首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi  Xiujuan  Hu  Yongjia  Jiang  Yuxiong  Wu  Jiawen  Zhang  Chen  Zhang  Jieping  Wu  Shengyu  Wu  Yingshi  Dong  Weibing  Li  Jue 《Molecular biology reports》2022,49(3):2085-2095
Molecular Biology Reports - Scutellarein, a widely studied ingredient of scutellaria herbs, has higher bioavailability and solubility than that of scutellarin. Although the scutellarein had been...  相似文献   

2.
The non-essential amino acid L-glutamine (Gln) displays potent anti-inflammatory activity by deactivating p38 mitogen activating protein kinase and cytosolic phospholipase A2 via induction of MAPK phosphatase-1 (MKP-1) in an extracellular signal-regulated kinase (ERK)-dependent way. In this study, the mechanism of Gln-mediated ERK-dependency in MKP-1 induction was investigated. Gln increased ERK phosphorylation and activity, and phosphorylations of Ras, c-Raf, and MEK, located in the upstream pathway of ERK, in response to lipopolysaccharidein vitro and in vivo. Gln-induced dose-dependent transient increases in intracellular calcium ([Ca2+]i) in MHS macrophage cells. Ionomycin increased [Ca2+]i and activation of Ras → ERK pathway, and MKP-1 induction, in the presence, but not in the absence, of LPS. The Gln-induced pathways involving Ca2+→ MKP-1 induction were abrogated by a calcium blocker. Besides Gln, other amino acids including L-phenylalanine and l-cysteine (Cys) also induced Ca2+ response, activation of Ras → ERK, and MKP-1 induction, albeit to a lesser degree. Gln and Cys were comparable in suppression against 2, 4-dinitrofluorobenzene-induced contact dermatitis. Gln-mediated, but not Cys-mediated, suppression was abolished by MKP-1 small interfering RNA. These data indicate that Gln induces MKP-1 by activating Ca2+→ ERK pathway, which plays a key role in suppression of inflammatory reactions.  相似文献   

3.
4.
5.
Gao  Meiling  Cai  Qiang  Si  Haichao  Shi  Si  Wei  Huixia  Lv  Miaomiao  Wang  Xiaofan  Dong  Tieli 《Journal of molecular histology》2022,53(4):679-689
Journal of Molecular Histology - Isoliquiritigenin (ISL) is a type of flavonoid, derived from the root of the legume plant Glycyrrhiza, that has multiple pharmacological properties. However, its...  相似文献   

6.
7.
Tumor necrosis factor superfamily ligands provoke a dilated cardiac phenotype signal through a common scaffolding protein termed tumor necrosis factor receptor-associated factor 2 (Traf2); however, Traf2 signaling in the adult mammalian cardiac hypertrophy is not fully understood. This study was aimed to identify the effect of Traf2 on cardiac hypertrophy and the underlying mechanisms. A significant up-regulation of Traf2 expression was observed in mice failing hearts. To further investigate the role of Traf2 in cardiac hypertrophy, we used cultured neonatal rat cardiomyocytes with gain and loss of Traf2 function and cardiac-specific Traf2-overexpressing transgenic (TG) mice. In cultured cardiomyocytes, Traf2 positively regulated angiotensin II (Ang II)-mediated hypertrophic growth, as detected by [3H]-Leucine incorporation, cardiac myocyte area, and hypertrophic marker protein levels. Cardiac hypertrophy in vivo was produced by constriction of transverse aortic (TAC) in TG mice and their wild-type controls. The extent of cardiac hypertrophy was evaluated by echocardiography as well as by pathological and molecular analyses of heart samples. Traf2 overexpression in the heart remarkably enhanced cardiac hypertrophy, left ventricular dysfunction in mice in response to TAC. Further analysis of the signaling pathway in vitro and in vivo suggested that these adverse effects of Traf2 were associated with the activation of AKT/glycogen synthase kinase 3β (GSK3β). The present study demonstrates that Traf2 serves as a novel mediator that enhanced cardiac hypertrophy by activating AKT/GSK3β signaling.  相似文献   

8.
Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.  相似文献   

9.
Beta-tricalcium phosphate (β-TCP) has been clinically used as a bone graft substitute for decades because of its excellent osteoconductivity. However, the exact mechanism(s) by which β-TCP exerts osteoconductivity are not fully documented. This study was aimed to investigate the molecular mechanism(s) by which β-TCP modulates the biological response of primary human osteoblasts (HOBs). It was showed that HOBs seeded into the β-TCP scaffolds expressed significantly higher levels of osteogenic genes, compared to those cultured on tissue culture plastic; meanwhile these cells showed 7-fold increase in α2 integrin subunit gene expression and the activation of the mitogen-activated protein kinase (MAPK)/extracellular related kinase (ERK) signaling pathway. In addition, the osteogenic conduction by β-TCP scaffolds was attenuated directly by inhibiting MAPK/ERK or indirectly by blocking the α2β1 integrin signaling pathway. We concluded that β-TCP scaffold exerts osteoconductivity through α2β1 integrin and down-stream MAPK/ERK signaling pathway, suggesting a feasible approach to consider when designing or fabricating the scaffolds for bone tissue engineering.  相似文献   

