首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 0.5 M solution at pH 7.6, interaction of spermidine and 5'-AMP is demonstrated by downfield proton NMR shifts. Shifts of ribose and adenine protons support a model in which triprotonated spermidine engages the phosphate, anion with the C-3 diamine segment in a conformation to maximize interaction and the C-4 ammo segment extended to interact with adenine N-7 (base anti, 2'endo, g'g' and gg nucleoside conformation). Changes in carbon-13 chemical shifts for ribose C-5' (downfield), C-2' C-3', and C-4' (upfield) and for adenine C-6 and C-8 (upfield) support this model. In 0.006 M solution no significant changes in proton shifts and therefore no evidence for interaction was found. Spermidine and 5'-UMP (0.006 M) showed interaction at pH 10.5 (small upfield shifts in the proton nmr) interpreted as changing conformation by solvent interaction. In 0.006 M 3'-UMP at pH 10.5 small downfield proton shifts induced by spennidine are attributed to interactions with phosphate anion.  相似文献   

2.
8-Bromo-adenosine diphosphoribose (br8 ADP-Rib) and nicotinamide 8-bromoadenine dinucleotide (Nbr8AD+) which are analogues of the coenzyme NAD+, were prepared and their liver alcohol dehydrogenase complexes studied by crystallographic methods. Nbr8AD+ is active in alcohol dehydrogenase complexes studied by crystallographic methods. Nbr8AD+ is active in hydrogen transport and br8ADP-Rib is a coenzyme competitive inhibitor for the enzymes liver alcohol dehydrogenase and yeast alcohol dehydrogenase. X-ray data were obtained for the complex between liver alcohol dehydrogenase and br8ADP-Rib to 0.45 nm resolution and for the liver alcohol dehydrogenase-adenosine diphosphoribose complex to 0.29-nm resolution. The conformations of these analogues were determined from the X-ray data. It was found that ADP-Rib had a conformation very similar to the corresponding part of NAD+, when NAD+ is bound to lactate and malate dehydrogenase. br8ADP-Rib had the same anti conformation of the adenine ring with respect to the ribose as ADP-Rib and NAD+, in contrast to the syn conformation found in 8-bromo-adenosine. The overcrowding at the 8-position is relieved in br8ADP-Rib by having the ribose in the 2' endo condormation instead of the usual 3' endo as in ADP-Rib and NAD+.  相似文献   

3.
N6-Methoxy-2',3',5'-tri-O-methyladenosine crystallizes in space group P2(1)2(1)2(1) with cell dimensions a = 4.693, b = 11.412, c = 31.741 A. Least-squares refinement of diffractometer data converged at R = 0.038. The location of a hydrogen atom at N1 and the observed bond lengths and bond angles indicate unequivocally the imino tautomer of the adenine moiety. The N6-methoxy group is oriented syn to N1 and the glycosidic torsion angle XCN is -3.6 degrees, i.e. in the anti range. The furanose ring has a C2'-exo/C3'- endo pucker (P = 0.9 degrees) and is unusually flattened (tau m = 30.0 degrees). The conformations of the O-methyl groups of the ribose ring are compared with those of monomethylated nucleosides, including the biologically important 2'-O-methyl nucleosides. Evidence is presented for the existence of C-H ... N intermolecular hydrogen bonds between adenine moieties. Bearing in mind that N6-methoxyadenosine is a promutagenic analogue, the results are compared with those for the corresponding promutagenic N4-methoxycytidine. They are also discussed in relation to the tautomerism, the conformation of the N6-methoxy group, and the associated base-pairing abilities in the absence and presence of polymerases.  相似文献   

4.
The magnetic shielding constant of the different 13C and 1H nuclei of a deoxyribose are calculated for the C2' endo and C3' endo puckerings of the furanose ring as a function of the conformation about the C4'C5' bond. For the carbons the calculated variations are of several ppm, the C3' endo puckering corresponding in most cases to a larger shielding than the C2' endo one. For the protons the calculated variations of chemical shifts are all smaller than 1.3 ppm, that is of the order of magnitude of the variation of the geometrical shielding produced on these protons by the other units of a DNA double helix, with a change of the overall structure of the helix. The computations carried out on the deoxyribose-3' and 5' phosphates for several conformations of the phosphate group tend to show that the changes of conformation of the charged group of atoms produce chemical shift variations smaller than the two conformational parameters of the deoxyribose itself. The calculations carried out for a ribose do give the general features of the differences between the carbon and proton spectra of deoxynucleosides and nucleosides. The comparison of the measured and calculated phosphorylation shifts tend to show that the counterion contributes significantly, for some nuclei of the deoxyribose, to the shifts measured. The calculated magnitude of this polarization effect on carbon shifts suggests a tentative qualitative interpretation of carbon spectra of the ribose part of DNA double helices.  相似文献   

