首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fms-like tyrosine kinase receptor 3-ligand (Flt3-L) and GM-CSF cause expansion of different subsets of dendritic cells and skew the immune response toward predominantly Th1 and Th2 type, respectively. In the present study, we investigated their effects on experimental autoimmune thyroiditis in CBA/J mice. Relative to mouse thyroglobulin (mTg) immunized controls, mTg-immunized mice treated with Flt3-L showed more severe thyroiditis characterized by enhanced lymphocytic infiltration of the thyroid, and IFN-gamma and IL-2 production. In contrast, mice treated with GM-CSF, either before or after immunization with mTg, showed suppressed T cell response to mTg and failed to develop thyroiditis. Lymphocytes from these mice, upon activation with mTg in vitro, produced higher levels of IL-4 and IL-10. Additionally, GM-CSF-treated mice showed an increase in the frequency of CD4(+)/CD25(+) T cells, which suppressed the mTg-specific T cell response. Neutralization of IL-10, but not IL-4, or depletion of CD4(+)/CD25(+) cells resulted in increased mTg-specific in vitro T cell proliferation suggesting that IL-10 produced by the Ag-specific CD4(+)/CD25(+) regulatory T cells might be critical for disease suppression. These results indicate that skewing immune response toward Th2, through selective activation of dendritic cells using GM-CSF, may have therapeutic potential in Th1 dominant autoimmune diseases including Hashimoto's thyroiditis.  相似文献   

2.
Graves' hyperthyroidism has long been considered to be a Th2-type autoimmune disease because it is directly mediated by autoantibodies against the thyrotropin receptor (TSHR). However, several lines of evidence have recently challenged this concept. The present study evaluated the Th1/Th2 paradigm in Graves' disease using a recently established murine model involving injection of adenovirus expressing the TSHR (AdCMVTSHR). Coinjection with adenovirus expressing IL-4 (AdRGDCMVIL-4) decreased the ratio of Th1/Th2-type anti-TSHR Ab subclasses (IgG2a/IgG1) and suppressed the production of IFN-gamma by splenocytes in response to TSHR Ag. Importantly, immune deviation toward Th2 was accompanied by significant inhibition of thyroid-stimulating Ab production and reduction in hyperthyroidism. However, in a therapeutic setting, injection of AdRGDCMVIL-4 alone or in combination with AdCMVTSHR into hyperthyroid mice had no beneficial effect. In contrast, coinjection of adenoviruses expressing IL-12 and the TSHR promoted the differentiation of Th1-type anti-TSHR immune responses as demonstrated by augmented Ag-specific IFN-gamma secretion from splenocytes without changing disease incidence. Coinjection of adenoviral vectors expressing IL-4 or IL-12 had no effect on the titers of anti-TSHR Abs determined by ELISA or thyroid-stimulating hormone-binding inhibiting Ig assays, suggesting that Ab quality, not quantity, is responsible for disease induction. Our observations demonstrate the critical role of Th1 immune responses in a murine model of Graves' hyperthyroidism. These data may raise a cautionary note for therapeutic strategies aimed at reversing Th2-mediated autoimmune responses in Graves' disease in humans.  相似文献   

