首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anaerobic acetate degradation at 70 degrees C and at 55 degrees C (as a reference) was studied by running laboratory upflow anaerobic sludge blanket (UASB) reactors inoculated with mesophilic granular sludge. In UASB reactors fed with acetate-containing media (3 g of chemical oxygen demand [COD] per liter, corresponding to 47 mM acetate) approximately 50 days was needed at 70 degrees C and less than 15 days was needed at 55 degrees C to achieve an effluent COD of 500 to 700 mg/liter. In the UASB reactors at both 70 and 55 degrees C up to 90% of the COD was removed. Batch assays showed that sludges from two 70 degrees C UASB reactors, one run at a low effluent acetate concentration and the other run at a high effluent acetate concentration, exhibited slightly different responses to temperatures in the range from 37 to 70 degrees C. Both 70 degrees C sludges, as well as the 55 degrees C sludge, produced methane at temperatures of 37 to 73 degrees C. The 55 degrees C sludge exhibited shorter lag phases than the 70 degrees C sludges and higher specific methane production rates between 37 and 65 degrees C.  相似文献   

2.
With the application of induction-heating, the pyrolytic experiments have been carried out for three sewage sludges from the food processing factories in an externally heated fixed-bed reactor. The thermochemical characteristics of sludge samples were first analyzed. The results indicated that the calorific value had about 15 MJ/kg on an average, suggesting that it had a potential for biomass energy source. However, its nitrogen concentration was relatively high. From the thermogravimetric analysis (TGA) curves, it showed that the pyrolysis reaction can be almost finished in the temperature range of 450-750 degrees C. The yields of resulting liquid and char products from the pyrolysis of sewage sludge were discussed for examining the effects of pyrolysis temperature (500-800 degrees C), heating rate (200-500 degrees C/min), and holding time (1-8 min). Overall, the variation of yield was not so significant in the experimental conditions for three sewage sludges. All results of the resulting liquid products analyzed by elemental analyzer, pH meter, Karl-Fischer moisture titrator and bomb calorimeter were in consistence with those analyses by FTIR spectroscopy. Furthermore, the pyrolysis liquid products contained large amounts of water (>73% by weight) mostly derived from the bound water in the biosludge feedstocks and the condensation reactions during the pyrolysis reaction, and fewer contents of oxygenated hydrocarbons composing of carbonyl and nitrogen-containing groups, resulting in low pH and low calorific values.  相似文献   

3.
Sludge type was found to affect the degree of association between seeded poliovirus type 1 (LSc) and sludge solids. The mean percent of solids-associated viruses for activated sludge mixed liquors, anaerobically digested sludges, and aerobically digested percent of solids-associated viruses for activated sludge mixed liquors, anaerobically digested sludges, and aerobically digested sludges was 57.2, 70.4, and 94.7, respectively. The degree of association between poliovirus and sludge solids was significantly greater for aerobically digested sludges than for the other two sludge types. Sludge solids associated viruses were eluted using 0.05 M glycine buffer, pH 10.5-11.0, and subsequently concentrated by organic flocculation. The effectiveness of the glycine method in the recovery of solids-associated viruses was also found to be affected by sludge type. Significantly lower mean poliovirus recovery was found for aerobically digested sludges (14.5%) than for mixed liquors or anaerobically digested sludges (72.3 and 60.2%, respectively). The eluent used in the method was not as effective in dissociating the virus from aerobic sludge solids as it was for the other two sludge types. All other virus adsorption-elution steps of the method (i.e., virus concentration steps) were equally effective in poliovirus recovery for all three sludge types. It is suggested that future methods developed for the recovery of viruses from sludges be evaluated for the various sludge types likely to be tested.  相似文献   

