首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two regioisomers and 13 analogues of the putative endocannabinoid noladin ether (2-arachidonyl glyceryl ether, 2-AGE, 1) were synthesized and tested for their interaction with CB(1) receptors in rat brain membranes. The results showed that a C-20 tetra-unsaturated moiety is necessary for high affinity, and that a series of alkyl glyceryl ethers of potential occurrence in brain tissues have less affinity than 2-AGE for CB(1) receptors.  相似文献   

2.
A new class of cannabimimetic indoles, with 3-phenylacetyl or substituted 3-phenylacetyl substituents, has been prepared and their affinities for the cannabinoid CB1 and CB2 receptors have been determined. In general those compounds with a 2-substituted phenylacetyl group have good affinity for both receptors. The 4-substituted analogs have little affinity for either receptor, while the 3-substituted compounds are intermediate in their affinities. Two of these compounds, 1-pentyl-3-(2-methylphenylacetyl)indole (JWH-251) and 1-pentyl-3-(3-methoxyphenylacetyl)indole (JWH-302), have 5-fold selectivity for the CB1 receptor with modest affinity for the CB2 receptor. GTPgammaS determinations indicate that both compounds are highly efficacious agonists at the CB1 receptor and partial agonists at the CB2 receptor.  相似文献   

3.
To develop SAR at both the cannabinoid CB(1) and CB(2) receptors for 3-(1-naphthoyl)indoles bearing moderately electron withdrawing substituents at C-4 of the naphthoyl moiety, 1-propyl and 1-pentyl-3-(4-fluoro, chloro, bromo and iodo-1-naphthoyl) derivatives were prepared. To study the steric and electronic effects of substituents at the 8-position of the naphthoyl group, the 3-(4-chloro, bromo and iodo-1-naphthoyl)indoles were also synthesized. The affinities of both groups of compounds for the CB(1) and CB(2) receptors were determined and several of them were evaluated in vivo in the mouse. The effects of these substituents on receptor affinities and in vivo activity are discussed and structure-activity relationships are presented. Although many of these compounds are selective for the CB(2) receptor, only three JWH-423, 1-propyl-3-(4-iodo-1-naphthoyl)indole, JWH-422, 2-methyl-1-propyl-3-(4-iodo-1-naphthoyl)indole, the 2-methyl analog of JWH-423 and JWH-417, 1-pentyl-3-(8-iodo-1-naphthoyl)indole, possess the desirable combination of low CB(1) affinity and good CB(2) affinity.  相似文献   

4.
Cannabinoids receptors, cellular elements of the endocannabinoid system, have been the focus of extensive studies because of their potential functional role in several important physiological and pathological processes. To further evaluate the properties of CB receptors, especially CB(1) and CB(2) subtypes, we have designed, using SR141716A as a benchmark, a new series of rigid 1-aryl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamides. Compounds 1 were synthesized from substituted 1-aryl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylic acids and requisite amines. The various analogues were assayed for binding both to the brain and peripheral cannabinoid receptors (CB(1) and CB(2)). Seven of the new compounds displayed very high in vitro CB(2) binding affinities, especially 1a, 1b, 1c, 1e, 1g, 1h and 1j which showed K(i) values of 0.34, 0.225, 0.27, 0.23, 0.385, 0.037 and 0.9 nM, respectively. Compounds 1a, 1b, 1c and 1h showed the highest selectivity for CB(2) receptor with K(i)(CB(1)) to K(i)(CB(2)) ratios of 6029, 5635, 5814 and 9810, respectively. Noticeably, 1h exhibited the highest affinity and selectivity for CB(2) receptors.  相似文献   

5.
In our ongoing program aimed at the design, synthesis, and biological evaluation of novel cannabinoid receptor ligands derived from olivetol and hexyl-resorcinol, we have designed a structural model for new derivatives on the basis of a previous study. Here we report the synthesis, binding, and molecular modeling studies of new potent compounds with high affinity toward CB(1) and CB(2) receptors. Compounds with amidic 'heads' with alkyloxy chains varying in length from 8 to 12 carbon atoms showed nanomolar affinity for both receptors, depending on the type of aromatic backbone. Two of the new compounds, although not very potent, exhibit selectivity for CB(1) receptors (CB(1)/CB(2)=0.07 and 0.08, respectively). Molecular modeling studies fitted this new class of cannabinoid ligands into a CB(1) receptor model, and the qualitative analysis of the results was in general agreement with the CB(1) affinity constants observed experimentally for these derivatives.  相似文献   

