首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gossypolone, a proposed major metabolite of gossypol, was synthesized and investigated for its effect on progesterone synthesis in cultured bovine luteal cells. Gossypolone inhibited human chorionic gonadotropin(hCG)-stimulated progesterone secretion, reduced substrate-enhanced conversions of 25-hydroxycholesterol to pregnenolone and of pregnenolone to progesterone in a dose-dependent fashion. These findings indicate that gossypolone inhibits not only 3β-hydroxysteroid dehydrogenase (3β-HSD) activity, as gossypol does, but also side-chain cleavage enzyme complex (cytochrome P450scc activity. However, the two compounds appear to have a similar potency in inhibiting progesterone secretion. Both gossypolone and gossypol (8.5 μM) induced morphological changes in cellular organelles.  相似文献   

2.
Control of steroidogenesis in small and large bovine luteal cells   总被引:1,自引:0,他引:1  
Evidence was cited to show that: (1) prostacyclin (PGI2) plays a luteotrophic role in the bovine corpus luteum and that products of the lipoxygenase pathway of arachidonic acid metabolism, especially 5-hydroxyeicosatetraenoic acid play luteolytic roles; (2) oxytocin of luteal cell origin plays a role in development, and possibly in regression, of the bovine corpus luteum; and (3) luteal cells arise from two sources; the characteristic small luteal cells at all stages of the oestrous cycle and pregnancy are of theca cell origin; the large cells are of granulosa cell origin early in the cycle, but a population of theca-derived large cells appears later in the cycle. Results of in vitro studies with total dispersed cells and essentially pure preparations of large and small luteal cells indicate that: (1) the recently described Ca2+-polyphosphoinositol-protein kinase C second messenger system is involved in progesterone synthesis in the bovine corpus luteum; (2) activation of protein kinase C is stimulatory to progesterone synthesis in the small luteal cells; (3) activation of protein kinase C has no effect on progesterone synthesis in the large luteal cells; and (4) protein kinase C exerts its luteotrophic effect in total cell preparations, in part at least, by stimulating the production of prostacyclin. The protein kinase C system may cause down regulation of LH receptors in the large cells.  相似文献   

3.
Progesterone is suggested to be a suppressor of apoptosis in bovine luteal cells. Fas antigen (Fas) is a cell surface receptor that triggers apoptosis in sensitive cells. Furthermore, apoptosis is known to be controlled by the bcl-2 gene/protein family and caspases. This study was undertaken to determine whether intraluteal progesterone (P4) is involved in Fas L-mediated luteal cell death in the bovine corpus luteum (CL) in vitro. Moreover, we studied whether an antagonist of P4 influences gene expression of the bcl-2 family and caspase-3 and the activity of caspase-3 in the bovine CL. Luteal cells obtained from the cows in the midluteal phase of the estrous cycle (Days 8-12 of the cycle) were exposed to a specific P4 antagonist (onapristone [OP], 10(-4) M) with or without 100 ng/ml Fas L. Although Fas L alone did not show a cytotoxic effect, treatment of the cells with OP alone or in combination with Fas L resulted in killing of 30% and 45% of the cells, respectively (P <0.05). DNA fragmentation was observed in the cells treated with Fas L in the presence of OP. The inhibition of P4 action by OP increased the expression of Fas mRNA (P <0.01); however, it did not affect bax or bcl-2 mRNA expression (P >0.05). Moreover, OP stimulated expression of caspase-3 mRNA (P <0.01). The overall results indirectly show that intraluteal P4 suppresses apoptosis in bovine luteal cells through the inhibition of Fas and caspase-3 mRNA expression and inhibition of caspase-3 activation.  相似文献   

