首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

2.
Diet- and age-dependent changes in glucose regulation in mice occur, but the temporal development, mechanisms and influence of dietary fat source remain to be defined.We followed metabolic changes in three groups of mice including a low-fat diet (LFD) reference group and two high-fat, high-sucrose diets based on either fish oil (FOD) or soybean oil (SOD), rich in ω3- and ω6-polyunsaturated fatty acids, respectively, to closely monitor the age-dependent development in glucose regulation in both obese (SOD-fed) and lean (LFD- and FOD-fed) mice. We assessed glucose homeostasis and glucose clearance at week 8, 12, 16, 24, 31, and 39 and performed an insulin tolerance test at week 40. We further analyzed correlations between the gut microbiota and key metabolic parameters.Interestingly, alterations in glucose homeostasis and glucose clearance were temporally separated, while 16S ribosomal gene amplicon sequencing revealed that gut microbial alterations formed correlation clusters with fat mass and either glucose homeostasis or glucose clearance, but rarely both. Importantly, effective glucose clearance was maintained in FOD- and even increased in LFD-fed mice, whereas SOD-fed mice rapidly developed impaired glucose clearance followed by a gradual improvement from week 8 to week 39. All groups had similar responses to insulin 40 weeks post diet initiation despite severe nonalcoholic steatohepatitis in SOD-fed mice.We conclude that age-related alterations in glucose regulation may occur in both lean and obese mice and are modulated by dietary fat as indicated by the sustained metabolic homeostasis observed in mice fed ω3-polyunsaturated fatty acids.  相似文献   

3.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

4.
Dietary-induced hypertrophic--hyperplastic obesity in mice   总被引:1,自引:0,他引:1  
Metabolically intact NMRI mice and genetically obese NZO mice were fed ad lib. either a high-carbohydrate diet (standard) or a high-fat diet for a period of about 11 (NMRI mice) or 38 (NZO mice) wk. In both strains of mice, body weight increased more in the groups fed the high-fat diet. However, caloric intake by NMRI mice fed the high-fat diet was less than that of the controls. In NMRI mice fed the high-fat diet, epididymal and subcutaneous fat cell volumes increased; when these mice were fed the standard diet, only epididymal fat cell volume increased. Epididymal and subcutaneous fat cell numbers increased only in the group fed the high-fat diet. In NMRI mice fed either diet, the postprandial blood glucose was lower in older animals, but plasma insulin remained unchanged. The glucose tolerance deteriorated insignificantly. In NZO mice fed either diet, epididymal fat cell volumes and fat cell numbers increased. In this strain of mice the postprandial blood glucose and plasma insulin exhibited the strain-specific pattern, independent of the diet. In older animals fed either diet the glucose tolerance decreased.  相似文献   

5.
Ketogenic diets have been used as an approach to weight loss on the basis of the theoretical advantage of a low-carbohydrate, high-fat diet. To evaluate the physiological and metabolic effects of such diets on weight we studied mice consuming a very-low-carbohydrate, ketogenic diet (KD). This diet had profound effects on energy balance and gene expression. C57BL/6 mice animals were fed one of four diets: KD; a commonly used obesogenic high-fat, high-sucrose diet (HF); 66% caloric restriction (CR); and control chow (C). Mice on KD ate the same calories as mice on C and HF, but weight dropped and stabilized at 85% initial weight, similar to CR. This was consistent with increased energy expenditure seen in animals fed KD vs. those on C and CR. Microarray analysis of liver showed a unique pattern of gene expression in KD, with increased expression of genes in fatty acid oxidation pathways and reduction in lipid synthesis pathways. Animals made obese on HF and transitioned to KD lost all excess body weight, improved glucose tolerance, and increased energy expenditure. Analysis of key genes showed similar changes as those seen in lean animals placed directly on KD. Additionally, AMP kinase activity was increased, with a corresponding decrease in ACC activity. These data indicate that KD induces a unique metabolic state congruous with weight loss.  相似文献   