3.
Graves' hyperthyroidism, an organ-specific autoimmune disease mediated by stimulatory thyrotropin receptor (TSHR) autoantibodies, has been considered a Th2-dominant disease. However, recent data with mouse Graves' models are conflicting. For example, we recently demonstrated that injection of BALB/c mice with adenovirus coding the TSHR induced Graves' hyperthyroidism characterized by mixed Th1 and Th2 immune responses against the TSHR, and that transient coexpression of the Th2 cytokine IL-4 by adenovirus skewed Ag-specific immune response toward Th2 and suppressed disease induction. To gain further insight into the relationship between immune polarization and Graves' disease, we evaluated the effect of Th2 immune polarization by helminth Schistosoma mansoni infection and alpha-galactosylceramide (alpha-GalCer), both known to bias the systemic immune response to Th2, on Graves' disease. S. mansoni infection first induced mixed Th1 and Th2 immune responses to soluble worm Ags, followed by a Th2 response to soluble egg Ags. Prior infection with S. mansoni suppressed the Th1-type anti-TSHR immune response, as demonstrated by impaired Ag-specific IFN-gamma secretion of splenocytes and decreased titers of IgG2a subclass anti-TSHR Abs, and also prevented disease development. Similarly, alpha-GalCer suppressed Ag-specific splenocyte secretion of IFN-gamma and prevented disease induction. However, once the anti-TSHR immune response was fully induced, S. mansoni or alpha-GalCer was ineffective in curing disease. These data support the Th1 theory in Graves' disease and indicate that suppression of the Th1-type immune response at the time of Ag priming may be crucial for inhibiting the pathogenic anti-TSHR immune response.  相似文献   

4.
Numerous immunostimulatory protocols inhibit the development of T cell-mediated autoimmune insulin-dependent diabetes mellitus (IDDM) in the nonobese diabetic (NOD) mouse model. Many of these protocols, including treatment with the nonspecific immunostimulatory agents CFA or bacillus Calmette-Guérin (BCG) vaccine, have been reported to mediate protection by skewing the pattern of cytokines produced by pancreatic beta-cell autoreactive T cells from a Th1 (IFN-gamma) to a Th2 (IL-4 and IL-10) profile. However, most of these studies have documented associations between such cytokine shifts and disease protection rather than a cause/effect relationship. To partially address this issue we produced NOD mice genetically deficient in IFN-gamma, IL-4, or IL-10. Elimination of any of these cytokines did not significantly alter the rate of spontaneous IDDM development. Additional experiments using these mice confirmed that CFA- or BCG-elicited diabetes protection is associated with a decreased IFN-gamma to IL-4 mRNA ratio within T cell-infiltrated pancreatic islets, but this is a secondary consequence rather than the cause of disease resistance. Unexpectedly, we also found that the ability of BCG and, to a lesser extent, CFA to inhibit IDDM development in standard NOD mice is actually dependent upon the presence of the Th1 cytokine, IFN-gamma. Collectively, our studies demonstrate that while Th1 and Th2 cytokine shifts may occur among beta-cell autoreactive T cells of NOD mice protected from overt IDDM by various immunomodulatory therapies, it cannot automatically be assumed that this is the cause of their disease resistance.  相似文献   

5.
MRL/lpr mice develop spontaneous glomerulonephritis that is essentially identical with diffuse proliferative glomerulonephritis (World Health Organization class IV) in human lupus nephritis. Lupus nephritis is one of the most serious complications of systemic lupus erythematosus. Diffuse proliferative glomerulonephritis is associated with autoimmune responses dominated by Th1 cells producing high levels of IFN-gamma. The initial mounting of Th1 responses depends on the function of the WSX-1 gene, which encodes a subunit of the IL-27R with homology to IL-12R. In mice deficient for the WSX-1 gene, proper Th1 differentiation was impaired and abnormal Th2 skewing was observed during infection with some intracellular pathogens. Disruption of the WSX-1 gene dramatically changed the pathophysiology of glomerulonephritis developing in MRL/lpr mice. WSX-1-/- MRL/lpr mice developed disease resembling human membranous glomerulonephritis (World Health Organization class V) with a predominance of IgG1 in glomerular deposits, accompanied by increased IgG1 and IgE in the sera. T cells in WSX-1-/- MRL/lpr mice displayed significantly reduced IFN-gamma production along with elevated IL-4 expression. Loss of WSX-1 thus favors Th2-type autoimmune responses, suggesting that the Th1/Th2 balance may be a pivotal determinant of human lupus nephritis development.  相似文献   

