首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Mercurochrom [2,7-dibromo-4-(hydroxymercuri)-fluorescein disodium salt] used for staining of protein thiols in addition binds to other groups of proteins. Experimental evidence is provided that mercurochrom bound to non-thiol groups forms a 1:1 adduct with protein (mixed) disulfides. The disulfide contents of three different types of cells determined biochemically correlated with the corresponding mean integrated optical densities determined microphotometrically after mercurochrom staining of groups other than thiols. Intracellular disulfide exchange has been studied, leading to a transformation of protein mixed disulfides to protein disulfides and an equimolar loss of protein thiols. Protein mixed disulfides were generated from protein thiols using both methyl methanethiosulfonate (MMTS) and 2,2′-dihydroxy-6,6′-dinaphthyldisulfide (DDD). Loss of thiols as well as the equimolar increase of protein mixed disulfides were followed using both mercurochrom staining for thiols and for disulfides. Generation of protein mixed disulfides due to the DDD reaction was also followed by azocoupling with Fast blue B. On the basis of the observed stoichiometry between the loss of protein thiols and the quantity, increase or conversion of protein disulfides determined microphotometrically using both mercurochrom staining and DDD Fast blue B staining, we conclude that: (1) 1 mol of mercurochrom is bound per mol of protein (mixed) disulfide; and (2) the molar absorptivity of mercurochrom bound to disulfides is ɛ520=34940. This study demonstrates that mercurochrom can be used for the quantitative determination of the oxidative status of protein thiols in cells. Accepted: 17 December 1996  相似文献   

2.
The reaction between methylcobalamin and ethane-thiol sulfonic acid (Co-enzyme M) has been studied under aerobic conditions. For this reaction evidence is presented for a catalytic cycle which promotes homolytic cleavage of the Cobalt-carbon sigma-bond to give Cob(II)alamin (B12-r) and methylcoenzyme M as the products. This reaction is especially pertinent to our understanding of the mechanism of methane-biosynthesis. In addition, we have used 220 MHZ 1H NMR and 13C NMR to show that thiols do not react with methylcorrinoids by displacing the base trans-axial to the cobalt-carbon bond. This NMR study is especially important since the co-ordination of thiols to cobalt has previously been reported to occur by a number of research groups including our own.  相似文献   

3.
The reaction between methylcobalamin and ethane-thiol sulfonic acid (Coenzyme M) has been studied under aerobic conditions. For this reaction evidence is presented for a catalytic cycle which promotes homolytic cleavage of the Cobalt-carbon σ-bond to give Cob(II)alamin (B12-r) and methylcoenzyme M as the products. This reaction is especially pertinent to our understanding of the mechanism of methane-biosynthesis.In addition, we have used 220 MHz 1H NMR and 13C NMR to show that thiols do not react with methylcorrinoids by displacing the base trans-axial to the cobalt-carbon bond. This NMR study is especially important since the coordination of thiols to cobalt has previously been reported to occur by a number of of researh groups including our own.  相似文献   

4.
A quantitative structure-reactivity relationship for the Michael-type addition of thiols onto acrylates was determined. Several thiol-containing peptides were investigated by examining the correlation between the second-order rate constant of their addition onto PEG-diacrylate and the pK(a) of the thiols within a peptide. By introducing charged amino acids in close proximity to a cysteine, the pK(a) of the thiol was systematically modulated by electrostatic interactions. Positive charges from the amino acid arginine decreased the pK(a) of the thiol and accelerated the reaction with acrylates while negative charges from aspartic acids showed the opposite effect. A linear correlation between thiolate concentrations and kinetic constants was found, confirming the role of thiolates as the reactive species in this Michael-type reaction. The relevant factors influencing the reactivity were the sign and the number of the neighboring charges, while the position of these charges had little effect on reactivity. These results provide a basis for the rational design of peptides, where the kinetics and thus selectivity of protein/peptide conjugation with polymeric structures via Michael-type addition reactions can be controlled.  相似文献   

5.
1-p-Chlorophenyl-4,4-dimethyl-5-diethylamino-1-penten-3-one hydrobromide (CDDP) has been shown to react selectively with small molecular weight and protein thiols. The reaction of this compound with thiols can be monitored directly owing to the large decrease (approximately 21,000 M-1 cm-1 at 310 nm) in extinction coefficient subsequent to thiol addition. CDDP reacted stoichiometrically with large molecular weight (greater than 11,000) protein thiols. However, with small molecular weight thiols (less than 500) the reaction was less than stoichiometric, indicating a significant degree of back-reaction. The forward and reverse rate constants have been estimated. The fact that the reaction is reversible enables CDDP to be used for the direct monitoring of the oxidation of small molecular weight thiols.  相似文献   

