首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vitamin D, a steroid hormone and exerts its biological effects through its active metabolite 1alpha, 25 dihydroxyvitamin D3 [1,25(OH)2D3]. Like steroid hormones, 1,25(OH)2D3 is efficacious at very low concentrations and serves as a ligand for vitamin D receptors (VDR), associating with VDR very high affinity. Despite its potent property as a differentiating agent, its use in the clinical practice is hampered by the induction of hypercalcemia at a concentration required to suppress cancer cell proliferation. Therefore nearly 400 structural analogs of vitamin D3 have been synthesized and evaluated for their efficacy and toxicity. Among these analogs, relatively less toxic but highly efficacious analogs, EB1089, RO24-5531, 1alpha-hydroxyvitamin D5 and a few others have been evaluated in a preclinical toxicity and in Phase I clinical trials for dose tolerance in advanced cancer patients. Clinical trials using vitamin D analogs for prevention or therapy of cancer patients are still in their infancy. Vitamin D mediates its action by two independent pathways. Genomic pathway involves nuclear VDR and induces biological effects by interactions with hormone response elements and modulation of differential gene expressions. Evidence also suggests that vitamin D analogs also interact with steroid hormone(s) inducible genes. The non-genomic pathway is characterized by rapid actions of vitamin D. It involves interactions with membrane-VDR interactions and its interactions with protein kinase C and by altering intracellular calcium channels. Thus, the development of nontoxic analogs of vitamin D analogs and understanding of their molecular mechanism(s) of action are of significant importance in the prevention and treatment of cancer by vitamin D.  相似文献   

2.
Sebocytes are sebum-producing cells that form the sebaceous glands. We investigated the role of sebocytes as target cells for vitamin D metabolites and the existence of an enzymatic machinery for the local synthesis and metabolism of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3, calcitriol], the biologically active vitamin D metabolite, in these cell types. Expression of vitamin D receptor (VDR), vitamin D-25-hydroxylase (25OHase), 25-hydroxyvitamin D-1α-hydroxylase (1αOHase), and 1,25-dihydroxyvitamin D-24-hydroxylase (24OHase) was detected in SZ95 sebocytes in vitro using real time quantitative polymerase chain reaction. Splice variants of 1αOHase were identified by nested touchdown polymerase chain reaction. We demonstrated that incubation of SZ95 sebocytes with 1,25(OH)2D3 resulted in a cell culture condition-, time-, and dose-dependent modulation of cell proliferation, cell cycle regulation, lipid content and interleukin-6/interleukin-8 secretion in vitro. RNA expression of VDR and 24OHase was upregulated along with vitamin D analogue treatment. Although several other splice variants of 1αOHase were detected, our findings indicate that the full length product represents the major 1αOHase gene product in SZ95 cells. In conclusion, SZ95 sebocytes express VDR and the enzymatic machinery to synthesize and metabolize biologically active vitamin D analogues. Sebocytes represent target cells for biologically active metabolites. Our findings indicate that the vitamin D endocrine system is of high importance for sebocyte function and physiology. We conclude that sebaceous glands represent potential targets for therapy with vitamin D analogues or for pharmacological modulation of 1,25(OH)2D3 synthesis/metabolism.  相似文献   

3.
The metabolism of vitamin D is regulated by three major cytochrome P450-containing h hydroxylases—the hepatic 25-hydroxylase, the renal 1-hydroxylase, and the renal and intestinal 24-hydroxylase. In the liver, the 25-hydroxylation reaction is catalyzed by microsomal and mitochondrial cytochrome P450cc25. The microsomal P450 accepts electrons from the NADPH-cytochrome P450 reductase, and the mitochondrial P450 accepts electrons from NADPH-ferredoxin reductase and ferredoxin. In the kidney, the 1- and 24-hydroxylation reactions are catalyzed by mitochondrial cytochromes P450cc1 and P450cc24, respectively. The 24-hydroxylase is also found in vitamin D target tissues such as the intestine. The rat hepatic mitochondrial P450cc25 and the rat renal mitochondrial P450cc24 have been purified, and their cDNAs have been cloned and sequenced. 1,25-Dihydroxyvitamin D, the active metabolite of vitamin D, markedly stimulates renal P450cc24 mRNA and 24-hydroxylase activity in the intact animal and in renal cell lines. This stimulation occurs via a receptor-mediated mechanism requiring new protein synthesis. Despite the availability of a clone, no studies have yet been reported of the regulation of hepatic P450cc25 at the mRNA level. The study of one of the most important enzymes in vitamin D metabolism, the renal 1-hydroxylase which produces the active metabolite, awaits the definitive cloning of the cDNA for the P450cc1.  相似文献   

