurable range from 1.7 to 4 M. Their slopes (m-values) are close to those of Rd-apocyt b562. In addition, the 1H-15N HSQC spectrum taken at 1.5 M guanidinium chloride reveals that only the Rd-apocyt b562 domain in the designed protein remained folded. These results suggest that the two domains have weak energetic coupling. Interestingly, the redesigned protein folds faster than Rd-apocyt b562, suggesting that the fused helix stabilizes the rate-limiting transition state.  相似文献   

10.
To search for folding intermediates, we have examined the folding and unfolding kinetics of wild-type barnase and four representative mutants under a wide range of conditions that span two-state and multi-state kinetics. The choice of mutants and conditions provided in-built controls for artifacts that might distort the interpretation of kinetics, such as the non-linearity of kinetic and equilibrium data with concentration of denaturant. We measured unfolding rate constants over a complete range of denaturant concentration by using by 1H/2H-exchange kinetics under conditions that favour folding, conventional stopped-flow methods at higher denaturant concentrations and continuous flow. Under conditions that favour multi-state kinetics, plots of the rate constants for unfolding against denaturant concentration fitted quantitatively to the equation for three-state kinetics, with a sigmoid component for a change of rate determining step, as did the refolding kinetics. The position of the transition state on the reaction pathway, as measured by solvent exposure (the Tanford beta value) also moved with denaturant concentration, fitting quantitatively to the same equations with a change of rate determining step. The sigmoid behaviour disappeared under conditions that favoured two-state kinetics. Those data combined with direct structural observations and simulation support a minimal reaction pathway for the folding of barnase that involves two detectable folding intermediates. The first intermediate, I(1), is the denatured state under physiological conditions, D(Phys), which has native-like topology, is lower in energy than the random-flight denatured state U and is suggested by molecular dynamics simulation of unfolding to be on-pathway. The second intermediate, I(2), is high energy, and is proven by the change in rate determining step in the unfolding kinetics to be on-pathway. The change in rate determining step in unfolding with structure or environment reflects the change in partitioning of this intermediate to products or starting materials.  相似文献   

11.
The folding reactions of several proteins are well described as diffusional barrier crossing processes, which suggests that they should be analyzed by Kramers' rate theory rather than by transition state theory. For the cold shock protein Bc-Csp from Bacillus caldolyticus, we measured stability and folding kinetics, as well as solvent viscosity as a function of temperature and denaturant concentration. Our analysis indicates that diffusional folding reactions can be treated by transition state theory, provided that the temperature and denaturant dependence of the solvent viscosity is properly accounted for, either at the level of the measured rate constants or of the calculated activation parameters. After viscosity correction the activation barriers for folding become less enthalpic and more entropic. The transition from an enthalpic to an entropic folding barrier with increasing temperature is, however, apparent in the data before and after this correction. It is a consequence of the negative activation heat capacity of refolding, which is independent of solvent viscosity. Bc-Csp and its mesophilic homolog Bs-CspB from Bacillus subtilis differ strongly in stability but show identical enthalpic and entropic barriers to refolding. The increased stability of Bc-Csp originates from additional enthalpic interactions that are established after passage through the activated state. As a consequence, the activation enthalpy of unfolding is increased relative to Bs-CspB.  相似文献   

12.
Sasahara K  Demura M  Nitta K 《Proteins》2002,49(4):472-482
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.  相似文献   

13.
Proteins folding according to a classical two-state system characteristically show V-shaped chevron plots. We have previously interpreted the symmetrically curved chevron plot of the protein U1A as denaturant-dependent movements in the position of the transition state ensemble (TSE). S6, a structural analog of U1A, shows a classical V-shaped chevron plot indicative of straightforward two-state kinetics, but the mutant LA30 has a curved unfolding limb, which is most consistent with TSE mobility. The kinetic m-values (derivatives of the rate constants with respect to denaturant concentration) in themselves depend on denaturant concentration. To obtain complementary information about putative mobile TSEs, we have carried out a thermodynamic analysis of the three proteins, based on data for refolding and unfolding over the range 10 degrees C to 70 degrees C. The data at all temperatures can be fitted to two-state model systems. Importantly, for all three proteins the activation heat capacities are, within error, identical to the heat capacities measured in independent experiments under equilibrium conditions. Although the equilibrium heat capacities are essentially invariant with regard to denaturant concentration, the activation heat capacities, similar to the structurally equivalent kinetic m-values, show marked denaturant dependence. Furthermore, the values of beta++ at different denaturant concentrations measured by m-values and by heat capacity values are very similar. These observations are consistent with significant transition state movements within the framework of two-state folding. The basis for TSE movement appears to be enthalpic rather than entropic, suggesting that the binding energy of denaturant-protein interactions is a major determinant of the response of energy landscape contours to changing environments.  相似文献   