6.
Many adhesion and signaling molecules critical for development, as well as surface markers implicated in diseases ranging from cancer to influenza, contain oligosaccharides that modify their functions. Inside a cell, complex glycosylation pathways assemble these oligosaccharides and attach them to proteins and lipids as they traffic to the cell surface. Until recently, practical technologies to manipulate glycosylation have lagged unlike the molecular biologic and genetic methods available to intervene in nucleic acid and protein biochemistry; now, metabolic oligosaccharide engineering shows promise for manipulating glycosylation. In this methodology, exogenously-supplied non-natural sugars intercept biosynthetic pathways and exploit the remarkable ability of many of the enzymes involved in glycosylation to process metabolites with slightly altered chemical structures. To date, non-natural forms of sialic acid, GalNAc, GlcNAc, and fucose have been incorporated into glycoconjugates that appear on the cell surface; in addition O-GlcNAc protein modification involved in intracellular signaling has been tagged with modified forms of this sugar. Reactive functional groups, including ketones, azides, and thiols, have been incorporated into glycoconjugates and thereby provide chemical 'tags' that can be used for diverse purposes ranging from drug delivery to new modes of carbohydrate-based cell adhesion that can be used to control stem cell destiny. Finally, strategies for further engineering non-natural sugars to improve their pharmacological properties and provide complementary biological activities, such as addition of short chain fatty acids, are discussed in this article.  相似文献   

7.
The reaction of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) with thiols was investigated with particular attention to the formation of an ebselen selenol intermediate. The selenol intermediate could be trapped in a mixture of ebselen and thiols with 1-chloro-2,4-dinitrobenzene and the resulting product displayed unique spectral characteristics. The reaction of authentic, synthesised ebselen selenol with 1-chloro-2,4-dinitrobenzene (CDNB) was shown to give rise to the same compound (2,4-dinitrophenyl (N-phenyl-2-carboxamido phenyl) selenide as characterized by light spectroscopy, NMR, IR and elemental analysis. The determination of the absorbtion coefficient at 400 nm (E = 7.5 mM-1 cm-1) and the initial rate constant of the reaction (1.4 +/- 0.3 mM-1 min-1) allows for the convenient quantification of ebselen selenol concentrations by initial rate measurements after addition of CDNB. The choice of 400 nm to monitor the reaction excludes the interference of other intermediates in the reaction of ebselen with thiols as well as the reaction of the thiols with CDNB. When the assay is applied to typical incubation conditions used for investigating the glutathione peroxidase-like activity of ebselen it was shown that as much as 10-20% of ebselen is in the selenol form. If a stronger reductant (dithiothreitol) is used 60% is in the selenol form. These data could also be confirmed by the direct determination of ebselen selenol by UV spectroscopy, due to its peak absorption at 370 nm (E = 2 mM-1 cm-1). In conclusion, this investigation demonstrates, for the first time, the identity and quantity of ebselen selenol in the reaction of ebselen with thiols and also describes a convenient assay for its quantification. These observations allow further possibilities for investigation of the molecular species responsible for the antioxidant and peroxidase activities of ebselen.  相似文献   

8.
A simple and specific method for analyzing thiols and disulfides on the basis of the reversibility of N-ethylmaleimide (NEM) alkylation of thiols is described. When the adduct of NEM and glutathione (GSH) was electrolyzed at neutral pH, all of the GSH was recovered. When the adduct was exposed to pH 11.0 for 15 min at 30 degrees C before electrolysis, GSH was not detected. The same behavior was observed after protein thiols reacted with NEM. This pH-dependent production of thiol from the adduct was used to assay GSH and oxidized glutathione in yeast cells, to assay sulfhydryl groups and disulfide bonds in authentic proteins, and to protect thiols from oxidation during enzymatic digestion of protein. This method is useful for assay of thiols and disulfides of both small and large molecules and can be used to identify labile thiols in biological samples that are oxidized during extraction procedures.  相似文献   