5.
8-Methyladenosine 3'-monophosphate dihydrate was synthesized and crystallized in the monoclinic space group P21 with the unit cell dimensions: a = 9.095(2) A, b = 16.750(3) A, c = 5.405(2) A and beta = 97.61(3) degrees. The structure was determined by the application of the heavy atom method and refined to give a final R factor of 0.047. The pertinent conformations are as follows: the syn conformation about the glycosyl bond (chiCN = 216.8 degrees), the C(2')-endo sugar puckering with the displacement of 0.55 A; and the gauche-gauche conformation about the C(4')-C(5') bond capable of forming an intramolecular hydrogen bonding between N(3) of adenine base and O(5') of the hydroxymethylene group on the ribose. The molecule exists in the zwitterionic form with the N(1) of the adenine base protonated by a phosphate proton and is stabilized by three-dimensional networks of hydrogen bonding through the crystalline water molecules or directly between the adjacent nucleotide molecules; no base stacking was observed.  相似文献   

6.
We have determined the effect of the tryptophan (trp) repressor from Escherichia coli on the structure and dynamics of dA20dT20. The structure was determined using time-dependent nuclear Overhauser effects and spin-lattice relaxation times. The deoxyribose conformation is near C3' endo for the thymine residues, and a mixture of about 30% C3' endo and 70% C2' endo for the adenine residues. The glycosidic torsion angles are -50 degrees for T and -60 degrees for A. The roll is 20 degrees and the propellor twist is about 29 degrees. The conformation is consistent with recent calculations (Rao, K. and Kollman, P.A. (1985) J. Am. Chem. Soc. 107, 1507-1511). The rate constant for exchange of the imino protons is similar to that usually found for AT base-pairs, with an activation energy of 20 +/- 2 kcal/mol, and an activation entropy of 17 +/- 7 cal/mol per K. The repressor greatly retards the exchange of imino protons, and the activation energy increases to 38 kcal/mol. There are small changes in the structure of the DNA on forming the complex, with the adenine and thymidine residues becoming more similar in conformation.  相似文献   

7.
Proton magnetic resonance studies of 2'-o-methyladenosine in 2H2O have been carried out at variable temperature and p2H. The chemical shifts and H-H coupling constants are discussed in terms of the molecular conformation. Comparison of the data with those of adenosine reveals that 2'-O-methylation has little influence on the conformation. At neutral p2H where the adenine base is not protonated, the molecules favor a 2' endo, gauche-gauche conformation. Protonation of the base at the N(1) position leads to a decrease in the 2' endo, gauche-gauche bias. The data for 2'-O-methyladenosine and adenosine, as well as for several other purine derivatives, reveal the presence of a correlation between the sugar pucker and the C(5')-C(4') conformer distribution which is the inverse of the correlation previously reported for pyrimidine derivatives.  相似文献   

8.
The aqueous solution conformation of four purine 3':5'-nucleotides varying in their substituents at C-6 and C-8 has been studied using gadolinium(III) to perturb the proton relaxation times. The ribose conformations are inferred. All the nucleotides are best described as being in a dynamic equilibrium between syn and anti conformations and the position of this equilibrium is not dramatically affected by changing the substituent at C-6. These nucleotides in their neutral base form slightly favour an anti conformation. In the presence of a bulky methylthio group at C-8 the equilibrium is shifted towards a dominance from the syn conformation due to steric repulsion factors.  相似文献   