6.
Excess energy intake correlates with the development of metabolic disorders. However, different energy-dense foods have different effects on metabolism. To compare the effects of a high-fat diet, a high-fructose diet and a combination high-fat/high-fructose diet on glucose and lipid metabolism, male C57BL/6 mice were fed with one of four different diets for 3 months: standard chow; standard diet and access to fructose water; a high fat diet; and a high fat diet with fructose water. After 3 months of feeding, the high-fat and the combined high-fat/high-fructose groups showed significantly increased body weights, accompanied by hyperglycemia and insulin resistance; however, the high-fructose group was not different from the control group. All three energy-dense groups showed significantly higher visceral fat weights, total cholesterol concentrations, and low-density lipoprotein cholesterol concentrations compared with the control group. Assays of basal metabolism showed that the respiratory quotient of the high-fat, the high-fructose, and the high-fat/high-fructose groups decreased compared with the control group. The present study confirmed the deleterious effect of high energy diets on body weight and metabolism, but suggested that the energy efficiency of the high-fructose diet was much lower than that of the high-fat diet. In addition, fructose supplementation did not worsen the detrimental effects of high-fat feeding alone on metabolism in C57BL/6 mice.  相似文献   

7.
Fat-rich diets not only induce obesity in humans but also make animals obese. Therefore, animals that accumulate body fat in response to a high-fat diet (especially rodents) are commonly used in obesity research. The effect of dietary fat on body fat accumulation is not fully understood in zebrafish, an excellent model of vertebrate lipid metabolism. Here, we explored the effects of dietary fat and green tea extract, which has anti-obesity properties, on body fat accumulation in zebrafish. Adult zebrafish were allocated to four diet groups and over 6 weeks were fed a high-fat diet containing basal diet plus two types of fat or a low-fat diet containing basal diet plus carbohydrate or protein. Another group of adult zebrafish was fed a high-fat diet with or without 5% green tea extract supplementation. Zebrafish fed the high-fat diets had nearly twice the body fat (visceral, subcutaneous, and total fat) volume and body fat volume ratio (body fat volume/body weight) of those fed low-fat diets. There were no differences in body fat accumulation between the two high-fat groups, nor were there any differences between the two low-fat groups. Adding green tea extract to the high-fat diet significantly suppressed body weight, body fat volume, and body fat volume ratio compared with the same diet lacking green tea extract. 3-Hydroxyacyl-coenzyme A dehydrogenase and citrate synthase activity in the liver and skeletal muscle were significantly higher in fish fed the diet supplemented with green tea extract than in those fed the unsupplemented diet. Our results suggest that a diet rich in fat, instead of protein or carbohydrate, induced body fat accumulation in zebrafish with mechanisms that might be similar to those in mammals. Consequently, zebrafish might serve as a good animal model for research into obesity induced by high-fat diets.  相似文献   

8.
Research into the prevention and treatment of age-related metabolic diseases are important in the present-day situation of the aging population. We propose that an elderly diabetic mouse model may be useful to such research as it exhibits deterioration of glucose and lipid metabolism. Although the KK mouse strain is commonly used as a model of moderate obesity and type 2 diabetes, the utility of this strain as an elderly obese and diabetic model mouse for research into aging remains unclear. The present study aimed to investigate age-related changes of glucose and lipid metabolism in male KK mice fed a standard chow diet. We demonstrate that 40 weeks KK mice exhibit age-related dysfunctions, such as development of insulin resistance associated with pancreatic islet hypertrophy and decreased lipolysis in white adipose tissue (WAT) compared with 15 weeks KK mice. However, aging does not appear to cause mitochondrial dysfunction of brown adipose tissue. Unexpectedly, hyperglycemia, potential glucose uptake in insulin-sensitive organs, hepatic lipid accumulation, hypertrophy of adipocytes, and inflammation in epididymal WAT did not worsen but rather compensated in 40 weeks KK mice. Our data indicate that the use of male KK mice as an elderly obese and diabetic mouse model has some limitations and in order to represent a useful elderly obese and diabetic animal model, it may be necessary to induce deterioration of glucose and lipid metabolism in KK mice through breeding with high-sucrose or high-fat diets.  相似文献   