6.
The differentiation of naive CD4(+) T cells into either proinflammatory Th1 or proallergic Th2 cells strongly influences autoimmunity, allergy, and tumor immune surveillance. We previously demonstrated that beta1,6GlcNAc-branched complex-type (N-acetylglucosaminyltransferase V (Mgat5)) N-glycans on TCR are bound to galectins, an interaction that reduces TCR signaling by opposing agonist-induced TCR clustering at the immune synapse. Mgat5(-/-) mice display late-onset spontaneous autoimmune disease and enhanced resistance to tumor progression and metastasis. In this study we examined the role of beta1,6GlcNAc N-glycan expression in Th1/Th2 cytokine production and differentiation. beta1,6GlcNAc N-glycan expression is enhanced by TCR stimulation independent of cell division and declines at the end of the stimulation cycle. Anti-CD3-activated splenocytes and naive T cells from Mgat5(-/-) mice produce more IFN-gamma and less IL-4 compared with wild-type cells, the latter resulting in the loss of IL-4-dependent down-regulation of IL-4Ralpha. Swainsonine, an inhibitor of Golgi alpha-mannosidase II, blocked beta1,6GlcNAc N-glycan expression and caused a similar increase in IFN-gamma production by T cells from humans and mice, but no additional enhancement in Mgat5(-/-) T cells. Mgat5 deficiency did not alter IFN-gamma/IL-4 production by polarized Th1 cells, but caused an approximately 10-fold increase in IFN-gamma production by polarized Th2 cells. These data indicate that negative regulation of TCR signaling by beta1,6GlcNAc N-glycans promotes development of Th2 over Th1 responses, enhances polarization of Th2 cells, and suggests a mechanism for the increased autoimmune disease susceptibility observed in Mgat5(-/-) mice.  相似文献   

7.
8.
Selective skewing of autoreactive interferon-gamma (IFN-gamma)-producing T helper cells (Th1) toward an interleukin-4 (IL-4)-producing (Th2) phenotype can in experimental animals alleviate autoimmune disease without inducing general immunosuppression. In a prospective dose escalation study, we assessed treatment with human IL-4 (rhuIL-4) in 20 patients with severe psoriasis. The therapy was well tolerated, and within six weeks all patients showed decreased clinical scores and 15 improved more than 68%. Stable reduction of clinical scores was significantly better at 0.2-0.5 microg rhuIL-4 than at < or =0.1 microg rhuIL-4 (P = 0.009). In psoriatic lesions, treatment with 0.2-0.5 microg/kg rhuIL-4 reduced the concentrations of IL-8 and IL-19, two cytokines directly involved in psoriasis; the number of chemokine receptor CCR5+ Th1 cells; and the IFN-gamma/IL-4 ratio. In the circulation, 0.2-0.5 microg/kg rhuIL-4 increased the number of IL-4+CD4+ T cells two- to three-fold. Thus, IL-4 therapy can induce Th2 differentiation in human CD4+ T cells and has promise as a potential treatment for psoriasis, a prototypic Th1-associated autoimmune disease.  相似文献   

9.
Dendritic cells (DCs) have the potential to activate or tolerize T cells in an Ag-specific manner. Although the precise mechanism that determines whether DCs exhibit tolerogenic or immunogenic functions has not been precisely elucidated, growing evidence suggests that DC function is largely dependent on differentiation status, which can be manipulated using various growth factors. In this study, we investigated the effects of mobilization of specific DC subsets-using GM-CSF and fms-like tyrosine kinase receptor 3-ligand (Flt3-L)-on the susceptibility to induction of experimental autoimmune myasthenia gravis (EAMG). We administered GM-CSF or Flt3-L to C57BL/6 mice before immunization with acetylcholine receptor (AChR) and observed the effect on the frequency and severity of EAMG development. Compared with AChR-immunized controls, mice treated with Flt3-L before immunization developed EAMG at an accelerated pace initially, but disease frequency and severity was comparable at the end of the observation period. In contrast, GM-CSF administered before immunization exerted a sustained suppressive effect against the induction of EAMG. This suppression was associated with lowered serum autoantibody levels, reduced T cell proliferative responses to AChR, and an expansion in the population of FoxP3+ regulatory T cells. These results highlight the potential of manipulating DCs to expand regulatory T cells for the control of autoimmune diseases such as MG.  相似文献   