6.
Cannabinoid receptors have been studied extensively in view of their potential functional role in several physiological and pathological processes. For this reason, the search for new potent, selective ligands for subtype CB receptors, CB(1) and CB(2), is still of great importance, in order to investigate their role in various physiological functions. The present study describes the synthesis and the biological properties of a series of 1,8-naphthyridine derivatives, characterised by the presence of some important structural requirements exhibited by other classes of cannabinoid ligands, such as an aliphatic or aromatic carboxamide group in position 3, and an alkyl or arylalkyl substituent in position 1. These compounds were assayed for binding both to the brain and to peripheral cannabinoid receptors (CB(1) and CB(2)). The results obtained indicate that the naphthyridine derivatives examined possess a greater affinity for the CB(2) receptor than for the CB(1) receptor. In particular, derivatives 6a and 7a possess an appreciable affinity for the CB(2) receptor, with K(i) values of 5.5 and 8.0 nM respectively; also compounds 4a, 5a and 8a exhibit a good CB(2) affinity, with K(i) values in the range of 10-44 nM. Furthermore, compounds 3g-i and 18 revealed a good CB(2) selectivity, with a CB(1)/CB(2) ratio >20.  相似文献   

7.
We investigated the structure-activity relationships for the interactions of fatty acid amide analogs of the endocannabinoid anandamide with human recombinant cannabinoid receptors. Thirty-five novel fatty acid amides were synthesized using five different types of acyl chains and 11 different aromatic amine 'heads.' Although none of the new compounds was a more potent ligand than anandamide, we identified three amine groups capable of improving the metabolic stability of arachidonoylamides and their CB(1)/CB(2) selectivity ratio to over 20-fold, and several aromatic amines capable of improving the affinity of short chain or monosaturated fatty acids for cannabinoid CB(1) receptors. For the first time a tertiary amide of arachidonic acid was found to possess moderate affinity (K(i)=300 nM) for cannabinoid CB(1), but not CB(2), receptors.  相似文献   

8.
Membrane-bound receptors such as tyrosine kinases and ionotropic receptors are associated with large protein networks structured by protein-protein interactions involving multidomain proteins. Although these networks have emerged as a general mechanism of cellular signalling, much less is known about the protein complexes associated with G-protein-coupled receptors (GPCRs). Using a proteomic approach based on peptide affinity chromatography followed by mass spectrometry and immunoblotting, we have identified 15 proteins that interact with the C- terminal tail of the 5-hydroxytryptamine 2C (5-HT(2C)) receptor, a GPCR. These proteins include several synaptic multidomain proteins containing one or several PDZ domains (PSD95 and the proteins of the tripartite complex Veli3-CASK-Mint1), proteins of the actin/spectrin cytoskeleton and signalling proteins. Coimmunoprecipitation experiments showed that 5-HT(2C) receptors interact with PSD95 and the Veli3-CASK-Mint1 complex in vivo. Electron microscopy also indicated a synaptic enrichment of Veli3 and 5-HT(2C) receptors and their colocalization in microvilli of choroidal cells. These results indicate that the 5-HT(2C) receptor is associated with protein networks that are important for its synaptic localization and its coupling to the signalling machinery.  相似文献   