4.
The potential of using municipal wastewater sludges as a lipid feedstock for biodiesel production was investigated. Primary and secondary sludge samples obtained from a municipal wastewater treatment plant in Tuscaloosa, AL were freeze-dried and subjected to an acid-catalyzed insitu transesterification process. Experiments were conducted to determine the effects of temperature, sulfuric acid concentration, and mass ratio of methanol to sludge on the yield of fatty acid methyl esters (FAMEs). Results indicated a significant interactive effect between temperature, acid concentration, and methanol to sludge mass ratio on the FAME yield for the insitu transesterification of primary sludge, while the FAME yield for secondary sludge was significantly affected by the independent effects of the three factors investigated. The maximum FAME yields were obtained at 75 degrees C, 5% (v/v) H(2)SO(4), and 12:1 methanol to sludge mass ratio and were 14.5% and 2.5% for primary and secondary sludge, respectively. Gas chromatography (GC) analysis of the FAMEs revealed a similar fatty acid composition for both primary and secondary sludge. An economic analysis estimated the cost of $3.23/gallon for a neat biodiesel obtained from this process at an assumed yield of 10% FAMEs/dry weight of sludge.  相似文献   

5.
Three sludge types from the same treatment stream (undigested liquid, anaerobically digested liquid and dewatered, anaerobically digested cake) were used in a field based tub study. Amendments (4, 8, and 16 Mg dry solid (ds)ha(-1)) were incorporated into the upper 15 cm of a sandy loam soil prior to sowing with rye-grass (Lolium perenne L.). Nitrogen transformations in the soil were determined for the 80 d period following incorporation. Nitrogen uptake and crop yield were measured in the cut sward 35 and 70 d after sowing. The study showed that application of sewage sludge at rates as low as 4 Mgha(-1) can have a nutritional benefit to rye-grass over the two harvests. Differences in N transformation, and hence crop nutritional benefit, between sludge types were evident throughout the experiment. In particular, the dewatering process changed the mineral N characteristics of the anaerobically digested sludge, which, when not dewatered, outperformed the other sludges in terms of yield and mineralisation rate at both harvests. The dewatered sludge produced the lowest yield of rye-grass. The undigested liquid sludge had the lowest foliar N and soil NO(3)-N concentrations, possibly immobilised as the large oxidisable C component of this sludge was metabolised by the microbial biomass. Correlation data support the concept of preferential uptake of NH(4)-N over NO(3)-N in Lolium perenne. Results are discussed in the context of managing sludge type and application for a plant nutrient source and NO(3)-N release.  相似文献   

6.
The transport of poliovirus type 1 (strain LSc) was studied in Red Bay sandy loam columns that were treated with chemical- or polyelectrolyte-conditioned dewatered sludges and then leached with natural rainwater under saturated flow conditions. Poliovirus was concentrated in the alum and ferric chloride sludges that were produced following the flocculation of virus-seeded raw sewage. Virtually complete inactivation of the virus was observed following the flocculation of raw sewage or the stabilization of alum and ferric chloride sludges with lime at pH 11.5. Poliovirus was also concentrated in polyelectrolyte-conditioned dewatered sludge that was produced from virus-seeded, anaerobically digested sludge. Despite the saturated flow conditions for a sustained period, no viruses were detected in the leachates of the soil columns that were treated with these chemical and chemically treated sludges. Since the viruses were mostly associated with the solids in these sludge samples, it is believed that they were immobilized along with the sludge solids in the top portion of the soil columns.  相似文献   

7.
The transport of poliovirus type 1 (strain LSc) was studied in Red Bay sandy loam columns that were treated with chemical- or polyelectrolyte-conditioned dewatered sludges and then leached with natural rainwater under saturated flow conditions. Poliovirus was concentrated in the alum and ferric chloride sludges that were produced following the flocculation of virus-seeded raw sewage. Virtually complete inactivation of the virus was observed following the flocculation of raw sewage or the stabilization of alum and ferric chloride sludges with lime at pH 11.5. Poliovirus was also concentrated in polyelectrolyte-conditioned dewatered sludge that was produced from virus-seeded, anaerobically digested sludge. Despite the saturated flow conditions for a sustained period, no viruses were detected in the leachates of the soil columns that were treated with these chemical and chemically treated sludges. Since the viruses were mostly associated with the solids in these sludge samples, it is believed that they were immobilized along with the sludge solids in the top portion of the soil columns.  相似文献   