4.
Specific receptors for oxytocin (OT) on intact luteal cells are demonstrated. Cultured cells from bovine corpora lutea (CL) at different stages (Days 3-5, 8-12, and 15-18 of the estrous cycle) were examined for OT receptors by a radioreceptor assay using the 125I-labeled OT antagonist [d(CH2)5,Tyr(Me)2,Thr4,Tyr-NH2(9)] -vasotocin. Binding specificity was demonstrated in displacement studies with various related peptides. Scatchard analysis revealed the presence of a binding site with an association constant of Ka = 2.6 x 10(9) M-1 and a capacity of 5.9 fmol/micrograms DNA. Additionally, in 50% of the experiments (n = 6) two different binding sites were observed. The Ka of the high-affinity site was 2.6 x 10(10) M-1; its capacity was 0.73 fmol/micrograms DNA. The low-affinity site had an apparent Ka of 4.9 x 10(8) M-1 and a capacity of 8.8 fmol/micrograms DNA. Observation of one versus two binding sites related neither to the assay conditions nor to the state of the individual CL used for the cell culture and therefore appeared to reflect individual variation within the OT receptor population. Significant binding of OT was observed at all luteal stages. OT binding was maximal at the mid-luteal stage (Days 8-12). We conclude that a direct action of OT on the bovine CL is mediated by the OT receptor, supporting the hypothesis that luteal OT plays an important physiological role in the regulation of progesterone release and/or other luteal functions in a paracrine or autocrine fashion.  相似文献   

5.
The possible influence of an activator of protein kinase C, the tumor-promoting phorbol ester, PMA (phorbol-12-myristate-13-acetate), upon small bovine luteal cell steroidogenesis was investigated in vitro, PMA had no significant effect on basal and dibutyryl cyclic AMP (dbcAMP)-stimulated progesterone production but markedly modulated the LH-stimulated progesterone and cAMP productions. PMA potentiated the LH-stimulated cAMP accumulation whatever the dose of LH used. It also potentiated the LH-induced progesterone production in the presence of low doses of LH. Paradoxically, in the presence of maximal or submaximal effective doses of LH, PMA exerted a time- and dose-dependent inhibition of progesterone synthesis. Diacylglycerol was able to mimic the effects of PMA on LH-induced steroidogenesis. These observations suggest that the Ca2+- and phospholipid-dependent protein kinase C can modulate the regulation by LH of small bovine luteal cell steroidogenesis at a step before the synthesis of cAMP. They also suggest that the interaction between LH and its receptor is able to trigger a negative regulatory signal which would be only expressed for high doses of LH and in the presence of an activator of PKC.  相似文献   

6.
Gossypol is an antifertility agent which inhibits steroidogenesis in both sexes. The present study investigated the binding of gossypol in organelles of cultured bovine luteal cell to elucidate its inhibitory site of action in steroid biosynthesis. Cultured bovine luteal cells were incubated with 3H-gossypol (4.3 or 2.15 microM) for 3 hours. At the end of treatment, cultured bovine luteal cells were harvested, homogenized and centrifuged for organelle preparation. The radioactivity of gossypol was measured in each subcellular fraction. The cell membrane fraction has the highest binding capacity for gossypol, and the majority of gossypol was located in the particulate fractions. Results of the present study provide information in understanding the regulatory mechanism of gossypol on antisteroidogenic and/or toxic effects in cultured bovine luteal cells.  相似文献   

7.
A number of substances have been implicated in the regulation of oxytocin (OT) secretion from bovine corpus luteum in vivo. However, isolated bovine luteal cells cultured in a monolayer lose the ability to secrete OT in response to stimulatory substances. The present study investigated how cell-to-cell contact and the cytoskeleton affect OT secretion by isolated bovine luteal cells. In experiment 1, bovine midluteal cells (Days 8-12 of the estrous cycle) were stimulated with prostaglandin F2alpha (PGF2alpha; 1 microM), noradrenaline (NA; 10 microM), or growth hormone (GH; 5 nM) in two culture systems: In one system, cell monolayers were incubated in 24-well culture plates, and in the other system, aggregates of cells were incubated in glass tubes in a shaking water bath. The cells cultured in a monolayer underwent considerable spreading and showed a variety of shapes, whereas the cells cultured in glass tubes remained fully rounded during the experimental period and soon formed aggregates of cells. Although PGF2alpha, NA, and GH did not stimulate OT secretion by the monolayer cells, all tested substances stimulated OT secretion by the aggregated cells (P < 0.01). In experiment 2, the monolayer cells were pre-exposed for 1 h to an antimicrofilament agent (cytochalasin B; 1 microM) or two antimicrotubule agents (colchicine or vinblastine; 1 microM) before stimulation with PGF2alpha, NA, or GH. Although PGF2alpha, NA, and GH did not stimulate OT secretion by the monolayer cells in the presence of colchicine or vinblastine, they all stimulated OT secretion in the presence of cytochalasin B (P < 0.001). The overall results show that OT secretion by bovine luteal cells depends on microfilament function and cell shape. Moreover, the aggregate culture system that allows three-dimensional, cell-to-cell contact seems to be a good model for studying OT secretion by isolated bovine luteal cells.  相似文献   