10.
Development of an animal model of autoimmune thyroid eye disease   总被引:12,自引:0,他引:12  
In previous studies we have transferred thyroiditis to naive BALB/c and NOD mice with human thyrotropin (TSH) receptor (TSHR)-primed splenocytes. Because the TSHR has been implicated in the pathogenesis of thyroid eye disease (TED) we have examined the orbits of recipients of TSHR-primed T cells, generated using a TSHR fusion protein or by genetic immunization. In the NOD mice, 25 of 26 animals treated with TSHR-primed T cells developed thyroiditis with considerable follicular destruction, numerous activated and CD8+ T cells, and immunoreactivity for IFN-gamma. Thyroxine levels were reduced. Thyroiditis was not induced in controls. None of the NOD animals developed any orbital pathology. Thirty-five BALB/c mice received TSHR-primed spleen cells. Thyroiditis was induced in 60-100% and comprised activated T cells, B cells, and immunoreactivity for IL-4 and IL-10. Autoantibodies to the receptor were induced, including TSH binding inhibiting Igs. A total of 17 of 25 BALB/c orbits displayed changes consisting of accumulation of adipose tissue, edema caused by periodic acid Schiff-positive material, dissociation of the muscle fibers, the presence of TSHR immunoreactivity, and infiltration by lymphocytes and mast cells. No orbital changes or thyroiditis were observed in control BALB/c mice. We have induced orbital pathology having many parallels with human TED, only in BALB/c mice, suggesting that a Th2 autoimmune response to the TSHR may be a prerequisite for the development of TED.  相似文献   

11.
IL-12 and IFN-gamma positively regulate each other and type 1 inflammatory responses, which are believed to cause tissue damage in autoimmune diseases. We investigated the role of the IL-12/IFN-gamma (Th1) axis in the development of autoimmune myocarditis. IL-12p40-deficient mice on a susceptible background resisted myocarditis. In the absence of IL-12, autospecific CD4(+) T cells proliferated poorly and showed increased Th2 cytokine responses. However, IFN-gamma-deficient mice developed fatal autoimmune disease, and blockade of IL-4R signaling did not confer susceptibility to myocarditis in IL-12p40-deficient mice, demonstrating that IL-12 triggers autoimmunity by a mechanism independent of the effector cytokines IFN-gamma and IL-4. In conclusion, our results suggest that the IL-12/IFN-gamma axis is a double-edged sword for the development of autoimmune myocarditis. Although IL-12 mediates disease by induction/expansion of Th1-type cells, IFN-gamma production from these cells limits disease progression.  相似文献   

12.
Th1-type immune responses, mediated by IL-12-induced IFN-gamma, are believed to exacerbate certain autoimmune diseases. We recently found that signaling via IL-12Rbeta1 increases coxsackievirus B3 (CVB3)-induced myocarditis. In this study, we examined the role of IL-12 on the development of CVB3-induced myocarditis using mice deficient in IL-12p35 that lack IL-12p70. We found that IL-12 deficiency did not prevent myocarditis, but viral replication was significantly increased. Although there were no changes in the total percentage of inflammatory cells in IL-12-deficient hearts compared with wild-type BALB/c controls by FACS analysis, macrophage and neutrophil populations were decreased. This decrease corresponded to reduced TNF-alpha and IFN-gamma levels in the heart, suggesting that macrophage and/or neutrophil populations may be a primary source of TNF-alpha and IFN-gamma during acute CVB3 myocarditis. Increased viral replication in IL-12-deficient mice was not mediated by reduced TNFRp55 signaling, because viral replication was unaltered in TNFRp55-deficient mice. However, STAT4 or IFN-gamma deficiency resulted in significantly increased viral replication and significantly reduced TNF-alpha and IFN-gamma levels in the heart, similar to IL-12 deficiency, indicating that the IL-12/STAT4 pathway of IFN-gamma production is important in limiting CVB3 replication. Furthermore, STAT4 or IFN-gamma deficiency also increased chronic CVB3 myocarditis, indicating that therapeutic strategies aimed at reducing Th1-mediated autoimmune diseases may exacerbate common viral infections such as CVB3 and increase chronic inflammatory heart disease.  相似文献   