8.
Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.  相似文献   

9.
Sunflower is a traditional crop which can be used for the production of bioenergy and liquid biofuels. A study of the pyrolytic behaviour of sunflower residues at temperatures from 300 to 600 degrees C has been carried out. The experiments were performed in a captive sample reactor under atmospheric pressure and helium as sweeping gas. The yields of the derived pyrolysis products were determined in relation to temperature, with constant sweeping gas flow of 50 cm3 min(-1) and heating rate of 40 degrees Cs(-1). The maximum gas yield of around 53 wt.% was obtained at 500 degrees C, whereas maximum oil yield of about 21 wt.% was obtained at 400 degrees C. A simple first order kinetic model has been applied for the devolatilization of biomass. Kinetic constants have been estimated: E=78.15 kJ mol(-1); k(0)=1.03 x 10(3)s(-1).  相似文献   

10.
This study examined the hydrolysis of lignocellulose extracted from municipal wastewater treatment process residuals for the purpose of investigating low-cost feedstocks for ethanol production, while providing an alternative solid waste management strategy. Primary and thickened waste activated sludges and anaerobically digested biosolids underwent various pre-treatments to enhance subsequent enzymatic hydrolysis. Half of the pre-treated samples were dried and grinded, while the other half were used as is (wet). The wet primary sludge yielded the highest reducing sugar conversions. When wet primary sludge without pre-treatment was hydrolyzed at 40 °C and an enzyme loading of 800 U/g substrate, 31.1 ± 2.7% was converted to reducing sugars in 24 h. This increased to 54.2 ± 4.0% when HCl and KOH pre-treatments were applied. FTIR analyses were used to examine differences in the sludge compositions. These indicated that the cellulose content in the primary sludge was higher than that of the thickened waste activated sludge and biosolids, which was consistent with the higher reducing sugar yields observed in the primary sludge.  相似文献   

11.
Destruction rates of parasite eggs in stored sludge were examined to help understand the fate of these agents of enteric diseases in sludge lagoons. Eggs from the roundworms, Ascaris spp., Toxocara spp., Trichuris spp., and the tapeworm, Hymenolepis spp., were treated with domestic sludges by aerobic or anaerobic processes. Sludge samples seeded with eggs were stored at 4 or 25 degrees C or in a container inserted into the ground to simulate lagoon conditions. The number of eggs recovered from the samples decreased with storage time. The viability and infectivity of eggs recovered were related to the storage temperature; i.e., the eggs stored at 4 degrees C remained viable longer than those stored at 25 degrees C. After 25 months at 4 degrees C, the Toxocara eggs and some Ascaris eggs remained both viable and infective, whereas most of these eggs stored at 25 degrees C were rendered nonviable after 10 to 16 months of storage in sludge. Although storage temperature was found to be the most important factor affecting the destruction and viability of these eggs, other factors, such as the type of sludge digestion, whether or not the eggs were digested along with the sludge or added later, storage in the soil versus sludge, pH, and egg species also exhibited some minor effects. These controlled laboratory studies suggest that lagooning of sludge can be an effective method for the elimination of parasite eggs, particularly in warmer geographical locations.  相似文献   

12.
Destruction rates of parasite eggs in stored sludge were examined to help understand the fate of these agents of enteric diseases in sludge lagoons. Eggs from the roundworms, Ascaris spp., Toxocara spp., Trichuris spp., and the tapeworm, Hymenolepis spp., were treated with domestic sludges by aerobic or anaerobic processes. Sludge samples seeded with eggs were stored at 4 or 25 degrees C or in a container inserted into the ground to simulate lagoon conditions. The number of eggs recovered from the samples decreased with storage time. The viability and infectivity of eggs recovered were related to the storage temperature; i.e., the eggs stored at 4 degrees C remained viable longer than those stored at 25 degrees C. After 25 months at 4 degrees C, the Toxocara eggs and some Ascaris eggs remained both viable and infective, whereas most of these eggs stored at 25 degrees C were rendered nonviable after 10 to 16 months of storage in sludge. Although storage temperature was found to be the most important factor affecting the destruction and viability of these eggs, other factors, such as the type of sludge digestion, whether or not the eggs were digested along with the sludge or added later, storage in the soil versus sludge, pH, and egg species also exhibited some minor effects. These controlled laboratory studies suggest that lagooning of sludge can be an effective method for the elimination of parasite eggs, particularly in warmer geographical locations.  相似文献   