8.
Experiments were conducted to determine if methylation is a part of the mechanism by which luteinizing hormone (LH) and epinephrine stimulate progesterone production by dispersed bovine luteal cells. Corpora lutea (CL) were collected from 24 Holstein heifers on Day 10 of the estrous cycle and dispersed with collagenase. Net progesterone accumulation, representing total progesterone synthesized by 10(6) cells during a 2-h incubation was determined. Cells from 7 CL were treated with 0 and 5 ng LH, in the presence and absence of methylation inhibitor, S-adenosyl-homocysteine (SAH, 1 mM). LH-stimulated progesterone production was inhibited (P less than 0.05) in the presence of SAH(209 +/- 19 vs. 119 +/- 7 ng/10(6) cells). In the absence of LH, progesterone production was unaffected (87 +/- 22 vs. 68 +/- 28) by SAH. Cells from 4 CL were treated with 10 micrograms epinephrine or 10 micrograms isoproterenol with and without SAH. Both epinephrine and isoproterenol-stimulated progesterone production was inhibited (P less than 0.05) by the presence of SAH (204 +/- 24 vs. 125 +/- 18 and 198 +/- 15 vs. 130 +/- 8). Progesterone production by cells from 4 CL was unaffected by the presence of SAH when treated with Medium 199 (M199) (75 +/- 32), 10 micrograms cholera toxin, which directly stimulates adenylate cyclase on the cytoplasmic side of plasma membranes (168 +/- 19), or 3 mM dibutyryl cAMP (210 +/- 40).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Feeding conjugated linoleic acids (CLA) improves reproductive performance in dairy cows; however, the molecular mechanisms by which CLA improves reproduction are not understood. The effect of the CLA isomers, trans‐10, cis‐12 CLA and cis‐9, trans‐11 CLA on synthesis of progesterone, PGE2, and PGF, in bovine luteal cells was determined in this study. Luteal cells from three cows were cultured in medium containing 0 or 0.1 µM of trans‐10, cis‐12 CLA and cis‐9, trans‐11 CLA in varying ratios in the presence and absence of 1 µM of forskolin. Prostaglandin and progesterone concentrations were not altered by CLA isomer and ratio. Luteal cells cultured in the presence of CLA had lower PGF concentrations (62.6 ± 13.4 pg/ml vs. 55.7 ± 12.2 pg/ml; P = 0.005) and, in the absence of forskolin, lower PGE2 concentrations (65.3 ± 15.1 pg/ml vs. 32.4 ± 14.1 pg/ml; P = 0.002) in culture media, while progesterone concentrations were not altered (P = 0.63). Relative steady‐state mRNA amounts of COX‐2 (1.7‐fold decrease; P = 0.002), PGE synthase (1.5‐fold decrease; P = 0.03) and 3β‐hydroxysteroid dehydrogenase (1.6‐fold decrease; P = 0.0003) were lower in CLA‐treated cultures, but CLA did not significantly alter mRNA amounts of PGE2 9‐keto‐reductase, StAR, and cytochrome P450 side chain cleavage enzyme. In conclusion, a potential mechanism exists by which trans‐10, cis‐12 CLA and cis‐9, trans‐11 CLA may improve reproductive performance in dairy cows, by suppressing PGF synthesis in luteal cells via attenuation of COX‐2 gene expression. Mol. Reprod. Dev. 78:328–336, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Experiments were conducted to examine the effect of cyclodextrin-encapsulated beta-carotene on basal or cholesterol (cyclodextrin-encapsulated), LH and dibutyryl cyclic AMP (dbcAMP)-stimulated progesterone production by bovine corpus luteum cells isolated from mid-luteal heifer ovaries by collagenase digestion. Cells were cultured with serum-free DMEM/Ham's F12 medium in serum pre-treated plastic culture dishes for periods of up to 11 days. Medium was replaced after 24h and thereafter every 48 h. Beta-carotene was added to cultures in a carrier molecule, dimethyl-beta-cyclodextrin, to facilitate dissolution. All treatments were started on day 3 of culture. Treatment of cells with 1 or 2 micromol/l beta-carotene resulted in sharp inhibition of progesterone production. On the contrary, treatment of cells with 0.1 micromol/l beta-carotene resulted in significant stimulation (P<0.05) of both basal and cholesterol-stimulated progesterone secretion. The effect of beta-carotene on LH or dbcAMP-stimulated progesterone production was also examined. Treatment of cells with LH or dbcAMP always resulted in stimulation of progesterone secretion (P<0.001). However, cells treated with LH plus beta-carotene or dbcAMP plus beta-carotene both produced significantly (P<0.01) less progesterone relative to those cells treated with LH or dbcAMP alone on days 7, 9 and 11 of culture. These results indicate that beta-carotene can enhance luteal steroidogenesis when present at low concentrations but is inhibitory at higher concentrations and that encapsulation of beta-carotene in cyclodextrin is an effective method of supplying it to cells in culture.  相似文献   