13.
IL-17 is the hallmark cytokine for the newly identified subset of Th cells, Th17. Th17 cells are important instigators of inflammation in several models of autoimmune disease; in particular, collagen induced arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE), which were previously characterized as Th1-mediated diseases. Although high levels of IFN-gamma are secreted in CIA and EAE, disease is exacerbated in IFN-gamma- or IFN-gamma receptor-deficient mice due to the ability of IFN-gamma to suppress IL-17 secretion. However, in proteoglycan-induced arthritis (PGIA), severe arthritis is dependent on the production of IFN-gamma. We were therefore interested in determining the role of IL-17 in PGIA. We assessed the progression of arthritis in IL-17-deficient (IL-17-/-) mice and found the onset and severity of arthritis were equivalent in wild-type (WT) and IL-17-/- mice. Despite evidence that IL-17 is involved in neutrophil recruitment, synovial fluid from arthritic joints showed a comparable proportion of Gr1+ neutrophils in WT and IL-17-/- mice. IL-17 is also implicated in bone destruction in autoimmune arthritis, however, histological analysis of the arthritic joints from WT and IL-17-/- mice revealed a similar extent of joint cellularity, cartilage destruction, and bone erosion despite significantly reduced RANKL (receptor activator of NK-kappaB ligand) expression. There were only subtle differences between WT and IL-17-/- mice in proinflammatory cytokine expression, T cell proliferation, and autoantibody production. These data demonstrate that IL-17 is not absolutely required for autoimmune arthritis and that the production of other proinflammatory mediators is sufficient to compensate for the loss of IL-17 in PGIA.  相似文献   

14.
The development of immunosuppression during polymicrobial sepsis is associated with the failure of dendritic cells (DC) to promote the polarization of T helper (Th) cells toward a protective Th1 type. The aim of the study was to test potential immunomodulatory approaches to restore the capacity of splenic DC to secrete interleukin (IL) 12 that represents the key cytokine in Th1 cell polarization. Murine polymicrobial sepsis was induced by cecal ligation and puncture (CLP). Splenic DC were isolated at different time points after CLP or sham operation, and stimulated with bacterial components in the presence or absence of neutralizing anti-IL-10 antibodies, murine interferon (IFN) gamma, and/or granulocyte macrophage colony-stimulating factor (GM-CSF). DC from septic mice showed an impaired capacity to release the pro-inflammatory and Th1-promoting cytokines tumor necrosis factor alpha, IFN-gamma, and IL-12 in response to bacterial stimuli, but secreted IL-10. Endogenous IL-10 was not responsible for the impaired IL-12 secretion. Up to 6 h after CLP, the combined treatment of DC from septic mice with IFN-gamma and GM-CSF increased the secretion of IL-12. Later, DC from septic mice responded to IFN-gamma and GM-CSF with increased expression of the co-stimulatory molecule CD86, while IL-12 secretion was no more enhanced. In contrast, splenic macrophages from septic mice during late sepsis responded to GM-CSF with increased cytokine release. Thus, therapy of sepsis with IFN-gamma/GM-CSF might be sufficient to restore the activity of macrophages, but fails to restore DC function adequate for the development of a protective Th1-like immune response.  相似文献   