9.
Both thiosemicarbazone groups of the derivative 1 of 3-deoxy-D-erythro-hexos-2-ulose underwent, on acetylation, a heterocyclization process to give (5R,5'R)-2,2'-diacetamido-4,4'-di-N-acetyl-5'-(1-deoxy-2,3,4-tri-O-acetyl-D-erythritol-1-yl)-5,5'-bis(1,3,4-thiadiazoline) (2) as a major product. The X-ray diffraction data of a single crystal of 2 indicated the R,R configuration for the stereocenters of the thiadiazoline rings (C-5 and C-5'). In the solid state, 2 adopts a sickle conformation (by clockwise rotation of the C-2-C-3 axis of the sugar chain) which has a S//O 1,3-parallel interaction. In solution, as determined by (1)H NMR spectroscopy which included NOE experiments, a similar sickle conformation was observed. From the reaction mixture of acetylation of 1 was isolated the bis(thiadiazoline) 3 as a by-product. The configuration of the C-5 and C-5' stereocenters of 3 were respectively assigned as S,R by comparison of the physical and spectroscopic data of this compound with those of 2.  相似文献   

10.
The structure of the T=3 single stranded RNA tymovirus, physalis mottle virus (PhMV), has been determined to 3.8 A resolution. PhMV crystals belong to the rhombohedral space group R 3, with one icosahedral particle in the unit cell leading to 20-fold non-crystallographic redundancy. Polyalanine coordinates of the related turnip yellow mosaic virus (TYMV) with which PhMV coat protein shares 32 % amino acid sequence identity were used for obtaining the initial phases. Extensive phase refinement by real space molecular replacement density averaging resulted in an electron density map that revealed density for most of the side-chains and for the 17 residues ordered in PhMV, but not seen in TYMV, at the N terminus of the A subunits. The core secondary and tertiary structures of the subunits have a topology consistent with the capsid proteins of other T=3 plant viruses. The N-terminal arms of the A subunits, which constitute 12 pentamers at the icosahedral 5-fold axes, have a conformation very different from the conformations observed in B and C subunits that constitute hexameric capsomers with near 6-fold symmetry at the icosahedral 3-fold axes. An analysis of the interfacial contacts between protein subunits indicates that the hexamers are held more strongly than pentamers and hexamer-hexamer contacts are more extensive than pentamer-hexamer contacts. These observations suggest a plausible mechanism for the formation of empty capsids, which might be initiated by a change in the conformation of the N-terminal arm of the A subunits. The structure also provides insights into immunological and mutagenesis results. Comparison of PhMV with the sobemovirus, sesbania mosaic virus reveals striking similarities in the overall tertiary fold of the coat protein although the capsid morphologies of these two viruses are very different.  相似文献   

11.
To elucidate the structural basis for the alteration of coenzyme specificity from NADH toward NADPH in a malate dehydrogenase mutant EX7 from Thermus flavus, we determined the crystal structures at 2.0 A resolution of EX7 complexed with NADPH and NADH, respectively. In the EX7-NADPH complex, Ser42 and Ser45 form hydrogen bonds with the 2'-phosphate group of the adenine ribose of NADPH, although the adenine moiety is not seen in the electron density map. In contrast, although Ser42 and Ser45 occupy a similar position in the EX7-NADH complex structure, both the adenine and adenine ribose moieties of NADH are missing in the map. These results and kinetic analysis of site-directed mutant enzymes indicate (1) that the preference of EX7 for NADPH over NADH is ascribed to the recognition of the 2'-phosphate group by two Ser and Arg44, and (2) that the adenine moiety of NADPH is not recognized in this mutant.  相似文献   

12.
Insecticyanin, a blue biliprotein isolated from the tobacco hornworm Manduca sexta L., is involved in insect camouflage. Its three-dimensional structure has now been solved to 2.6 A resolution using the techniques of multiple isomorphous replacement, non-crystallographic symmetry averaging about a local 2-fold rotation axis and solvent flattening. All 189 amino acids have been fitted to the electron density map. The map clearly shows that insecticyanin is a tetramer with one of its molecular 2-fold axes coincident to a crystallographic dyad. The individual subunits have overall dimensions of 44 A X 37 A X 40 A and consist primarily of an eight-stranded anti-parallel beta-barrel flanked on one side by a 4.5-turn alpha-helix. Interestingly the overall three-dimensional fold of the insecticyanin subunit shows remarkable similarity to the structural motifs of bovine beta-lactoglobulin and the human serum retinol-binding protein. The electron density attributable to the chromophore is unambiguous and shows that it is indeed the gamma-isomer of biliverdin. The biliverdin lies towards the open end of the beta-barrel with its two propionate side chains pointing towards the solvent and it adopts a rather folded conformation, much like a heme.  相似文献   