11.
Calf serum (CS) is a common supplement used in cell culture. It has been suggested that CS contains substances protecting cells against apoptosis. To examine whether a culture system including CS is appropriate for studying apoptosis in bovine luteal cells, we examined the influence of CS on the expression of Fas, bcl-2 and bax gene. Since progesterone (P(4)) is known to be an anti-apoptotic factor in bovine luteal cells, the present study was carried out to examine the P(4) effect on apoptosis. Bovine mid-luteal cells were exposed to Fas ligand (Fas L) in the presence or in the absence of P(4) antagonist (onapristone, OP) in a basal medium (BM) containing 5% CS (BM-CS) or BM containing 0.1% BSA (BM-BSA). Although Fas L alone, OP alone or Fas L plus OP did not show any cytotoxic effect on the cells cultured in BM-CS, administration of OP or OP in combination with Fas L resulted in the killing of 30% and 55% of the cells cultured in BM-BSA medium, respectively (p<0.05). Concomitantly, CS inhibited bax mRNA expression and stimulated bcl-2 expression in the cells (p<0.05). Moreover, in the cells cultured with BM-CS, Fas mRNA expression was smaller than that of cells incubated in BM-BSA medium (p<0.05). The overall results suggest that CS suppressed Fas-mediated cell death in cultured bovine luteal cells by promoting the ratio of bcl-2 to bax expression and by inhibiting Fas expression. Therefore, it may be suggested that CS contains such anti-apoptotic substances (growth factors) amplifying the cell survival pathways in the bovine corpus luteum (CL) in vitro.  相似文献   

12.
Guo IC  Wu LS  Lin JH  Chung BC 《Life sciences》2001,68(16):1851-1865
We investigated the roles of estrogens and androgens in the progesterone biosynthesis of bovine luteal cells. The responsiveness of primary luteal cells to the stimulation of tropic agents was observed in a dose-dependent manner. Estrogens and androgens significantly inhibited tropic agent-induced progesterone secretions, but glucocorticoids did not, which indicated the inhibitions were specific. The failure of exogenous 8-Br-cAMP to prevent these inhibitions suggested that took place at the post-cAMP steps. The immunoblot showed that testosterone remarkably decreased the amount of induced P450scc protein after 6-hour treatment, yet 17beta-estradiol did not. The 3beta-HSD activity assays demonstrated that both 17beta-estradiol and testosterone efficiently blocked induced 3beta-HSD activities. Both inhibitory effects of E2 and T on progesterone synthesis were observed one hour after treatment and accompanied with suppressed 3beta-HSD activities. This study presents that estrogens and androgens specifically inhibit bovine luteal function through different mechanisms.  相似文献   

13.
Summary Cyclical changes in the ultrastructure of the bovine endometrial surface epithelium were investigated in six heifers, three at day one (estrus) and three at day twelve (luteal phase) of the estrous cycle. Dark and light non-ciliated cells are seen. The caruncular epithelium differs from the intercaruncular epithelium, especially in the luteal phase, regarding the amount of some organelles. The dense filamentous component of the terminal bars increase in the luteal phase, as well as the size and number of multivesicular bodies. Numerous apical vesicles with opaque contents are present at estrus but not at day twelve. Opaque vacuoles are common in the luteal phase. The possible function of these vesicles and vacuoles is discussed.Dense accumulations of tubular, smooth-surfaced endoplasmic reticulum are characteristic, especially in the luteal phase, and often contain some lipid droplets in this phase. Cytosegresomes, sometimes surrounded by two membranes, apparently plasma membranes, are more common at estrus and may represent phagocytosed fragments of leukocytes. Cells similar to lymphocytes and degranulated granulocytes occur frequently at estrus in the caruncular epithelum and in the luteal phase in intercaruncular areas.Financial support for this study was received from Anslaget för främjande av medicinsk forskning vid Veterinärhögskolan.The authors express their gratitude to Prof. A. Bane and Dr. J.-E. E. Ringmar, Department of Obstetrics and Gynecology, for their help with the selection and clinical control of the animals and for keeping them in good condition.Post doctoral fellow, No. 43-KO-52 (1968) from the Educational Ministry of Japan.  相似文献   