15.
Spontaneous autoimmune thyroiditis (SAT) is an organ-specific autoimmune disease characterized by chronic inflammation of the thyroid by T and B lymphocytes. To investigate the roles of Th1 and Th2 cytokines in the pathogenesis of SAT, IFN-gamma(-/-) and IL-4(-/-) NOD.H-2h4 mice were generated. IL-4(-/-) mice developed lymphocytic SAT (L-SAT) comparable to that of wild-type (WT) mice. They produced little anti-mouse thyroglobulin (MTg) IgG1, but had levels of anti-MTg IgG2b comparable to WT mice. Compared with WT mice, IFN-gamma(-/-) mice produced significantly less anti-MTg IgG1 and IgG2b. Absence of IFN-gamma resulted in abnormal proliferation of thyroid epithelial cells with minimal lymphocyte infiltration. Thyroids of IFN-gamma(-/-) mice had markedly reduced B lymphocyte chemoattractant expression, B cell and plasma cell infiltration, and decreased MHC class II expression on thyrocytes compared with WT mice. Adoptive transfer of WT splenocytes to IFN-gamma(-/-) mice restored the capacity to develop typical L-SAT, enhanced anti-MTg IgG1 and IgG2b production, up-regulated MHC class II expression on thyrocytes and decreased thyrocyte proliferation. These results suggest that IFN-gamma plays a dual role in the development of SAT. IFN-gamma is required for development of L-SAT, and it also functions to inhibit thyroid epithelial cell proliferation.  相似文献   

16.
Cholera toxin (CT), a major enterotoxin produced by Vibrio cholerae, is known for its properties as a mucosal adjuvant that promotes Th2 or mixed Th1 + Th2 responses. In this study, we explore the ability of CT to act as a systemic adjuvant to counteract the Th1 response leading to experimental autoimmune uveitis. We report that susceptible B10.RIII mice immunized with a uveitogenic regimen of the retinal Ag interphotoreceptor retinoid-binding protein could be protected from disease by a single systemic injection of as little as 2 micro g of CT at the time of immunization. The protected mice were not immunosuppressed, but rather displayed evidence of immune deviation. Subsequent adaptive responses to interphotoreceptor retinoid-binding protein showed evidence of Th2 enhancement, as indicated by reduced delayed-type hypersensitivity in the context of enhanced Ag-specific lymphocyte proliferation and IL-4 production. Ag-specific production of several other cytokines, including IFN-gamma, was not appreciably altered. The inhibitory effect of CT was dependent on the enzymatic A subunit of CT, because the cell-binding B subunit alone could not block disease development. Mice given CT displayed detectable IL-4 levels in their serum within hours of CT administration. This innate IL-4 production was critical for protection, as infusion of neutralizing Ab against IL-4 to mice, given a uveitogenic immunization and treated with CT, counteracted immune deviation and abrogated protection. Our data indicate that systemic administration of CT inhibits experimental autoimmune uveitis by skewing the response to the uveitogenic autoantigen to a nonpathogenic phenotype.  相似文献   

17.
Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA) in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII) inhibited development and progression of CCIA and, importantly, also ameliorated ongoing disease as indicated by clinical scores of disease severity, paw swelling and joints histology. Treated mice show reduced CII-driven T cell proliferation and IFN-gamma production, as well as significantly lower levels of CII-specific IgG2a serum antibodies. In contrast, CII-driven IL-4 production and IgE antibody levels were increased consistent with skewing of the CII response from Th1 to Th2 in treated mice. IL-4 production in treated mice was inversely correlated with disease severity. Moreover, T cells from treated mice inhibited proliferation and IFN-gamma production by T cells from CCIA mice, suggesting induction of regulatory T cells that actively inhibit effector responses in arthritic mice. The levels of CD4(+)CD25(+) T cells were however not increased following epicutaneous CII treatment. Together, these results suggest that epicutaneous immunization may be used as an immune-modulating procedure to actively re-programme pathogenic Th1 responses, and could have potential as a novel specific and simple treatment for chronic autoimmune inflammatory diseases such as rheumatoid arthritis.  相似文献   