13.
Anaerobically digested sewage sludge with a variety of moisture content, namely 81%, 86%, 90% and 98%, were anaerobically cultured at 35 degrees C under light. Phototrophic bacteria grew in the 86% moisture sludge (bacteriochlorophyll a, 0.46 g/L), 90% sludge (bacteriochlorophyll a, 0.36 g/L) and 98% sludge (bacteriochlorophyll a, 0.04 g/L) with methane production. Phototrophic bacteria could not grow in the 81% moisture sludge (bacteriochlorophyll a 0.004 g/L). Phototrophic bacteria could assimilate about 46% of the extracellular ammonium in the 90% moisture sludge. Phototrophic bacteria utilized organic compounds competing with methanogens; therefore, methane yield from the 90% moisture sludge under the light conditions was lower than that under the dark conditions. Phototrophic bacteria could grow in anaerobically digested sludge with relatively low moisture content, and assimilated extracellular ammonium in the sludge. The quality of digested sludge with phototrophic bacterial biomass for fertilizer could be improved compared with that without phototrophic bacterial biomass.  相似文献   

14.
Anaerobic acetate degradation at 70°C and at 55°C (as a reference) was studied by running laboratory upflow anaerobic sludge blanket (UASB) reactors inoculated with mesophilic granular sludge. In UASB reactors fed with acetate-containing media (3 g of chemical oxygen demand [COD] per liter, corresponding to 47 mM acetate) approximately 50 days was needed at 70°C and less than 15 days was needed at 55°C to achieve an effluent COD of 500 to 700 mg/liter. In the UASB reactors at both 70 and 55°C up to 90% of the COD was removed. Batch assays showed that sludges from two 70°C UASB reactors, one run at a low effluent acetate concentration and the other run at a high effluent acetate concentration, exhibited slightly different responses to temperatures in the range from 37 to 70°C. Both 70°C sludges, as well as the 55°C sludge, produced methane at temperatures of 37 to 73°C. The 55°C sludge exhibited shorter lag phases than the 70°C sludges and higher specific methane production rates between 37 and 65°C.  相似文献   

15.
This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95–98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.  相似文献   

16.
Hydrogen was successfully produced by fermenting primary sewage sludge which had been both heat treated and digested with a commercially available enzyme preparation. When either heat treatment or enzymatic digestion were not used, no hydrogen was produced during fermentation. Heat treated mesophilic anaerobic sludge was used as an inoculum rather than a pure microbial culture. Fermentation was conducted at pH levels ranging from of 4.5 to 7.0. When fermentation took place at pH 5.5 a peak hydrogen production rate of 3.75 ml min(-1) was observed. At this pH the hydrogen yield was 0.37 mol H(2)mol(-1) carbohydrate, equivalent to 18.14L H(2)kg(-1) dry solids.  相似文献   

17.
Summary Soil treated with three kinds of sewage sludge (activated, liquid digested, filtered digested sludge) was cropped three times with young barley.All three sludges produced a P-response, and a small N-response. For the first crop this was more marked with the liquid sludges than the filter-cake, from which the soluble nutrients had been removed in the filtrate. It was not possible to separate fully the effects of N and P in heavy sludge applications from possible harmful effects of heavy metals, but there was no certain harm from five times the recommended maximum application, and certainly no harm from lesser applications.Even after 12 months the fractions avilable/total Cu, Ni and Zn added in the sludges were greater (0.8, 0.2, 0.4) than those native in the soil, but their availabilities to young barley had substantially decreased during that period.By the end of 12 months there appeared to be no differences between the availabilities of these elements from different sludges, whatever may have been their original forms of combination. Relative to the total amount present, the concentration of Ni in water extracts of the soils was considerably greater than that of Zn and Cu. re]19760505  相似文献   