14.
To investigate immunological mechanisms that may be involved in luteal function, the presence of Class I and Class II major histocompatibility complex (MHC) antigens on cultured bovine luteal cells was examined. After 72 h in serum-free culture, Class I antigens were markedly expressed on luteal cells, as determined by indirect immunofluorescence, whereas expression of Class II antigens was limited. The expression of MHC antigens on luteal cells was increased by treatment with the T-lymphocyte factor, interferon-gamma (IFN-gamma). Class I and II antigens were elevated 25% and 370% above controls, respectively, after IFN-gamma exposure. Since the corpus luteum is regulated by luteinizing hormone (LH), luteal cells were treated with either hormone alone or hormone in addition to IFN-gamma, and antigen expression was determined. LH treatment attenuated IFN-gamma-induction of Class II antigens on bovine luteal cells. These observations are the first to demonstrate the presence of MHC antigens on bovine luteal cells and the modulation of antigen expression by the lymphokine IFN-gamma and by LH.  相似文献   

15.
We studied the effects of arachidonic acid and its metabolites on intracellular free calcium concentrations ([Ca2+]i) in highly purified bovine luteal cell preparations. Corpora lutea were collected from Holstein heifers between days 10 and 12 of the estrous cycle. The cells were dispersed and small and large cells were separated by unit gravity sedimentation and flow cytometry. The [Ca2+]i was determined by spectrofluorometry in luteal cells loaded with the fluorescent Ca2+ probe. Fura-2. Arachidonic acid elicited a dose-dependent increase in [Ca2+]i in both small and large luteal cells, having an effect at concentrations as low as 5μM; and was maximally effective at 50μM. Several other fatty acids failed to exert a similar response. Addition of nordihydroguaiaretic acid (NDGA) or indomethacin failed to suppress the effects of arachidonic acid. In fact, the presence of both inhibitors resulted in increases of [Ca2+]i, with NDGA exerting a greater stimulation of [Ca2+i than indomethacin. Prostaglandin F (PGF) as well as prostaglandin E2 (PGE2) increased [Ca2+ in the small luteal cells. These results support the idea that arachidonic acid exerts a direct action in mobilizing [Ca2+]i, in the luteal cells. Furthermore, they demonstrate that the cyclooxygenase (PGF and PGE2) and lipoxygenase products of arachidonic acid metabolism also play a role in increasing [Ca2+]i in bovine luteal cells. Since the bovine corpus luteum contains large quantities of arachidonic acid, these findings suggest that this compound may regulate calcium-dependent functions of the corpus luteum, including steroid and peptide hormone production and secretion.  相似文献   

16.
We studied the effects of arachidonic acid and its metabolites on intracellular free calcium concentrations ([Ca2+]i) in highly purified bovine luteal cell preparations. Corpora lutea were collected from Holstein heifers between days 10 and 12 of the estrous cycle. The cells were dispersed and small and large cells were separated by unit gravity sedimentation and flow cytometry. The [Ca2+]i was determined by spectrofluorometry in luteal cells loaded with the fluorescent Ca2+ probe, Fura-2. Arachidonic acid elicited a dose-dependent increase in [Ca2+]i in both small and large luteal cells, having an effect at concentrations as low as 5 microM; and was maximally effective at 50 microM. Several other fatty acids failed to exert a similar response. Addition of nordihydroguaiaretic acid (NDGA) or indomethacin failed to suppress the effects of arachidonic acid. In fact, the presence of both inhibitors resulted in increases of [Ca2+]i, with NDGA exerting a greater stimulation of [Ca2+]i than indomethacin. Prostaglandin F2 alpha (PGF2 alpha) as well as prostaglandin E2 (PGE2) increased [Ca2+]i in the small luteal cells. These results support the idea that arachidonic acid exerts a direct action in mobilizing [Ca2+]i, in the luteal cells. Furthermore, they demonstrate that the cyclooxygenase (PGF2 alpha and PGE2) and lipoxygenase products of arachidonic acid metabolism also play a role in increasing [Ca2+]i in bovine luteal cells. Since the bovine corpus luteum contains large quantities of arachidonic acid, these findings suggest that this compound may regulate calcium-dependent functions of the corpus luteum, including steroid and peptide hormone production and secretion.  相似文献   