13.
In the presence of magnesium ions, cleavage by the hammerhead ribozyme RNA at a specific residue leads to 2'3'-cyclic phosphate and 5'-OH extremities. In the cleavage reaction an activated ribose 2'-hydroxyl group attacks its attached 3'-phosphate. Molecular dynamics simulations of the crystal structure of the hammerhead ribozyme, obtained after flash-freezing of crystals under conditions where the ribozyme is active, provide evidence that a mu-bridging OH-ion is located between two Mg2+ions close to the cleavable phosphate. Constrained simulations show further that a flip from the C3'- endo to the C2'- endo conformation of the ribose at the cleavable phosphate brings the 2'-hydroxyl in proximity to both the attacked phosphorous atom and the mu-bridging OH-ion. Thus, the simulations lead to a detailed new insight into the mechanism of hammerhead ribozyme cleavage where a mu-hydroxo bridged magnesium cluster, located on the deep groove side, provides an OH-ion that is able to activate the 2'-hydroxyl nucleophile after a minor and localized conformational change in the RNA.  相似文献   

14.
Carbon-13 nuclear magnetic resonance spectra of adenine cyclonucleosides, which have a fixed glycosidic conformation in an anti range, and their isopropylidene and phosphate esters are reported; those of 9-beta-D-arabinofuranosyladenine and its 5'-phosphate are also presented. The chemical shifts of the base carbons are affected not only by the bridging atom but also by the position of the bridged sugar carbon which determine the planarity of the third ring formed by cyclization between the base and the sugar. The effects of glycosidic conformation on the sugar-carbon chemical shifts are discussed by comparison of the data for 8:5'-cycloadenosines with the data for adenosine and its 8-substituted derivatives. The effects of a 2'-oxygen on sugar-carbon chemical shifts have been examined by comparing the data for 2'-deoxyadenosine, arabinosyladenine and 8:2'-anhydro-8-oxy-9-beta-D-arabinofuranosyladenine. The effects of phosphomonoester groups on base and sugar carbon resonances have been examined and it is noted that these groups cause downfield shifts for C-8 of all cyclonucleotides. Data for the 3':5'-cyclic monophosphate derivative of 8:2'-anhydro-8-thio-9-beta-D-arabinofuranosyladenine suggest that the previous assignments of C-4' and C-3' for nucleoside 3':5'-cyclic monophosphates must be reversed. According to the reversed assignments, it seems that C-3' and C-5' show moderate downfield shifts and C-4' shows a marked upfield shift.  相似文献   

15.
Following X irradiation of adenine.HCl.H2O at 10 K, evidence for five distinct radical products was present in the EPR/ENDOR. (In both adenine.HCl.1/2H2O and adenosine.HCl, the adenine base is present in a cationic form as it is protonated at N1). From ENDOR data, radical R1, stable at temperatures up to 250 K, was identified as the product of net hydrogen loss from N1. This product, evidently formed by electron loss followed by proton loss, is equivalent to the radical cation of the neutral adenine base. Radical R2, unstable at temperatures above 60 K, was identified as the product of net hydrogen addition to N3, and evidently formed by electron addition followed by proton addition. Radicals R3-R5 could not be identified with certainty. Similar treatment of adenosine.HCl provided evidence for six identifiable radical products. Radical R6, stable to ca. 150 K, was identified as the result of net hydrogen loss from the amino group, and evidently was the product of electron loss followed by proton loss. Radical R7 was tentatively identified as the product of net hydrogen addition to C4 of the adenine base. Radical R8 was found to be the product of net hydrogen addition to C2 of the adenine base, and R9 was the product of net hydrogen addition to C8. Radical R10 was identified as the product of net hydrogen abstraction from C1' of the ribose, and R11 was an alkoxy radical formed from the ribose. With the exception of R11, all products were also found following irradiation at 65 K. Only radical R8 and R9 were stable at room temperature. Most notable is the different deprotonation behavior of the primary electron-loss products (radical R1 vs. R6) and the different protonation behavior of the primary electron-gain products (radical R2 vs. no similar product in adenosine.HCl). The major structural difference in the two crystals is the electrostatic environment of the adenine base. Therefore, this study provides further evidence that environmental influences are important in determining proton transfer processes.  相似文献   