4.
The high ingestion of soybean products in Asian countries has been suggested to be responsible for a reduced incidence of prostate cancer. The mechanism of action, however, is unknown. Our data demonstrate that genistein and some isoflavone metabolites reduce the activity of 25-D3-24-hydroxylase (CYP24) in the human prostate cancer-derived cell line DU-145. CYP24 is also responsible for degradation of the active vitamin D metabolite 1,25-dihydroxyvitamin D3 which is known to be antimitotic and prodifferentiating in prostate cancer cells. High levels of CYP24 frequently found in prostate cancer cells may thus degrade the active metabolite. This could be prevented by ingestion of genistein-containing food such as soybeans.  相似文献   

5.
The role of vitamin D in innate immunity is increasingly recognized. Recent work has identified a number of tissues that express the enzyme 1alpha-hydroxylase and are able to activate vitamin D. This locally produced vitamin D is believed to have important immunomodulatory effects. In this paper, we show that primary lung epithelial cells express high baseline levels of activating 1alpha-hydroxylase and low levels of inactivating 24-hydroxylase. The result of this enzyme expression is that airway epithelial cells constitutively convert inactive 25-dihydroxyvitamin D(3) to the active 1,25-dihydroxyvitamin D(3). Active vitamin D that is generated by lung epithelium leads to increased expression of vitamin D-regulated genes with important innate immune functions. These include the cathelicidin antimicrobial peptide gene and the TLR coreceptor CD14. dsRNA increases the expression of 1alpha-hydroxylase, augments the production of active vitamin D, and synergizes with vitamin D to increase expression of cathelicidin. In contrast to induction of the antimicrobial peptide, vitamin D attenuates dsRNA-induced expression of the NF-kappaB-driven gene IL-8. We conclude that primary epithelial cells generate active vitamin D, which then influences the expression of vitamin D-driven genes that play a major role in host defense. Furthermore, the presence of vitamin D alters induction of antimicrobial peptides and inflammatory cytokines in response to viruses. These observations suggest a novel mechanism by which local conversion of inactive to active vitamin D alters immune function in the lung.  相似文献   

6.
The active metabolite of vitamin D, 1, 25-dihydroxyvitamin D3 [1,25(OH)2D3] – a seco-steroid hormone is a pivotal regulator of cellular proliferation and differentiation those are independent of its classical function of calcium homeostasis and bone mineralization. The existence of the nuclear vitamin D receptor (VDR) has been found in numerous tissues in different organs, which are the so-called 'non-classical' targets of this seco-steroid hormone. Vitamin D has been documented as a potent antiproliferative agent in different tissues and cells. Epidemiological studies reveal a negative correlation between physiological level of vitamin and cancer risk. Studies using animal models clearly demonstrate protective role of vitamin D in different cancer types by the reduction in tumor progression and by monitoring biochemical parameters. Experiments with cultured human and animal cancer cell lines show similar antiproliferative role of vitamin D manifested by up or down regulations of crucial genes leading to inhibition of cellular growth. Hypercalcemia hinders broad-spectrum therapeutic uses of vitamin D in cancer chemotherapy. Application of vitamin D analogs having similar chemical structures or other compounds having vitamin D like actions but lacking calcemic adverse effects are getting significant attention towards rational therapeutics to treat cancer. The current review focuses on the application of vitamin D and its analogs in different forms of cancer and on the molecular mechanism involved in vitamin D mediated inhibition in cellular proliferation, cell cycle, induction of apoptosis and tumor suppression, which may eventually evolve as a meaningful cancer therapy.  相似文献   