10.
11.
12.
Peroxisome proliferator-activated receptor alpha (PPARα) has been implicated in the pathogenesis of cardiac hypertrophy, although its mechanism of action remains largely unknown. To determine the effect of PPARα activation on endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy and explore its molecular mechanisms, we evaluated the interaction of PPARα with nuclear factor of activated T-cells c4 (NFATc4) in nuclei of cardiomyocytes from neonatal rats in primary culture. In ET-1-stimulated cardiomyocytes, data from electrophoretic mobility-shift assays (EMSA) and co-immunoprecipitation (co-IP) revealed that fenofibrate (Fen), a PPARα activator, in a concentration-dependent manner, enhanced the association of NFATc4 with PPARα and decreased its interaction with GATA-4, in promoter complexes involved in activation of the rat brain natriuretic peptide (rBNP) gene. Effects of PPARα overexpression were similar to those of its activation by Fen. PPARα depletion by small interfering RNA abolished inhibitory effects of Fen on NFATc4 binding to GATA-4 and the rBNP DNA. Quantitative RT-PCR and confocal microscopy confirmed inhibitory effects of PPARα activation on elevation of rBNP mRNA levels and ET-1-induced cardiomyocyte hypertrophy. Our results suggest that activated PPARα can compete with GATA-4 binding to NFATc4, thereby decreasing transactivation of NFATc4, and interfering with ET-1 induced cardiomyocyte hypertrophy.  相似文献   

13.
It was found that C-reactive protein (CRP) could significantly increase the expression and activity of tissue factor (TF), but decrease that of tissue factor pathway inhibitor (TFPI) in human umbilical vein endothelial cells (HUVECs) in dose- and time-dependent manners, which could be antagonized by PDTC and U0126. CRP could also increase protein expression of phosphorylated nuclear factor-kappaB (NF-κB), IκB-α and ERK1/2 in dose- and time-dependent manner. In addition, neutralizing antibody to CD32 (FcgammaR II) could significantly attenuate the expression and activity of TF and TFPI induced by CRP. These results suggest that CRP may promote coagulation by enhancing the expression and activity of TF and reducing that of TFPI by activating NF-κB and extracellular signal-regulated kinase via FcgammaR II.  相似文献   

14.
Huang Y  Hou JK  Chen TT  Zhao XY  Yan ZW  Zhang J  Yang J  Kogan SC  Chen GQ 《Autophagy》2011,7(10):1132-1144
Autophagy is a highly conserved, closely regulated homeostatic cellular activity that allows for the bulk degradation of long-lived proteins and cytoplasmic organelles. Its roles in cancer initiation and progression and in determining the response of tumor cells to anticancer therapy are complicated, and only limited investigation has been conducted on the potential significance of autophagy in the pathogenesis and therapeutic response of acute myeloid leukemia. Here we demonstrate that the inducible or transfected expression of the acute promyelocytic leukemia (APL)-specific PML-RARα, but not PLZF-RARα or NPM-RARα, fusion protein upregulates constitutive autophagy activation in leukemic and nonleukemic cells, as evaluated by hallmarks for autophagy including transmission electron microscopy. The significant increase in autophagic activity is also found in the leukemic cells-infiltrated bone marrow and spleen from PML-RARα-transplanted leukemic mice. The autophagy inhibitor 3-methyladenine significantly abrogates the autophagic events upregulated by PML-RARα, while the autophagic flux assay reveals that the fusion protein induces autophagy by increasing the on-rate of autophagic sequestration. Furthermore, this modulation of autophagy by PML-RARα is possibly mediated by a decreased activation of the Akt/mTOR pathway. Finally, we also show that autophagy contributes to the anti-apoptotic function of the PML-RARα protein. Given the critical role of the PML-RARα oncoprotein in APL pathogenesis, this study suggests an important role of autophagy in the development and treatment of this disease.  相似文献   

15.
16.
Polo-like kinase 1 (PLK1) is a serine/threonine kinase involving lipid metabolism and cardiovascular disease. However, its role in atherogenesis has yet to be determined. The aim of this study was to observe the impact of PLK1 on macrophage lipid accumulation and atherosclerosis development and to explore the underlying mechanisms. We found a significant reduction of PLK1 expression in lipid-loaded macrophages and atherosclerosis model mice. Lentivirus-mediated overexpression of PLK1 promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that PLK1 stimulated the phosphorylation of AMP-activated protein kinase (AMPK), leading to activation of the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) pathway and up-regulation of ATP binding cassette transporter A1 (ABCA1) and ABCG1 expression. Injection of lentiviral vector expressing PLK1 increased reverse cholesterol transport, improved plasma lipid profiles and decreased atherosclerotic lesion area in apoE-deficient mice fed a Western diet. PLK1 overexpression also facilitated AMPK and HSL phosphorylation and enhanced the expression of PPARγ, LXRα, ABCA1, ABCG1 and LPL in the aorta. In summary, these data suggest that PLK1 inhibits macrophage lipid accumulation and mitigates atherosclerosis by promoting ABCA1- and ABCG1-dependent cholesterol efflux via the AMPK/PPARγ/LXRα pathway.  相似文献   