9.
Anandamide and the metabolically stabler analogs, (R)-1'-methyl-2'-hydroxy-ethyl-arachidonamide (Met-AEA) and N-(3-methoxy-4-hydroxy-benzyl)-arachidonamide (arvanil), are CB(1) cannabinoid and VR(1) vanilloid receptors agonists. We synthesized 1',1'-dimethylheptyl-arvanil (O-1839) and six other AEA analogs obtained by addition of either a hydroxy, cyano, or bromo group on the C-20 atom of 1,1'-dimethylpentyl-Met-AEA (O-1811, O-1812 and O-1860, respectively) or 1,1'-dimethylpentyl-arvanil (O-1856, O-1895 and O-1861, respectively). The compounds were tested for their (i) affinity for CB(1) and CB(2) receptors, (ii) capability to activate VR1 receptors, (iii) inhibitory effect on the anandamide hydrolysis and on the anandamide membrane transporter, and (iv) cannabimimetic activity in the mouse 'tetrad' of in vivo assays. O-1812 is the first ligand ever proven to be highly (500- to 1000-fold) selective for CB(1) vs both VR(1) and CB(2) receptors, while O-1861 is the first true "hybrid" agonist of CB(1)/VR(1) receptors and a compound with potential therapeutic importance. The activities of the seven compounds in vivo did not correlate with their activities at either CB(1) or VR(1) receptors, thus suggesting the existence of other brain sites of action mediating some of their neurobehavioral actions in mice.  相似文献   

10.
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.  相似文献   

11.
Cannabinoid type-1 (CB(1)) receptor ligands, derived from the 1,5-diarylpyrazole core template of rimonabant (Acomplia), have been the focus of several studies aimed at examining structure-activity relationships (SARs). The purpose of this study was to design and synthesize a set of compounds based on the 1,5-diarylpyrazole template while focusing on the potential for discovery of CB(1) receptor radioligands that might be used as probes with in vivo molecular imaging. Each synthesized ligand was evaluated for potency as an antagonist at CB(1) and cannabinoid type-2 (CB(2)) receptors in vitro using a GTPgamma(35)S-binding assay. clog P values were calculated with Pallas 3.0. The antagonist binding affinities (K(B)) at CB(1) receptors ranged from 11 to >16,000 nM, CB(1) versus CB(2) selectivities from 0.6 to 773, and clog Ps from 3.61 to 6.25. An interesting new ligand, namely N-(piperidin-1-yl)-1-(2-bromophenyl)-5-(4-methoxyphenyl)-4-methyl-1H-pyrazole-3-carboxamide (9j), emerged from the synthesized set with appealing properties (K(B)=11 nM; CB(1) selectivity>773; clog P=5.85), for labeling with carbon-11 and development as a radioligand for imaging brain CB(1) receptors in vivo with positron emission tomography (PET).  相似文献   

12.
Fourteen novel CB2 receptor selective cannabinoids were synthesized via initial Lewis acid catalyzed rearrangement of resorcinol precursors to obtain the cannabinoid moiety. These are the 1-methoxy-9-hydroxyhexahydrocannabinols and the 1-deoxy-9-hydroxyhexahydrocannabinols, with 1',1'-dimethylalkyl side chains of four to seven carbon atoms at C-3 of the cannabinoid nucleus. The cannabinols synthesized and described in this paper all exhibit greater affinity for the CB2 receptor than for the CB1 receptor. Exceptionally high CB2 affinity was observed for 1-deoxy-9beta-hydroxy-dimethylhexylhexahydrocannabinol (JWH-361, 9, n = 3) K(i) = 2.7 nM and 1-deoxy-9beta-hydroxydimethylpentylhexahydrocannabinol (JWH-300, 9, n = 2) K(i) = 5.3 nM. In general, the stereochemistry of the 9-hydroxy group is important and the beta-orientation enhances both CB2 receptor affinity and selectivity.  相似文献   