17.
18.
We studied the effects of calcium (Ca2+) ions in progesterone (P) production by separated small and large luteal cells. Corpora lutea were collected from 31 heifers between days 10 and 12 of the estrous cycle. Purified small and large cells were obtained by unit gravity sedimentation and flow cytometry. P accumulation in cells plus media was determined after incubating 1 x 10(5) small and 5 x 10(3) large cells for 2 and 4 h respectively. Removal of Ca2+ from the medium did not influence basal P production in the small cells (P greater than 0.05). However, stimulation of P by luteinizing hormone (LH), prostaglandin E2 (PGE2), 8-bromo-cyclic 3',5' adenosine monophosphate (8-Br-cAMP) and prostaglandin F2 alpha (PGF2 alpha) was impaired (P less than 0.05) by low Ca2+ concentrations. LH and PGE2-stimulated cAMP production was not altered by low extracellular Ca2+ concentrations, and PGF2 alpha had no effect on cAMP. In contrast, basal as well as LH and forskolin-stimulated P production were attenuated (P less than 0.05) in Ca2(+)-deficient medium in the large cells. However, P production stimulated by 8-Br-cAMP was not altered in Ca2(+)-deficient medium. Steroidogenesis in large cells was also dependent on intracellular Ca2+, since 8-N, N-diethylamineocytyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular Ca2+ release and/or action, suppressed (P less than 0.05) basal, LH and 8-Br-cAMP stimulated P. In contrast, basal P in small cells was not altered by TMB-8; whereas LH-stimulated P was reduced 2-fold (P less than 0.05). The calcium ionophore, A23187, inhibited LH-stimulated P in small cells and both basal and agonist-stimulated P in large cells. These studies show that basal P production in small cells does not require Ca2+ ions, while hormone-stimulated P production in small cells and both basal and hormone-stimulated P in large cells do require Ca2+. The inhibitory effect of Ca2+ ion removal was exerted prior to the generation of cAMP in the large cells, but distal to cAMP generation in hormone-stimulated small cells. The calmodulin/protein kinase C antagonist, W-7, also inhibited both basal and hormone-stimulated P production in both small and large luteal cells, indicating that P production in luteal cells also involves Ca2(+)-calmodulin/protein kinase C-dependent mechanisms.  相似文献   

19.
20.
Summary Ovaries were obtained from normal adult dairy cows at all days of the estrous cycle. The largest Graafian follicle and corpus luteum were excised, prepared for electron microscopic study, and their cell components quantitated using the linear scanning method and the counting of membrane crossings.The results indicated that in the theca interna cells during proestrus and estrus and in the large luteal cells during late metestrus and diestrus, enlarged mitochondria occupied an increased cytoplasmic percentage volume. During proestrus and estrus in the theca interna cells, the concentration of membranes of endoplasmic reticulum and Golgi apparatus also increased. The cytoplasmic percentage volumes of lipid bodies and of lysosomes increased in the small luteal cells; during luteal regression, they also increased in the large luteal cells. Similar rates of increase during follicular maturation, and decrease during luteal regression, occurred for measurements of succinic dehydrogenase and mitochondria.The quantitative observations were related to the production of steroid hormones by the ovary, and to the cyclic growth and regression of follicular and luteal cells. It was noted that an increased cytoplasmic percentage volume of mitochondria, an increased concentration of agranular cytoplasmic membranes, and low levels of lipid bodies and lysosomes, were generally present at times when ovarian steroid elaboration and cell growth were maximal.This investigation was supported by a General Research Support Grant to the College of Veterinary Medicine, University of Minnesota, and Research Grant No. GM-07009, of the United States Public Health Service. Approved for publication as Scientific Journal Series Paper No. 6343, Minnesota Agricultural Experiment Station. The work reported is taken from the senior author's Ph. D. thesis. Appreciation is expressed to Professor A.-M. CarPenter, Department of Anatomy, University of Minnesota, for her advice in matters concerning the quantitative techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号