9.
In this study, C57BL/6J male mice were fed normal chow (NC; control) or a high-fat diet (HFD) for 12 weeks, and HFD mice were supplemented with oral administration of Streptococcus thermophilus MN-ZLW-002 (HFD + MN002); n=20/group. Body weight, visceral fat, blood glucose, blood lipids and liver lipid deposition increased in the HFD group, and the composition of gut microbiota, cecum short-chain fatty acids and fecal bile acids (BAs) also changed. Oral-fed MN-002 increased the relative abundances of Ruminococcaceae, Lachnospiraceae and Streptococcaceae and improved blood glucose, liver cholesterol deposition, and serum IL-10, CCL-3 and the fecal BAs composition. In conclusion, the high-fat diet changed the composition of bile acids by shaping the gut microbiota into an obese type, leading to metabolic disturbances. Streptococcus thermophilus MN-ZLW-002 regulated gut microbiota by adjusting the composition of bile acids and improved the perturbation caused by high-fat diets. However, the effect of MN002 observed in animal experiments needs to be verified by long-term clinical trials.  相似文献   

10.
11.
In order to study the effects of diet on fat distribution, circulating leptin levels and ob mRNA expression, diets of different macronutrient composition were fed to lean mice and gold thioglucose-obese mice. A high-fat diet and 2 high-carbohydrate diets, one containing mostly high-glycaemic-index starch and the other containing low-glycaemic-index starch were fed ad libitum for 10 weeks and were compared to standard laboratory chow. Weight gain was attenuated by feeding low-glycaemic-index starch in all mice and by feeding a high-fat diet in lean mice. Reduced adiposity was seen in lean mice fed low-glycaemic-index starch, whereas increased adiposity was seen in both lean and obese mice fed on the high-fat diet. Circulating leptin levels, when corrected for adiposity, were decreased in all mice fed either the high-fat diet or the low-GI diet. In epididymal fat pads, decreased ob mRNA expression was seen after both high-fat and high-glycaemic-index starch feeding. These results show that diet macronutrient composition contributes to the variability of circulating leptin levels by the combined effects of diet on fat distribution and on site-specific changes in ob mRNA expression.  相似文献   

12.
Improper eating habits such as high-fat or high-carbohydrate diets are responsible for metabolic changes resulting in impaired glucose tolerance, hyperinsulinemia, insulin resistance, and ultimately diabetes. Although the essentiality of trivalent chromium for humans has been recently questioned by researchers, pharmacological dosages of this element can improve insulin sensitivity in experimental animals and diabetic subjects. The aim of the study was to assess the preventive potential of the supplementary chromium(III) propionate complex (CrProp) in rats fed a high-fat diet. The experiment was conducted on 32 male Wistar rats divided into four groups and fed the following diets: the control (C, AIN-93G), high-fat diets (HF, 40 % energy from fat), and a high-fat diet supplemented with CrProp at dosages of 10 and 50 mg Cr/kg diet (HF?+?Cr10 and HF?+?Cr50, respectively). After 8 weeks, high-fat feeding led to an increased body mass, hyperinsulinemia, insulin resistance, a decreased serum urea concentration, accumulation of lipid droplets in hepatocytes, and increased renal Fe and splenic Cu contents. Supplementary CrProp in both dosages did not alleviate these changes but increased renal Cr content and normalized splenic Cu content in high-fat-fed rats. Supplementary CrProp does not prevent the development of insulin resistance in rats fed a high-fat diet.  相似文献   

13.
Rats were fed a diet containing either 20% ("control") or 8% ("reduced-protein") protein throughout pregnancy and lactation. Their female offspring were weaned onto the same respective diets. At 63 days of age one set of control and reduced-protein rats (n = 16 per group) underwent intraperitoneal glucose tolerance tests and one week later were killed and their pancreatic hormones extracted and measured. The reduced protein rats had better glucose tolerance (p < 0.001) and lower pancreatic insulin (p < 0.01) and amylin (p < 0.01) contents. Further sets of control and reduced-protein rats were then fed either chow or a cafeteria-style diet (n = 16 in each of the four groups). These rats underwent intraperitoneal glucose tolerance tests at 133 days of age, which showed the cafeteria-fed animals to have a worse glucose tolerance than the chow-fed animals irrespective of previous diet exposure (p < 0.0001). One week later reduced-protein rats still had lower pancreatic insulin contents (p < 0.05) (and a trend for lower amylin contents), but also had increased pancreatic glucagon contents (p < 0.05). There were no detectable differences in pancreatic somatostatin-like immunoreactivity or pancreatic polypeptide contents. These results are consistent with pancreatic beta- and alpha-cells being selectively susceptible to effects associated with early dietary protein restriction.  相似文献   