17.
Mitochondria plays a key role in regulating cell death process under stress conditions and it has been indicated that NAMPT overexpression promotes cell survival under genotoxic stress by maintaining mitochondrial NAD+ level. NAMPT is a rate-limiting enzyme for NAD+ production in mammalian cells and it was suggested that NAMPT and NMNAT3 are responsible for mitochondrial NAD+ production to maintain mitochondrial NAD+ pool. However, subsequent studies suggested mitochondrial may lack the NAMPT-NMANT3 pathway to maintain NAD+ level. Therefore, how NAMPT overexpression rescues mitochondrial NAD+ content to promote cell survival in response to genotoxic stress remains elusive. Here, we show that NAMPT promotes cell survival under oxidative stress via both SIRT1 dependent p53-CD38 pathway and SIRT1 independent NRF2-PPARα/AMPKα pathway, and the NRF2-PPARα/AMPKα pathway plays a more profound role in facilitating cell survival than the SIRT1-p53-CD38 pathway does. Mitochondrial content and membrane potential were significantly reduced in response to H2O2 treatment, whereas activated NRF2-PPARα/AMPKα pathway by NAMPT overexpression rescued the mitochondrial membrane potential and content, suggesting that maintained mitochondrial content and integrity by NAMPT overexpression might be one of the key mechanisms to maintain mitochondrial NAD+ level and subsequently dictate cell survival under oxidative stress. Our results indicated that NRF2 is a novel down-stream target of NAMPT, which mediates anti-apoptosis function of NAMPT via maintaining mitochondrial content and membrane potential.  相似文献   

18.
19.
U2 (urotensin-2) is the most potent vasoconstrictor in mammals which is involved in cardiac remodelling, including cardiac hypertrophy and cardiac fibrosis. Although the cellular mechanisms of the U2-induced vasoconstriction have been extensively studied, the signalling pathways involved in U2-induced TGF-β1 (transforming growth factor-β1) expression and collagen synthesis remain unclear. In this study, we show that U2 promoted collagen synthesis and ERK1/2 (extracellular signal-regulated kinase 1/2) activation in neonatal cardiac fibroblasts. The U2-induced collagen synthesis and TGF-β1 production were significantly but not completely inhibited by blocking ERK1/2. Both ERK1/2 inhibitor and TGF-β1 antibody could separately inhibit U2-induced collagen synthesis, and the synergistic inhibition effect was observed by blocking ERK1/2 and TGF-β1 simultaneously. These data suggest that U2 promotes collagen synthesis via ERK1/2-dependent and independent TGF-β1 pathway in neonatal cardiac fibroblasts.  相似文献   

20.
ER oxidoreduclin 1α (ERO1α) is an oxidase, participating in formation of secretory and membrane proteins. However, the other physiological functions ERO1α is not well known. We found that ERO1α is high in the Leydig cells of the testis. Therefore, the purposes of the current study are to explore the role of ERO1α and the possible mechanisms in regulating cell proliferation, apoptosis, and testosterone secretion of Leydig cells. ERO1α was mainly localized in Leydig cells in the adult mice testes by immunofluorescence staining. Western blot analysis showed that ERO1α was higher in Leydig cells than that in the seminiferous tubules. The effect of ERO1α on cell proliferation, apoptosis, and testosterone secretion was detected by transducing ERO1α overexpression and knockdown lentiviruses into cultured primary Leydig cells (PLCs) together with hCG exposure. Flow cytometry analysis showed that ERO1α promoted cell proliferation by increasing cell distribution at the S phase and decreasing that at the G0/G1 phase. Western bolt analysis showed that ERO1α increased CDK2 and CDK6 expression. Cell apoptosis determination found that ERO1α inhibited PLC apoptosis. Western bolt analysis showed that ERO1α increased the ratio of BCL-2/BAX, and decreased BAD and Caspase-3 expression. Enzyme-linked immunosorbent assay analysis demonstrated that ERO1α enhanced testosterone secretion. Western bolt analysis found that ERO1α increased StAR, 3β-HSD, and CYP17A1 expression. Furthermore, ERO1α could activate the PI3K/AKT/mTOR signaling pathway. In summary, these results suggest that ERO1α might play proliferation promotion and antiapoptotic roles and enhance testosterone secretion in PLC, at least partly, via activation of the PI3K/AKT/mTOR signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号