18.
IL-18 promotes NK cell and Th1 cell activity and may bridge innate and adaptive immune responses. Myelin oligodendrocyte glycoprotein (MOG) is a myelin component of the CNS and is a candidate autoantigen in multiple sclerosis. In the present study we show that IL-18-deficient (IL-18-/-) mice are defective in mounting autoreactive Th1 and autoantibody responses and are resistant to MOG35-55 peptide-induced autoimmune encephalomyelitis. IL-18 administration enhances the disease severity in wild-type mice and restores the ability to generate Th1 response in the IL-18-/- mice. This restoration was abrogated in NK cell-depleted mice, indicating that the action of IL-18 in promoting the generation of MOG-specific Th cells was dependent on NK cells. Furthermore, transfer of NK cells from recombinase-activating gene 1-/- mice, but not from recombinase-activating gene 1/IFN-gamma-/- mice, rescued the defective Th1 responses in IL-18-/- mice and rendered IL-18-/- mice susceptible to the induction of autoimmune encephalomyelitis. Thus, IL-18 can direct autoreactive T cells and promote autodestruction in the CNS at least in part via induction of IFN-gamma by NK cells.  相似文献   

19.
GM-CSF is critical for dendritic cell (DC) survival and differentiation in vitro. To study its effect on DC development and function in vivo, we used a gene transfer vector to transiently overexpress GM-CSF in mice. We found that up to 24% of splenocytes became CD11c+ and the number of DC increased up to 260-fold to 3 x 10(8) cells. DC numbers remained substantially elevated even 75 days after treatment. The DC population was either CD8alpha+CD4- or CD8alpha-CD4- but not CD8alpha+CD4+ or CD8alpha-CD4+. This differs substantially from subsets recruited in normal or Flt3 ligand-treated mice or using GM-CSF protein injections. GM-CSF-recruited DC secreted extremely high levels of TNF-alpha compared with minimal amounts in DC from normal or Flt3 ligand-treated mice. Recruited DC also produced elevated levels of IL-6 but almost no IFN-gamma. GM-CSF DC had robust immune function compared with controls. They had an increased rate of Ag capture and caused greater allogeneic and Ag-specific T cell stimulation. Furthermore, GM-CSF-recruited DC increased NK cell lytic activity after coculture. The enhanced T cell and NK cell immunostimulation by GM-CSF DC was in part dependent on their secretion of TNF-alpha. Our findings show that GM-CSF can have an important role in DC development and recruitment in vivo and has potential application to immunotherapy in recruiting massive numbers of DC with enhanced ability to activate effector cells.  相似文献   

20.
Vasoactive intestinal peptide (VIP) and its two G protein-coupled receptors, VPAC1 and VPAC2, are quantitatively prominent and functionally critical in the immune system. Transgenic (T) mice constitutively expressing VPAC2 selectively in CD4 T cells, at levels higher than those found after maximal induction in CD4 T cells of wild-type (N) mice, have elevated blood concentrations of IgE, IgG1, and eosinophils; enhanced immediate-type hypersensitivity; and reduced delayed-type hypersensitivity. In contrast, VPAC2-null (K) mice manifest decreased immediate-type hypersensitivity and enhanced delayed-type hypersensitivity. The phenotypes are attributable to opposite skewing of the Th2/Th1 cytokine ratio, but no studies were conducted on the roles of T cell-derived VIP and altered expansion of the Th subsets. Dependence of the Th phenotype of T mice, but not of N or K mice, on T cell-derived VIP now is proven by showing that eliminating VIP from TCR-stimulated T cell cultures with VIPase IgG normalizes the elevated number of IL-4-secreting CD4 T cells, decreases the secretion of IL-4 and IL-10, and increases the secretion of IFN-gamma. Flexible responsiveness of CD4 T cells from N and K mice, but not T mice, to exogenous VIP in vitro and in vivo is shown by increased numbers of IL-4-secreting CD4 T cells, greater secretion of IL-4 and IL-10, and lesser secretion of IFN-gamma after TCR stimulation with VIP. The level of VIP recognized by CD4 T cells thus is a major determinant of the relative contributions of Th subsets to the immune effector phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号