7.
8.
The 24-hydroxylase is the enzyme responsible for the first step in the catabolism of 1,25-dihydroxyvitamin D3, the active form of vitamin D. This enzyme was shown to be upregulated by 1,25-dihydroxyvitamin D3 itself and downregulated by parathyroid hormone (PTH). Upregulation of 24-hydroxylase by 1,25-dihydroxyvitamin D3 has been characterized; however, the mechanism by which PTH acts to downregulate 24-hydroxylase expression remains unknown. Here we report the cloning of the porcine 24-hydroxylase, and show that 1,25-dihydroxyvitamin D3-stimulated 24-hydroxylase mRNA and activity are repressed by PTH in AOK-B50 cells, a porcine kidney proximal tubule cell line with stably transfected opossum PTH receptors. Forskolin mimicked the effects of PTH consistent with in vivo data, and suppression by PTH was not due to changes in VDR levels. The first 1400 bp of the 24-hydroxylase promoter were not able to mediate the effects of PTH on a reporter gene. In view of the above findings we concluded that AOK-B50 cells are a suitable model for further studying the mechanism of action of PTH on 24-hydroxylase mRNA.  相似文献   

9.
25-Hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) is an important inactivating enzyme and its expression is induced by 25-hydroxyvitamin D3 (25OHD3) and 1alpha,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3) through action of heterodimers of vitamin D receptor (VDR) and retinoid X receptor (RXR). RXRs also act as heterodimer partners for retinoic acid receptors (RARs), mediating the action of all-trans-retinoic acid (ATRA). Prostate stroma plays a crucial role in prostate cancer development and benign prostatic hyperplasia. We demonstrate here that ATRA markedly reduced the expression of 24-hydroxylase mRNA induced by 25OHD3 and 1alpha,25-(OH)2D3 in human prostatic stromal cells P29SN and P32S but not in epithelial cells PrEC or cancer cells LNCaP. By using transfection and RAR-selective ligands, we found that the inhibitory effect of ATRA on 24-hydroxylase expression in stromal cells was mediated by RARalpha but not by RARbeta. Moreover, the ATRA-induced expression of RARbeta was also mediated by RARalpha. The combined treatment of 1alpha,25-(OH)2D3 and RARalpha agonist Am80 at 10 nM exhibited strong growth-inhibitory effect whereas either alone had no effect. Our data suggest that ATRA suppresses 24-hydroxylase expression through RARalpha-dependent signaling pathway and can enhance vitamin D action in suppression of cell growth.  相似文献   

10.
11.
The current understanding of the vitamin D(3) system shows skin as the unique site of vitamin D(3) production and liver is thought to be the main site of conversion to 25(OH)D(3). Skin is capable of activating 25(OH)D(3) via 1alpha-hydroxylation and the resulting 1alpha,25(OH)(2)D(3) plays a role in epidermal homeostasis in normal and diseased skin. It also rapidly up-regulates the major vitamin D(3) metabolizing enzyme 24-hydroxylase at the mRNA level, which is an established indicator for 1alpha,25(OH)(2)D(3)-presence. We investigated the capability of primary human keratinocytes to produce 25(OH)D(3) and subsequent metabolites from vitamin D(3). Thus, by orchestrating the entire system of production, activation and inactivation, skin could be independent of other organs in supply of hormonally active vitamin D(3). First, we demonstrated substantial conversion of (3)H-D(3) to (3)H-25(OH)D(3) in primary human keratinocytes. 25-Hydroxylation was slow, followed first order rate kinetics and was not saturable under our experimental conditions. Then we showed expression of 25-hydroxylase mRNA and compared it to levels of 1alpha-hydroxylase and 24-hydroxylase. Pre-incubation with vitamin D(3) resulted in dose and time dependent up-regulation of 24-hydroxylase mRNA, whereas neither 1alpha-hydroxylase nor 25-hydroxylase expression was affected. Since both, D(3) and 25(OH)D(3) are lacking intrinsic 24-hydroxylase-inducing capacity, up-regulation had to be the consequence of a two-step activation process via 25-hydroxylation and subsequent 1alpha-hydroxylation. 24-Hydroxylase-activities closely followed the corresponding mRNA levels. When 1alpha,25(OH)(2)D(3) itself or its precursor 25(OH)D(3) were used as inducing agents, 24-hydroxylase mRNA and enzyme activity followed a transient time course. In contrast, induction observed with physiological doses of D(3) remained high, even after a 20 h-time period. These differing characteristics may be explained by the slow but constant formation of 1alpha,25(OH)(2)D(3) from a large reservoir of D(3) in the target cell, providing constant supplies for induction.  相似文献   