9.
Reversible immobilization techniques which allow for multiple use of the carrier are relevant for applications, such as enzymatic microreactors, biosensors with specific setups and for expensive carriers such as superparamagnetic particles. The activity of immobilized enzymes reduces with time, so that the introduction of fresh immobilized enzyme becomes necessary. Thus, methods for reversible immobilization and multiple carrier reuse can help to reduce purchase costs and facilitate reactor construction. In this work, we present a method that makes use of the reduction and oxidation of cystamine, a cleavable linker with disulfide bond and amine functionality. For a proof of principle, α-chymotrypsin was immobilized on polyethylene glycol with terminal epoxy groups using cystamine as a crosslinker. The enzyme was highly active and could be used in repeated cycles. After the enzymatic reaction was demonstrated, α-chymotrypsin was cleaved off the particle by reducing agents. The resulting thiols on the particle surface were oxidized to disulfides by means of cysteamine, the reduction product of cystamine. This way, an almost complete oxidation of surface thiols with cysteamine was possible, restoring amine functionalization for further reactions. Reduction and oxidation were repeated several times without a decrease in the extent of amine coupling. Finally, immobilization of α-chymotrypsin could be repeated with results comparable to first run.  相似文献   

10.
A simple and specific method for analyzing thiols and disulfides on the basis of the reversibility of N-ethylmaleimide (NEM) alkylation of thiols is described. When the adduct of NEM and glutathione (GSH) was electrolyzed at neutral pH, all of the GSH was recovered. When the adduct was exposed to pH 11.0 for 15 min at 30°C before electrolysis, GSH was not detected. The same behavior was observed after protein thiols reacted with NEM. This pH-dependent production of thiol from the adduct was used to assay GSH and oxidized glutathione in yeast cells, to assay sulfhydryl groups and disulfide bonds in authentic proteins, and to protect thiols from oxidation during enzymatic digestion of protein. This method is useful for assay of thiols and disulfides of both small and large molecules and can be used to identify labile thiols in biological samples that are oxidized during extraction procedures.  相似文献   

11.
L-cysteine, D-penicillamine, and L-glutathione were oxidized to symmetrical disulfides in the presence of Cu(II)(3,5-DIPS)2 and air-oxygen at physiologic pH, 7.3. Air-oxygen caused the oxidation of thiol reduced copper, Cu(I), to Cu(II), as evidenced by expected spectrophotometric changes in these reaction mixtures. L-cysteine, D-penicillamine, and L-glutathione formed mixed disulfides and TNB with the addition of DTNB to solutions of these thiols. The observed order of reactivity for these thiols with DTNB was: L-cysteine greater than D-penicillamine greater than L-glutathione. Surprisingly, Cu(II)(3,5-DIPS)2 converted these mixed disulfides to their symmetrical disulfides and DTNB, and although the initial conversion rate was rapid, complete conversion required more than two hours. These observations suggest caution with regard to the spectrophotometric determination of thiols immediately after the addition of Ellman's reagent. These results also clarify an earlier report concerning the oxidation of thiols by Cu(II)(o-phenanthroline)2 and offer caution with regard to the determination of thiols using DTNB in the presence of copper complexes. Spectrophotometric data are provided in support of the suggestion that analysis of plasma or cellular samples for thiols be done in the absence of copper(II) complexes to avoid false negative results.  相似文献   

12.

Background

There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols.

Methodology/Principal Findings

To test this hypothesis, we used the sesquiterpene lactone parthenolide, a known anti-cancer agent. Using flow cytometry, and western blotting to label free thiols with Alexa Fluor 633 C5 maleimide dye and N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM), respectively, we show that parthenolide decreases the level of free exofacial thiols on Granta mantle lymphoma cells. In addition, we used immuno-precipitation techniques to identify the central redox regulator thioredoxin, as one of the surface protein thiol targets modified by parthenolide. To examine the functional role of parthenolide induced surface protein thiol modification, we pretreated Granta cells with cell impermeable glutathione (GSH), prior to exposure to parthenolide, and showed that GSH pretreatment; (a) inhibited the interaction of parthenolide with exofacial thiols; (b) inhibited parthenolide mediated activation of JNK and inhibition of NFκB, two well established mechanisms of parthenolide activity and; (c) blocked the cytotoxic activity of parthenolide. That GSH had no effect on the parthenolide induced generation of intracellular reactive oxygen species supports the fact that GSH had no effect on intracellular redox. Together these data support the likelihood that GSH inhibits the effect of parthenolide on JNK, NFκB and cell death through its direct inhibition of parthenolide''s modulation of exofacial thiols.