14.
目的建立以高脂纯化饲料诱导的、遗传背景和环境因素共同起作用的C57BL/6J小鼠代谢综合征(MS)模型,为研究营养因素与代谢综合征的关系提供周期较短、稳定性好、可重复性、与人类发病可比性高的动物模型。方法雄性3周龄C57BL/6J小鼠30只适应性喂养10d后随机分为2组,其中一组(10只)给予普通生长饲料(对照组),另一组(20只)给予高脂纯化饲料(模型组)。喂养期间对空腹血糖(FBG)、体重进行连续监测,同时监测体重指数(BMI)、血清胰岛素(FINS)、血清甘油三脂(TG)、总胆固醇(TC)、高密度脂蛋白(HDL-C)、低密度脂蛋白(LDL-C),实验期10周。实验结束时取内脏脂肪和肝脏称重,取肝胰做病理分析。结果分组喂养1周时,模型组小鼠体重出现显著性升高(P〈0.001),并表现为中心型肥胖。4周时FBG显著性升高(P〈0.05),5周时FINS开始升高但无显著性差异。8周时血清TC、HDL-C显著性升高(P〈0.001),10周时TG、TC、HDL-C、LDL-C均升高(P〈0.01)。HE染色显示肝脏中度脂肪变,胰岛细胞无明显改变。结论单纯施以高脂饲料10周即可建立MS小鼠模型。并且该模型造模方法简单易行、周期较短、稳定性好、可重复性高,与人类MS自然发病过程类似,是MS较理想的动物模型。  相似文献   

15.
1. Groups of congenic adult male lean and obese LA/N-cp rats were fed stock chow or the chow diet plus a cafeteria diet supplement from 4 until 6 months of age. 2. Weight gain, adipose cellularity, and adiposity were greater in obese than in lean rats and all three parameters increased more rapidly in obese than in lean rats when fed the cafeteria-supplemented diet. 3. Resting metabolic rates and basal urinary vanilylmandelic acid excretion were greater in lean than in obese rats, while serum triiodothyronine concentrations were similar in both phenotypes. The cafeteria diet was associated with significant increases in all three metabolic parameters in lean but not in obese rats. 4. The results of this study indicate that the obese phenotype of this strain has an impaired capacity for non-shivering thermogenesis (NST), in association with an enhanced propensity for development of obesity when fed stock or cafeteria diets. Moreover, the impairment in NST involves both sympathetic and thyroidal components, and is likely to be contributory if not causative of obesity in this strain.  相似文献   

16.
Among adolescents, overweight, obesity and metabolic syndrome are rapidly increasing in recent years as a consequence of unhealthy palatable diets. Animal models of diet-induced obesity have been developed, but little is known about the behavioural patterns produced by the consumption of such diets. The aim of the present study was to determine the behavioural and biochemical effects of a cafeteria diet fed to juvenile male and female rats, as well as to evaluate the possible recovery from these effects by administering standard feeding during the last week of the study. Two groups of male and female rats were fed with either a standard chow diet (ST) or a cafeteria (CAF) diet from weaning and for 8 weeks. A third group of males (CAF withdrawal) was fed with the CAF diet for 7 weeks and the ST in the 8th week. Both males and females developed metabolic syndrome as a consequence of the CAF feeding, showing overweight, higher adiposity and liver weight, increased plasma levels of glucose, insulin and triglycerides, as well as insulin resistance, in comparison with their respective controls. The CAF diet reduced motor activity in all behavioural tests, enhanced exploration, reduced anxiety-like behaviour and increased social interaction; this last effect was more pronounced in females than in males. When compared to animals only fed with a CAF diet, CAF withdrawal increased anxiety in the open field, slightly decreased body weight, and completely recovered the liver weight, insulin sensitivity and the standard levels of glucose, insulin and triglycerides in plasma. In conclusion, a CAF diet fed to young animals for 8 weeks induced obesity and metabolic syndrome, and produced robust behavioural changes in young adult rats, whereas CAF withdrawal in the last week modestly increased anxiety, reversed the metabolic alterations and partially reduced overweight.  相似文献   

17.