12.
G Jones  K Kano  S Yamada  T Furusawa  H Takayama  T Suda 《Biochemistry》1984,23(16):3749-3754
By cochromatography, mass spectrometry, and chemical derivatization, we have shown that a metabolite isolated from the perfused rat kidney incubated with 24-(R),25-dihydroxyvitamin D3 is indistinguishable from chemically synthesized 24,25,26,27-tetranor-23-hydroxyvitamin D3. The new metabolite is also produced from 24-oxo-25-hydroxyvitamin D3 but not from 23(S),25-dihydroxyvitamin D3. Enzymes required for the synthesis of the new metabolite are absent in the vitamin D deplete animal but are induced along with the 25-hydroxyvitamin-D3 24-hydroxylase by vitamin D repletion. The pathway of 24,25-dihydroxyvitamin D3 metabolism in the perfused kidney is stimulated by pre-treatment of the rat with large doses of vitamin D3, suggesting that the pathway is a degradative one.  相似文献   

13.
Differentiation therapy holds promise as an alternative to cytotoxic drug therapy of cancer. Among compounds under scrutiny for this purpose is the physiologically active form of vitamin D(3), 1,25-dihydroxyvitamin D(3), and its chemically modified derivatives. However, the propensity of vitamin D(3) and its analogs to increase the levels of serum calcium has so far precluded their use in cancer patients except for limited clinical trials. This article summarizes the range of compounds that have been shown to increase the differentiation-inducing and antiproliferative activities of vitamin D(3) and its analogs, and discusses the possible mechanistic basis for this synergy in several selected combinations. The agents discussed include those that have differentiation-inducing activity of their own that is increased by combination with vitamin D(3) or analogs, such as retinoids or transforming growth factor-beta and plant-derived compounds and antioxidants, such as curcumin and carnosic acid. Among other compounds discussed here are dexamethasone, nonsteroidal anti-inflammatory drugs, and inhibitors of cytochrome P450 enzymes, for example, ketoconazole. Thus, recent data illustrate that there are extensive, but largely unexplored, opportunities to develop combinatorial, differentiation-based approaches to chemoprevention and chemotherapy of human cancer.  相似文献   

14.
Chronic kidney disease (CKD) is a prominent health issue reported globally. The level of the vitamin D receptor (VDR) and cytochrome P450 enzyme 24-hydroxylase (CYP24A1) are crucial in the pathogenesis of secondary hyperparathyroidism (sHPT) in CKD. An elevated expression of the CYP24A1 leads to the deficiency of vitamin D and resistance to vitamin D therapy. Hence, VDR agonists and CYP24A1 antagonists are suggested to CKD patients for the management of biochemical complications. CTA-018 is a recently reported analog and acts as a potent CYP24A1 inhibitor. It inhibits CYP24A1 with an IC50 27 ± 6 nM, about 10 times more potentially than the non-selective inhibitor ketoconazole (253 ± 20 nM), and it is also been reported to induce the VDR expression. Thus, CTA-018 is under clinical trial among CKD patients. In this study, combined molecular docking and pharmacophore filtering were employed to identify compounds better than CTA-018. A huge set of 9127 compounds from Sweet Lead database were docked into the active site of VDR using Glide XP program. E-pharmacophore was developed from both the targets along with CTA-018. The compounds retrieved from the two different pharmacophore-based screening were re-docked into the active site of CYP24A1. The hits that bind well at both the active sites and matched with the pharmacophore models were considered as possible dual functional molecules against VDR and CYP24A1. Further, molecular dynamics simulation and subsequent energy decomposition analyses were also performed to study the role of specific amino acids in the active site of both VDR and CYP24A1.  相似文献   