16.
Using a light-emitting diode (LED) as the light source, the effects of eight different light treatments [white light (control, W), purple light (P), blue light (B), red light (R), green light (G), yellow light (Y), red–blue light in a 9:1 ratio (9R/1B), and red–blue light in a 4:1 ratio (4R/1B)] on the growth, quality and nitrogen metabolism of lettuce were studied. The results showed that compared with the white light, the purple light, blue light, red light, and the red-blue light combination could all increase the biomass of the aboveground part of lettuce to various degrees, while green light and yellow light inhibited lettuce growth. Under blue light, the contents of soluble protein and flavonoid in lettuce were the highest; under red light, the soluble sugar content was the highest, while the contents of soluble protein, free amino acids, and vitamin C (VC) were relatively higher under the 4R/1B light condition. Compared with white light, the sources of purple, blue, and red lights as well as the red–blue light combination all significantly reduced nitrate accumulation in lettuce, and the activities of the nitrogen (N) metabolism-related enzymes such as nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase were increased to varying degrees. In contrast, the contents of nitrate and ammonium N were significantly accumulated in lettuce under green light, and the activities of relative enzymes were significantly reduced. Therefore, the purple light, blue light, and red–blue combination light sources could promote N assimilation and improve the aboveground biomass accumulation in lettuce by improving the activity of the N metabolism-related enzymes in lettuce. Particularly under the 4R/1B light source, the biomass, soluble protein, VC, and total amino acid content were rather high in lettuce, which indicated that the 4R/1B light source could better effectively improve the nutritional quality and promote the growth of lettuce, while yellow light and green light are not suitable to serve as direct sources in a plant factory. These results provide a certain theoretical basis for the regulation of the light environment in cultivation facilities.  相似文献   

17.
1,10-Phenanthroline-platinum (II) ethylenediamine (PEPt) forms a 1:2 crystalline complex with 5'-phosphorylthymidylyl (3'-5') deoxyadeno sine (d-pTpA). Crystals are monoclinic, P2, with a = 10.204 A, b = 24.743 A, c = 21.064 A, Beta = 94.6 degrees. The structure has been determined by Patterson and Fourier methods, and refined by least squares to a residual of 0.128 on 2,367 observed reflections. PEPt molecules form sandwich-like stacks with adenine-thymine hydrogen-bonded pairs along the alpha axis. Intercalation in the classic sense is not observed in this structure. Instead, d-pTpA molecules form an open chain structure in which adenine-thymine residues hydrogenbond together with the reversed Hoogsteen type base-pairing configuration. Deoxyadenosine residues exist in the syn conformation and are C3' endo and C1' exo. Thymidine residues are in the high anti conformation with C2' endo puckers. The structure is heavily hydrated, forming a channel-like water network along the alpha axis. Other features of the structure are described.  相似文献   

18.
2'-Amino-2'-deoxyadenosine and 2'-chloro-2'-deoxycoformycin (2'-CldCF) are two nucleoside antibiotics produced by Actinomadura. The biosynthesis of these two nucleoside antibiotics has been studied by the addition of [U-14C]adenosine with or without unlabeled adenine to cultures of Actinomadura. By this experimental approach, it is possible to demonstrate that adenosine is the direct precursor for the biosynthesis of 2'-amino-2'-deoxyadenosine and 2'-CldCF. These conclusions are based on the observation that the percentage distribution of 14C in the aglyconic and pentofuranosyl moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were similar to the distribution of 14C in the adenine and ribosyl moieties of the [U-14C]adenosine (i.e., 48:52) added to cultures of Actinomadura. Experimentally, the percentage distribution of 14C in the (i) adenine:2-amino-2-deoxy-beta-D-ribofuranose of 2'-amino-2'-deoxyadenosine is 51:49; (ii) 8-(R)-3,6,7,8-tetrahydroimidazo[4,5-d]-[1,3-diazepin-8-o1]:2 -chloro-2- beta-D-ribofuranose of 2'-CldCF is 45:55; and (iii) adenine:ribose of the adenosine isolated from the RNA of Actinomadura is 42:58. Further proof that adenosine is the direct precursor for the biosynthesis 2'-amino-2'-deoxyadenosine and 2'-CldCF was demonstrated by the addition of 75 mumol of unlabeled adenine together with [U-14C]adenosine to nucleoside-producing cultures of Actinomadura. The percentage distribution of 14C in the aglycon and the sugar moieties of 2'-amino-2'-deoxyadenosine and 2'-CldCF were 46:54 and 47:53, respectively; the percentage distribution of 14C in the adenine and ribose moieties of the adenosine isolated from the RNA of Actinomadura was 51:49. These data show that the hydroxyl on C-2' of the ribosyl moiety of adenosine undergoes a replacement by a 2'-amino or a 2'-chloro group to form 2'-amino-2'-deoxyadenosine or 2'-CldCF with retention of stereconfiguration at C-2'. Finally, Actinomadura can utilize inorganic chloride from the medium as demonstrated by the isolation of [36Cl]2'-CldCF following the addition of [36Cl]chloride to the culture medium. Mechanisms for the regioselective modification of the C-2' hydroxyl group and stereospecific insertion of the amino and chloro groups are discussed.  相似文献   