18.
In this study, gas chromatography–mass spectrometry (GC–MS) was used to analyze the pyrolytic bio-oils and gas fractions derived from the pyrolysis of industrial sewage sludges using induction-heating technique. The liquid products were obtained from the cryogenic condensation of the devolatilization fraction in a nitrogen atmosphere using a heating rate of 300 °C/min ranging from 25 to 500 °C. The analytical results showed that the pyrolysis bio-oils were very complex mixtures of organic compounds and contained a lot of nitrogenated and/or oxygenated compounds such as aliphatic hydrocarbons, phenols, pyridines, pyrroles, amines, ketones, and so on. These organic hydrocarbons containing nitrogen and/or oxygen should originate from the protein and nucleic acid textures of the microbial organisms present in the sewage sludge. The non-condensable devolatilization fractions were also composed of nitrogenated and oxygenated compounds, but contained small fractions of phenols, 1H-indoles, and fatty carboxylic acids. On the other hand, the compositions in the non-condensable gas products were principally carbon dioxide, carbon monoxide and methane analyzed by gas chromatography–thermal conductivity detector (GC–TCD).  相似文献   

19.
The effect of ultrasound and gamma-irradiation used as pre-treatments for the anaerobic digestion of waste activated sludge at both mesophilic and thermophilic temperatures was examined. Untreated activated sludge was also subjected to anaerobic digestion at these temperatures as a control. The sonication time was 90 s using a Soniprep 150 (MSE Scientific Instruments) which operated at 23 kHz and had been adjusted to give an output of 47 W and the gamma-irradiation dose was 500 krad. The digesters were operated in a semi-continuous mode, being fed with fresh sludge every 24 h at hydraulic retention times (HRT) of 8, 10 and 12 days. Over the 24 h period the differences between the digesters, in terms of volatile solids (VS) reductions and biogas production, were not statistically significant for any particular set of conditions. Thermophilic digestion performed better than mesophilic digestion in terms of biogas production, VS reductions (except at HRT of 8 days) and specific methane yields and the optimum retention time was 10 days, at both temperatures. When gas production over the initial eight hours (probably the hydrolytic stage) was examined, it was found that the gas production rates for pre-treated sludges were higher than those for untreated sludges. This was most pronounced at thermophilic temperatures and a HRT of 10 days. Sonication did not affect the numbers of faecal coliforms in the sludge. However, gamma-radiation caused a 3-log reduction and, when coupled with mesophilic digestion, gave a product which contained < 100 g(-1) TS. Thermophilic anaerobic digestion produced sludges which contained < 1 g(-1) TS irrespective of any pre-treatment.  相似文献   

20.
Effect of environmental parameters on the biodegradation of oil sludge.   总被引:24,自引:0,他引:24  
A laboratory study was conducted with the aim of evaluating and optimizing the environmental parameters of "landfarming", i.e., the disposal by biodegradation in soil of oily sludges generated in the refining of crude oil and related operations. Oil sludge biodegradation was monitored by CO2 evolution and by periodic analysis of residual hydrocarbons. The parameters studied were soil moisture, pH, mineral nutrients, micronutrients, organic supplements, treatment rate, teratment frequency, and incubation temperature. Oil sludge biodegradation was optimal at a soil water-holding capacity of 30 to 90%, a pH of 7.5 to 7.8, C:N and C:P ratios of 60:1 and 800:1, respectively, and a temperature of 20 degrees C or above. Addition of micronutrients and organic supplements was not beneficial; sewage sludge interfered with hydrocarbon biodegradation. Breakdown of the saturated hydrocarbon (alkane and cycloalkane) fraction was the highest at low application rates, but higher application rates favored the biodegradation of the aromatic and asphaltic fractions. An application rate of 5% (wt/wt) oil sludge hydrocarbon to the soil (100,000 liters/hectare) achieved a good compromise between high biodegradation rates and efficient land use and resulted in the best overall biodegradation rate of all hydrocarbon classes. Frequent small applications resulted in higher biodegradation than single large applications. Two 100,000-liter/hectare (255 barrels per acre) or four 50,000-liter/hectare oil sludge hydrocarbon applications per growing season seem appropriate for most temperate zone disposal sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号