Background/Aim

Hypercaloric diet ingestion and sedentary lifestyle result in obesity. Metabolic syndrome is a cluster of clinical features secondary to obesity, considered as a pre-diabetic condition and recognized as an independent risk factor for cardiovascular diseases. To better understand the relationship between obesity, metabolic syndrome and cardiovascular disease as well as for the development of novel therapeutic strategies, animal models that reproduce the etiology, course and outcomes of these pathologies are required. The aim of this work was to characterize the long-term effects of high-fat diet-induced obesity on the mice cardiovascular system, in order to make available a new animal model for diabetic cardiomyopathy.

Methods/Results

Male C57BL/6 mice were fed with a standardized high-fat diet (obese) or regular diet (normal) for 16 months. Metabolic syndrome was evaluated testing plasma glucose, triglycerides, cholesterol, insulin, and glucose tolerance. Arterial pressure was measured using a sphygmomanometer (non invasive method) and by hemodynamic parameters (invasive method). Cardiac anatomy was described based on echocardiography and histological studies. Cardiac function was assessed by cardiac catheterization under a stress test. Cardiac remodelling and metabolic biomarkers were assessed by RT-qPCR and immunoblotting. As of month eight, the obese mice were overweight, hyperglycaemic, insulin resistant, hyperinsulinemic and hypercholesterolemic. At month 16, they also presented normal arterial pressure but altered vascular reactivity (vasoconstriction), and cardiac contractility reserve reduction, heart mass increase, cardiomyocyte hypertrophy, cardiac fibrosis, and heart metabolic compensations. By contrast, the normal mice remained healthy throughout the study.

Conclusions

Mice fed with a high-fat diet for prolonged time recapitulates the etiology, course and outcomes of the early phases of human diabetic cardiomyopathy.  相似文献   

18.
目的:探讨孕期和哺乳期的高脂饮食能否导致子代在生命早期出现糖脂代谢紊乱。方法成年雌性C57BL/6J小鼠与正常饮食雄性小鼠进行交配,孕鼠随机分为高脂饮食组和正常饮食组,在孕期和哺乳期喂养高脂饲料或正常饲料,至交配后第一代鼠断乳时(3周龄)观察其糖脂代谢相关性指标以及肝脏病理表现。结果较正常饮食组子鼠相比,高脂饮食子鼠出生体重更低( P<0.05)。在断乳时,高脂饮食组雄性子鼠体重较重( P =0.038),腹腔糖耐量实验30 min和60 min血糖明显升高(P值分别为<0.001和<0.01),糖耐量曲线下面积较大(P=0.0016),HOMA-IR值较大(P<0.05),雌性子鼠腹腔糖耐量实验在30 min血糖高于正常组(P<0.01),而糖耐量曲线下面积和HOMA-IR值在两组之间无明显统计学意义。雄性和雌性子代小鼠空腹胆固醇水平高脂饮食组均高于正常饮食组( P值分别为<0.0001和0.0004),而两组雄性和雌性子代小鼠空腹胰岛素和甘油三酯水平差异均无显著性( P均>0.05)。另外,在断乳时高脂饮食子鼠出现肝脏脂肪变性,雌性和雄性子鼠无明显差异。结论母鼠孕期和哺乳期高脂饮食能够诱导子代在生命早期就能出现糖脂代谢紊乱并且雄性子鼠更易出现肥胖、糖耐量异常、胰岛素抵抗。  相似文献   

19.
To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.  相似文献   

20.
A new and convenient animal model for studying peripheral vascular and coronary artery disease in diabetes was established in this study. Male New Zealand White rabbits weighing approximately 2 kg were divided into 2 groups: a normal control group fed standard laboratory chow and a diabetogenic diet–fed group received a high-fat/high-sucrose diet. The high-fat/high-sucrose diet (contained 10% lard and 37% sucrose) feeding was maintained for 6 months. Plasma total cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride, superoxide dismutase, nitric oxide, nitric oxide synthase, insulin, and glucose were quantitated at monthly or bimonthly intervals. The aortic fatty streak lesions were quantified following lipid staining with Sudan IV. The aortic samples were observed by electron microscopy. High plasma triglyceride and glucose concentrations were induced. At the end of 6 months, the aortic fatty streak lesions were present in the animals'' vascular specimens. As far as we know, this is the first report that demonstrates that New Zealand White rabbits can develop obvious aortic fatty streaks by feeding a high-fat/high-sucrose diet. Our results suggest that NewZealand White rabbits fed a high-fat/high-sucrose diet would provide a convenient model for studying peripheral vascular and coronary artery disease in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号