14.
The reversible unfolding and refolding kinetics of alpha-lactalbumin induced by concentration jump of guanidine hydrochloride were measured at pH 7.0 and 25 degrees C using tryptophan absorption at 292 nm, with varying concentrations of the denaturant and free Ca2+. The refolding reaction of alpha-lactalbumin from the fully unfolded (D) state occurs through the two stages: (1) instantaneous formation of a compact intermediate (the A state) that has a native-like secondary structure; (2) tight packing of the preformed secondary structure segments to lead finally to the native structure, this stage being the rate-determining step of the reaction and associated with acquisition of the specific structure necessary for strong Ca2+ binding. Under strongly native conditions, the observed kinetics of refolding is also complicated by the presence of a slow-folding species (10%) in the unfolded state. Considering these facts, the microscopic rate constants in folding and unfolding directions have been evaluated from the observed kinetics and from the equilibrium constants of the transitions among the native (N), A and D states. Close linear relationships have been found in the plots of the activation free energies, obtained from the microscopic rate constants, against the denaturant concentration. They are similar to the linear relationship between the free energy of unfolding and the denaturant concentration. It was demonstrated that the slope of the plots should be approximately proportional to a change in accessible surface area of the protein during the respective activation process, and that only a third of the difference in accessible surface area between A and N is buried in the critical activated state of folding. However, the selective effect of Ca2+ binding on the folding rate constant has been observed also, demonstrating that the specific Ca2+-binding substructure in the N state is already organized in the activated state. Thus, only a part of the protein molecule involving the Ca2+-binding region is organized in the activated state, with the other part of the molecule being left less organized, suggesting that the second stage of folding may be a sequential growing process of organized assemblage of the performed secondary structure segments.  相似文献   

15.
The Saccharomyces cerevisiae non-Mendelian factor [URE3] propagates by a prion-like mechanism, involving aggregation of the chromosomally encoded protein Ure2. The N-terminal prion domain (PrD) of Ure2 is required for prion activity in vivo and amyloid formation in vitro. However, the molecular mechanism of the prion-like activity remains obscure. Here we measure the kinetics of folding of Ure2 and two N-terminal variants that lack all or part of the PrD. The kinetic folding behaviour of the three proteins is identical, indicating that the PrD does not change the stability, rates of folding or folding pathway of Ure2. Both unfolding and refolding kinetics are multiphasic. An intermediate is populated during unfolding at high denaturant concentrations resulting in the appearance of an unfolding burst phase and "roll-over" in the denaturant dependence of the unfolding rate constants. During refolding the appearance of a burst phase indicates formation of an intermediate during the dead-time of stopped-flow mixing. A further fast phase shows second-order kinetics, indicating formation of a dimeric intermediate. Regain of native-like fluorescence displays a distinct lag due to population of this on-pathway dimeric intermediate. Double-jump experiments indicate that isomerisation of Pro166, which is cis in the native state, occurs late in refolding after regain of native-like fluorescence. During protein refolding there is kinetic partitioning between productive folding via the dimeric intermediate and a non-productive side reaction via an aggregation prone monomeric intermediate. In the light of this and other studies, schemes for folding, aggregation and prion formation are proposed.  相似文献   