15.
The skin fulfills an important role in the vitamin D photo-endocrine system. Epidermis is not only the site of vitamin D3 photoproduction. In addition, epidermal keratinocytes contain the vitamin D receptor (VDR) and possess 25-hydroxylase and 1alpha-hydroxylase activity indicating that all components of the vitamin D system are present. We investigated whether these components cooperate in inducing vitamin D activity upon treatment with physiological UVB doses. Upon irradiation, 24-hydroxylase mRNA was induced in keratinocytes pretreated with a sterol Delta7-reductase inhibitor (BM15766) whereby the 7-dehydrocholesterol content increased by 300-fold. Transfection experiments with a vitamin D response element containing construct confirmed VDR-dependent gene activation. Furthermore, the UVB-dependent induction of 24-hydroxylase was blocked by the cytochrome-P450 inhibitor ketoconazole. The 24-hydroxylase inducing photoproduct was transferable to unirradiated keratinocytes by medium and cellular homogenates of UVB-irradiated, BM15766-pretreated cells and was identified as 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] by high-performance liquid chromatography with tandem mass spectrometric detection. Addition of vitamin D binding protein blunted UVB-induced 24-hydroxylase suggesting the possibility of a paracrine or autocrine role for 1,25(OH)2D3. In conclusion, epidermal keratinocytes can produce vitamin D3, convert it to 1,25(OH)2D3 and respond to it upon UVB irradiation in the absence of exogenous 7-dehydrocholesterol and therefore contain a unique and complete photo-endocrine vitamin D system.  相似文献   

16.
A pathway has been described in the skin for the synthesis of 24-dehydrovitamin D3 (delta 24D3) from 24-dehydroprovitamin D3. The physiologic function of delta 24D3 is unknown, but has been proposed as a potential inhibitor of hepatic vitamin D-25-hydroxylase. We validated an assay for vitamin D-25-hydroxylase in rat hepatic microsomes, using nanomolar amounts of [3H]D3 as substrate, and found that delta 24D3 competitively inhibits vitamin D-25-hydroxylase activity. The apparent Ki was approximately 17 nM, indistinguishable from the Km of approximately 15 nM, suggesting that both delta 24D3 and cholecalciferol have similar affinity for the enzyme. We found no [3H]delta 24D3 in serum or liver extracts after repletion of vitamin D-depleted rats with [3H]vitamin D3 for 4 h or 6 days. A dose of 1 microgram delta 24D3 to vitamin D- and calcium-depleted rats was unable to promote any elevation in the 45Ca transport by everted duodenal sacs or to increase levels of plasma calcium: thus no evidence for biological conversion of delta 24D3 to vitamin D3 was observed. Further studies are needed to determine whether delta 24D3 is released from the skin to the circulation and is taken up by the liver, before physiological relevance can be attributed to this inhibitor.  相似文献   

17.
The presence of 23,25-dihydroxyvitamin D3 has been demonstrated in vivo and in vitro by a number of laboratories. In order to evaluate the significance of 23-hydroxylation, renal 23-hydroxylase activity was compared to renal 24-hydroxylase activity in several species before and after treatment with 1,25-dihydroxyvitamin D3. The maximum activity of 23-hydroxylase varied widely among species. Treatment of animals with 1,25-dihydroxyvitamin D3 24 h and again 2 h prior to assay of renal tissue resulted in a 1.7- to 5.2-fold increase in 23-hydroxylase activity and a 3.8- to 20.6-fold increase in 24-hydroxylase activity compared to untreated controls. Maximum activity for both 23- and 24-hydroxylase required the enzyme substrate, 25-hydroxyvitamin D3, and an optimum concentration (30 mM) of an oxidizable substrate such as L-malate to supply the reducing equivalents of NADPH needed. Addition of 10 mumol of magnesium chloride resulted in 19 and 24% increases in activity for 23- and 24-hydroxylase, respectively. L-Malate supported the hydroxylation reactions better than succinate, alpha-ketoglutarate, or pyruvate. The apparent Km of calf renal 23-hydroxylase was 5.7 +/- 1.0 microM and of 24-hydroxylase, 2.0 +/- 0.2 microM. Apparent Km's for 23-hydroxylase varied from a low of 2.7 +/- 0.3 microM in the sheep to a high of 19.1 +/- 0.5 microM in the chick, and for 24-hydroxylase from 0.5 +/- 0.1 microM for the chick to 2.0 +/- 0.2 microM for the calf. Maximum velocity values (Vmax) ranged from 40 +/- 9 pmol/min/g for 23-hydroxylase in the chick to 396 +/- 92 in the calf, and for 24-hydroxylase from 108 +/- 89 pmol/min/g in the chick to 851 +/- 88 in the pig. These results help explain the in vivo metabolite concentrations and the predominance of the C(24)- over C(23)-oxidation pathways. Renal 23-hydroxylase was similar to 24-hydroxylase in that it was inhibited by carbon monoxide (63%), cyanide (51%), and antimycin (67%), required molecular oxygen, and functioned best at physiological pH 7.4. It was also inhibited by p-chloromercuribenzoate (39%), but not by dinitrophenol. The relatively large amount of 23-hydroxylase activity present in renal tissue of the calf and young chicks, dogs, goats, pigs, rats, mice, and sheep suggests a prominent role for this enzyme in vitamin D metabolism.  相似文献   