13.
The C-1'-dithiolane Delta(8)-tetrahydrocannabinol (Delta(8)-THC) amphiphilic analogue (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)-2-hexyl-1,3-dithiolane (AMG3) is considered as one of the most potent synthetic analgesic cannabinoid (CB) ligands. Its structure is characterized by rigid tricyclic and flexible alkyl chain segments. Its conformational properties have not been fully explored. Structure-activity relationship (SAR) studies on classical CBs showed that the alkyl side chain is the most critical structural part for the receptor activation. However, reported low energy conformers of classical CB analogues vary mainly in the conformation of their alkyl side chain segment. Therefore, comparative molecular dynamics (MD) simulations of low energy conformers of AMG3 were performed in order to investigate its structural and dynamical properties in two different systems. System-I includes ligand and amphoteric solvent DMSO, simulating the biological environment and system-II includes ligand at active site of the homology models of CB1 and CB2 receptors in the solvent. The trajectory analysis results are compared for the systems I and II. In system-I, the dihedral angle defined between aromatic ring and dithiolane ring of AMG3 shows more resistance to be transformed into another torsional angle and the dihedral angle adjacent to dithiolane ring belonging in the alkyl chain has flexibility to adopt gauche+/- and trans dihedral angles. The rest of the dihedral angles within the alkyl chain are all trans. These results point out that wrapped conformations are dynamically less favored in solution than linear conformations. Two possible plane angles defined between the rigid and flexible segments are found to be the most favored and adopting values of approximately 90 degrees and approximately 140 degrees. In system-II, these values are approximately 90 degrees and approximately 120 degrees. Conformers of AMG3 at the CB1 receptor favor to establish a cis conformation defined between aromatic and dithiolane ring and a trans conformation in the CB2 receptor. These different orientations of ligand inside the binding pocket of CB1 and CB2 receptors may explain its different binding affinity in the two receptors. The results of this study can be applied to other synthetic classical CB ligands to produce low energy conformations and can be of general use for the molecules possessing flexible alkyl chain(s). In addition, this study can be useful when restraint of the alkyl chain is sought for optimizing drug design.  相似文献   

14.
The enantiomeric resolution of a racemic novel cannabinoid receptor ligand conformationally restricted at the southern aliphatic chain was accomplished using a ChiralPak AD column. Both enantiomers were tested for their competitive binding to the rat brain CB1, mouse spleen CB2 and human CB2 receptors. The levorotatory isomer showed exceptionally high affinity for the CB1 receptor with a seven-fold selectivity over CB2.  相似文献   

15.
In the present study, 11 novel N-(3,3-diphenyl)propyl-2,2-diphenylacetamide derivatives (4a-d and 9a-g) and six triphenylacetamides (10a-c and 11a-c) were synthesized and tested as ligands of cannabinoid CB(1) and CB(2) receptors. All compounds exhibited affinity for CB(1) and CB(2) receptors. Four compounds (4b, 9a, 9b, and 11a) showed selectivity for CB(1) versus CB(2) receptors, although only the N-(3,3-diphenyl)propyl-2,2-diphenylacetamide (4b) can be considered a potent CB(1) ligand (K(i)=58 nM). It was 140-fold selective over CB(2) receptors (K(i)=7800 nM) and behaved as an inverse agonist by stimulating forskolin-induced cAMP formation in mouse N18TG2 neuroblastoma cells. This compound is the first of a novel class of tetraphenyl CB(1) ligands that, in view of its easy synthesis and high affinity for CB(1) receptors and despite its sterical hindrance, will be useful for the design of new blockers of this therapeutically exploitable receptor type.  相似文献   

16.
Elphick MR  Satou Y  Satoh N 《Gene》2003,302(1-2):95-101
The G-protein coupled cannabinoid receptors CB(1) and CB(2) are activated by Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of cannabis, and mediate physiological effects of endogenous cannabinoids ('endocannabinoids'). CB(1) genes have been identified in mammals, birds, amphibians and fish, whilst CB(2) genes have been identified in mammals and in the puffer fish Fugu rubripes. Therefore, both CB(1) and CB(2) receptors probably occur throughout the vertebrates. However, cannabinoid receptor genes have yet to be identified in any invertebrate species and the evolutionary origin of cannabinoid receptors is unknown. Here we report the identification of CiCBR, a G-protein coupled receptor in a deuterostomian invertebrate - the urochordate Ciona intestinalis - that is orthologous to vertebrate cannabinoid receptors. The CiCBR cDNA encodes a protein with a predicted length (423 amino-acids) that is the intermediate of human CB(1) (472 amino-acids) and human CB(2) (360-amino-acid) receptors. Interestingly, the protein-coding region of the CiCBR gene is interrupted by seven introns, unlike in vertebrate cannabinoid receptor genes where the protein-coding region is typically intronless. Phylogenetic analysis revealed that CiCBR forms a clade with vertebrate cannabinoid receptors but is positioned outside the CB(1) and CB(2) clades of a phylogenetic tree, indicating that the common ancestor of CiCBR and vertebrate cannabinoid receptors predates a gene (genome) duplication event that gave rise to CB(1)- and CB(2)-type receptors in vertebrates. Importantly, the discovery of CiCBR and the absence of orthologues of CiCBR in protostomian invertebrates such as Drosophila melanogaster and Caenorhabditis elegans indicate that the ancestor of vertebrate CB(1) and CB(2) cannabinoid receptors originated in a deuterostomian invertebrate.  相似文献   