19.
3'-O-Anthraniloyladenosine, an analogue of the 3'- terminal aminoacyladenosine residue in aminoacyl-tRNAs, was prepared by chemical synthesis, and its crystal structure was determined. The sugar pucker of 3'-O-anthraniloyladenosine is 2'-endo resulting in a 3'-axial position of the anthraniloyl residue. The nucleoside is insynconformation, which is stabilized by alternating stacking of adenine and benzoyl residues of the neighboring molecules in the crystal lattice. The conformation of the 5'-hydroxymethylene in 3'-O- anthraniloyladenosine is gauche-gauche. There are two intramolecular and two intermolecular hydrogen bonds and several H-bridges with surrounding water molecules. The predominant structure of 3'-O-anthraniloyladenosine in solution, as determined by NMR spectroscopy, is 2'-endo,gauche-gauche and anti for the sugar ring pucker, the torsion angle around the C4'-C5'bond and the torsion angle around the C1'-N9 bond, respectively. The 2'-endo conformation of the ribose in 2'(3')-O-aminoacyladenosine, which places the adenine and aminoacyl residues in equatorial and axial positions, respectively, could serve as a structural element that is recognized by enzymes that interact with aminoacyl-tRNA or by ribosomes to differentiate between aminoacylated and non-aminoacylated tRNA.  相似文献   

20.
卷蛾分索赤眼蜂雌蜂的颜色偏好性   总被引:1,自引:0,他引:1  
为了确定卷蛾分索赤眼蜂Trichogrammatoidea bactrae Nagaraja 雌蜂的颜色偏好性, 在室内通过在培养皿底部黏贴彩纸的方法测定卷蛾分索赤眼蜂雌蜂对红、 黄、 黑、 紫、 绿、 白、 蓝7种颜色的行为趋性反应。结果表明, 卷蛾分索赤眼蜂雌蜂在红、 黄、 紫、 绿和蓝5种颜色上的滞留时间都极显著地高于对照(P<0.01), 在黑和白2种颜色上的滞留时间与对照没有显著差异(P>0.05); 对黄色的首次选择率极显著高于对照(P< 0.01), 对红、 紫、 绿和蓝色的首次选择率均显著高于对照(P<0.05), 对黑色和白色的首次选择率与对照没有显著差异。当雌蜂分别在黄与红、 紫、 绿和蓝两两颜色之间选择时, 雌蜂在黄色彩纸上的滞留时间显著长于其他4种颜色。当雌蜂对红、 紫、 绿、 蓝和黄色5种颜色一起选择时, 在首次选择率、 滞留次数上5种颜色间都没有明显差异(P>0.05); 但在红色和蓝色上的滞留时间显著长于紫色(P<0.05), 在这3种颜色上的滞留时间与在黄色和绿色上的滞留时间均无显著差异(P>0.05)。卷蛾分索赤眼蜂雌蜂在7种颜色卵卡上分别与透明纸(对照)上的米蛾卵的选择寄生时, 在黄色卵卡上的寄生卵量极显著多于对照(P<0.01), 黑色卵卡上的寄生卵量极显著少于对照(P<0.01), 其他5种颜色的卵卡上的寄生卵量与对照没有显著差异(P>0.05)。结果说明, 卷蛾分索赤眼蜂雌蜂对黄色最为偏好, 其次偏好红、 紫、 绿和蓝色, 较不喜好白色和黑色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号