18.
Vitamin D is a key signalling molecule that plays a vital role in the regulation of calcium phosphate homeostasis and bone remodelling. The circulating biologically active form of vitamin D is regulated by the catabolic mechanism of cytochrome P450 24-hydroxylase (CYP24A1) enzyme. The over-expression of CYP24A1 negatively regulates the vitamin D level, which is the causative agent of chronic kidney disease, osteoporosis and several types of cancers. In this study, we found three potential lead molecules adverse to CYP24A1 through structure-based, atom-based pharmacophore and e-pharmacophore-based screening methods. Analysis was done by bioinformatics methods and tools like binding affinity (binding free energy), chemical reactivity (DFT studies) and molecular dynamics simulation (protein–ligand stability). Combined computational investigation showed that the compounds NCI_95001, NCI_382818 and UNPD_141613 may have inhibitory effects against the CYP24A1 protein.  相似文献   

19.
1,25-Dihydroxyvitamin D3 (calcitriol) is the most active natural metabolite of Vitamin D3. It has strong antiproliferative and differentiating effects on various cell types including breast cancer cells. 25-Hydroxyvitamin D3-1α-hydroxylase (1α-hydroxylase, CYP27B1) is one of the key enzymes in the formation of calcitriol. It has been found in breast cancer cells suggesting an autocrine regulation of formation of calcitriol in these cells. Alternative splicing of the encoding genes for this enzyme can possibly play a role in regulating the enzyme level and can explain tissue specific variations of 1α-hydroxylase activity. Splice variants containing intron 1 may encode for truncated proteins with deletion of protein domains which are essential for its enzymatic activity. In order to obtain more information on the abundance of 1α-hydroxylase splice variants, we performed a highly specific nested touchdown PCR in MCF-7 cells. The full-length sequence of 1α-hydroxylase and two different splice variants of this enzyme containing intron 1 were isolated. By Western blot technique we then confirmed the protein products of the full-length enzyme and its splice variants. We hypothesize that that the expression of splice variants can lead to a quantitatively lower expression of the mRNA of the full-length enzyme. The abundance of less active 1α-hydroxylase protein variants can alter the local synthesis of calcitriol in the cells and may explain variations of enzymatic activity in different cells and tissues.  相似文献   

20.
Vitamin D and prostate cancer.   总被引:4,自引:0,他引:4  
Classically, the actions of vitamin D have been associated with bone and mineral metabolism. More recent studies have shown that vitamin D metabolites induce differentiation and/or inhibit cell proliferation of a number of malignant and nonmalignant cell types including prostate cancer cells. Epidemiological studies show correlations between the risk factors for prostate cancer and conditions that can result in decreased vitamin D levels. The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (calcitriol), inhibits growth of both primary cultures of human prostate cancer cells and cancer cell lines, but the mechanism by which the cells are growth-inhibited has not been clearly defined. Initial studies suggest that calcitriol alters cell cycle progression and may also initiate apoptosis. One of the disadvantages of using vitamin D in vivo is side-effects such as hypercalcemia at doses above physiological levels. Analogs of calcitriol have been developed that have comparable or more potent antiproliferative effects but are less calcemic. Further research into the mechanisms of vitamin D action in prostate and identification of suitable analogs for use in vivo may lead to its use in the treatment or prevention of prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号