17.
A series of 4,5-dihydro-1H-benzo[g]indazole-3-carboxamides (2a-k) as analogues of the previously reported CB(2) ligands 6-chloro- and 6-methyl-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamides (1a,b) was synthesized and their affinity and selectivity towards CB(1) and CB(2) receptors were evaluated. Several of the new compounds (2a,b,c,d and i) exhibited CB(1) affinity in the nanomolar range with moderate or negligible affinity towards CB(2) receptors. Compounds 2a and c increased intestinal propulsion in mouse. Their pro-kinetic effects were reversed by the reference CB agonist CP-55,940. Consequently, in vivo CB(1) antagonistic activity was highlighted for these compounds.  相似文献   

18.
We designed and synthesized a series of pyrrole derivatives with the aim of investigating the structure-activity relationship (SAR) for the binding of non-classical agonists to CB(1) and CB(2) cannabinoid receptors. Superposition of two pyrrole-containing cannabinoid agonists, JWH-007 and JWH-161, allowed us to identify positions 1, 3 and 4 of the pyrrole nucleus as amenable to additional investigation. We prepared the 1-alkyl-2,5-dimethyl-3,4-substituted pyrroles 10a-e, 11a-d, 17, 21, 25 and the tetrahydroindole 15, and evaluated their ability to bind to and activate cannabinoid receptors. Noteworthy in this set of compounds are the 4-bromopyrrole 11a, which has an affinity for CB(1) and CB(2) receptors comparable to that of well-characterized heterocyclic cannabimimetics such as Win-55,212-2; the amide 25, which, although possessing a moderate affinity for cannabinoid receptors, demonstrates that the 3-naphthoyl group, commonly present in indole and pyrrole cannabimimetics, can be substituted by alternative moieties; and compounds 10d, 11d, showing CB(1) partial agonist properties.  相似文献   

19.
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus.  相似文献   

20.
12-Phenylacetyl-ricinoleoyl-vanillamide (phenylacetylrinvanil, PhAR, IDN5890), is an ultra-potent agonist of human vanilloid TRPV1 receptors also endowed with moderate affinity for human cannabinoid CB(2) receptors. To improve its CB(2) affinity and temper its potency at TRPV1, the modification of the polar headgroup and the lipophilic 12-acylgroup of PhAR was pursued. Replacement of the vanillyl headgroup of PhAR with various aromatic or alkyl amino groups decreased activity at TRPV1 receptors, although the dopamine, cyclopropylamine, 1'-(R)- and 1'-(S)-methyl-ethanolamine, and ethanolamine derivatives retained significant potency (EC(50) 31-126 nM). Within these compounds, the 12-phenylacetylricinoleyl cyclopropylamide and ethanolamide were the strongest ligands at CB(2) receptors, with K(i) of 22 and 44 nM, and 14- and >20-fold selectivity over cannabinoid CB(1) receptors, respectively. The propyl- and allyl-derivatives also exhibited high affinity at CB(2) receptors (K(i)=40 and 22 nM, with 40 and >80-fold selectivity over CB(1) receptors, respectively), but no activity at TRPV1 receptors. The cyclopropyl- and allyl-derivatives behaved as CB(2) inverse agonists in the GTP-gamma-S binding assay. Addition of para-methoxy, -tert-butyl or -chlorine groups to the 12-phenylacetyl moiety of PhAR produced compounds that retained full potency at TRPV1 receptors, but with improved selectivity over CB(2) or CB(1) receptors. Thus, the manipulation of PhAR led to the development of the first CB(2)/TRPV1 dual ligands and of an entirely new class of inverse agonists at CB(2) receptors. Both types of compounds might find application in the treatment of inflammation, and represent new molecular probes to investigate the endocannabinoid-endovanilloid signalling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号