16.
Chemical denaturants are frequently used to unfold proteins and to characterize mechanisms and transition states of protein folding reactions. The molecular basis of the effect of urea and guanidinium chloride (GdmCl) on polypeptide chains is still not well understood. Models for denaturant--protein interaction include both direct binding and indirect changes in solvent properties. Here we report studies on the effect of urea and GdmCl on the rate constants (k(c)) of end-to-end diffusion in unstructured poly(glycine-serine) chains of different length. Urea and GdmCl both lead to a linear decrease of lnk(c) with denaturant concentration, as observed for the rate constants for protein folding. This suggests that the effect of denaturants on chain dynamics significantly contributes to the denaturant-dependence of folding rate constants for small proteins. We show that this linear dependency is the result of two additive non-linear effects, namely increased solvent viscosity and denaturant binding. The contribution from denaturant binding can be quantitatively described by Schellman's weak binding model with binding constants (K) of 0.62(+/-0.01)M(-1) for GdmCl and 0.26(+/-0.01)M(-1) for urea. In our model peptides the number of binding sites and the effect of a bound denaturant molecule on chain dynamics is identical for urea and GdmCl. The results further identify the polypeptide backbone as the major denaturant binding site and give an upper limit of a few nanoseconds for residence times of denaturant molecules on the polypeptide chain.  相似文献   

17.
The folding and unfolding kinetics within the transition region were measured for RNase A and for RNase T1. The data were used to evaluate the theoretical models for the influence of prolyl isomerization on the observed folding kinetics. These two proteins were selected, since the folding reaction of RNase A is faster than prolyl isomerization, whereas in RNase T1, folding is slower than isomerization in the transition region. Folding of RNase T1 was investigated for three variants with different numbers of cis prolyl residues. The results indicate that in the transition region the folding rates are indeed strongly dependent on the number of prolyl residues. The variant of RNase T1 that contains only one cis prolyl residue folds about ten times faster than two variants that contain two cis prolyl residues. For both RNase A and RNase T1, the apparent rates of folding and unfolding as well as the corresponding amplitudes depend on the concentration of denaturant in a manner that was predicted by the model calculations. When refolding was started from the fast-folding species, additional kinetic phases could be observed in the transition region for both proteins. The obtained values could be used to calculate the microscopic rate constants of folding and isomerization on the basis of theoretical models.  相似文献   

18.
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.  相似文献   

19.
The reversible unfolding of alpha-lactalbumin by guanidine hydrochloride, was studied at 25.0 degrees C in a relatively low concentration range of the denaturant (0.80-2.00 mol/l) by means of difference spectra and pH-jump measurements. The unfolding was shown to occur between two states, N and D, because apparent rate-constants of the unfolding and the refolding reactions depended only on pH. All curves plotted as the logarithmical equilibrium constant log KD against pH could fall on the same base curve by shifting each curve along the log KD axis. From the dependence of the logarithmic rate constant on pH, master curves could also be made for the forward and the backward reactions. The dependence of these master curves on pH indicates that the groups affecting the pH dependence of the unfolding are three residues with pKN = 3.3 and pKA = pKD = 4.4, one residue with pKN = pKA = 3.8 and pKD = 4.4, and one residue with pKN = 5.8 and pKA = pKD = 6.3, where A indicates the activated state. On the other hand, from the denaturant activity dependence of the shift factors required for making the master curves, the value of the intrinsic binding constant of the denaturant to the protein was found to be similar to that obtained from previous measurements at pH 5.5. Differences between the numbers of the binding sites of the denaturant on the denaturated and the native proteins, and between those on the activated and the native proteins were shown to be 5.3 and 2.1, respectively. The free energy of stabilization in the native-like environment also shows that the protein in the native state is more unstable than lysozyme.  相似文献   

20.
The KIX domain of CREB binding protein (CBP) forms a small three-helix bundle which folds autonomously. Previous equilibrium unfolding experiments led to the suggestion that folding may not be strictly two-state. To investigate the folding mechanism in more detail, the folding kinetics of KIX have been studied by urea jump fluorescence-detected stopped-flow experiments. Clear evidence for an intermediate is obtained from the plot of the natural log of the observed rate constant versus denaturant concentration, the chevron plot, and from analysis of the initial fluorescence amplitudes of the stopped-flow experiments. The chevron plot exhibits a change in shape, rollover, at low denaturant concentrations, characteristic of the formation of an intermediate. The kinetic data can be fit to a three-state model involving a compact intermediate. An on-pathway model predicts that the position of the intermediate lies close to the native state. The folding rate in the absence of denaturant is 260 s(-)(1) at pH 7.5 and 25 degrees C. This is significantly slower than the rates of other helical proteins similar in size. The slow folding may be due to the necessity of forming a buried polar interaction in the native state. The potential functional significance of the folding intermediate is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号