Conclusions/Significance

Based on these data, we postulate that one component of parthenolide''s anti-lymphoma activity derives from its ability to modify the redox state of critical exofacial thiols. Further, we propose that cancer cell exofacial thiols may be important and novel targets for therapy.  相似文献   

13.
The inhibition of urease by heavy metal ions has been habitually ascribed to the reaction of the ions with enzyme thiol groups, resulting in the formation of mercaptides. To probe the modes of metal binding to the enzyme, in this work the reaction of mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions with jack bean urease was studied. The enzyme was reacted with different concentrations of the metal ions for different periods of times, when its residual activity was assayed and thiol content titrated. The titration carried out with DTNB was done to examine the involvement of urease thiol groups in metal ion binding. The binding was further probed by reactivation of the metal ion-enzyme complexes with DTT, EDTA and dilution. The results are discussed in terms of the HSAB concept. In inhibiting urease the metal ions showed a common feature in that they inhibited the enzyme within a comparable micromolar range, and also in that their inhibition was multisite. By contrast, the main distinguishing feature in their action consisted of the involvement of enzyme thiol groups in the reaction. Hg (2+) and Hg2(2+) inhibition was found thoroughly governed by the reaction with the enzyme thiols, and the complete loss of enzyme activity involved all thiols available in the enzyme under non-denaturating conditions. In contrast, Ag+ and Cu2+ ions for the complete inactivation of the enzyme required 53 and 60% of thiols, respectively. Accordingly, Ag+ and Cu2+ binding to functional groups in urease other than thiols, i.e. N- and O-containing groups, cannot be excluded. Based on the reactivation experiments this seems particularly likely for Cu2+, whose concurrent binding to thiols and other groups might distort the architecture of the active site (the mechanism of which remains to be elucidated) resulting in the observed inhibitory effects.  相似文献   

14.
15.
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.  相似文献   

16.
This study presents two-step and multistep reactions for modifying the surface of plasma-functionalized poly(tetrafluoroethylene) (PTFE) surfaces for subsequent conjugation of biologically relevant molecules. First, PTFE films were treated by a radiofrequency glow discharge (RFGD) ammonia plasma to introduce amino groups on the fluoropolymer surface. This plasma treatment is well optimized and allows the incorporation of a relative surface concentration of approximately 2-3.5% of amino groups, as assessed by chemical derivatization followed by X-ray photoelectron spectroscopy (XPS). In a second step, these amino groups were further reacted with various chemical reagents to provide the surface with chemical functionalities such as maleimides, carboxylic acids, acetals, aldehydes, and thiols, that could be used later on to conjugate a wide variety of biologically relevant molecules such as proteins, DNA, drugs, etc. In the present study, glutaric and cis-aconitic anhydrides were evaluated for their capability to provide carboxylic functions to the PTFE plasma-treated surface. Bromoacetaldehyde diethylacetal was reacted with the aminated PTFE surface, providing a diethylacetal function, which is a latent form of aldehyde functionality. Reactions with cross-linkers such as sulfo-succinimidyl derivatives (sulfo-SMCC, sulfo-SMPB) were evaluated to provide a highly reactive maleimide function suitable for further chemical reactions with thiolated molecules. Traut reagent (2-iminothiolane) was also conjugated to introduce a thiol group onto the fluoropolymer surface. PTFE-modified surfaces were analyzed by XPS with a particular attention to quantify the extent of the reactions that occurred on the polymer. Finally, surface immobilization of fibronectin performed using either glutaric anhydride or sulfo-SMPB activators demonstrated the importance of selecting the appropriate conjugation strategy to retain the protein biological activity.  相似文献   

17.
Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.  相似文献   

18.
Well-defined polymer scaffolds convertible to (multi)functional polymer structures via selective and efficient modifications potentially provide an easy, versatile, and useful approach for a wide variety of applications. Considering this, a homopolymer scaffold, poly(pyridyldisulfide ethylmethacrylate) (poly(PDSM)), having pendant groups selectively reactive with thiols, was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Soluble polymers with controlled molecular weights and narrow PDIs were generated efficiently. The versatility of the scaffold to generate random co- and ter-polymers combining multiple functionalities with controlled-composition was shown by separate and simultaneous conjugation of different mercapto-compounds, including a tripeptide in one-step. Conversion of water-insoluble scaffold to peptide-containing water-soluble copolymers was observed to yield nanometer-size particles with narrow polydispersity. The overall results suggest that the well-defined PDSM homopolymer scaffold generated via RAFT polymerization can be a versatile building block for generation of new structures having potential for drug delivery applications via a straightforward synthetic approach.  相似文献   

19.
Wipf P  Jayasuriya N 《Chirality》2008,20(3-4):425-430
The in situ hydrozirconation-transmetalation-aldehyde addition process is a convenient method for the generation of allylic alcohols. Ongoing research has focused on enhancing the enantioselectivity and substrate scope of this process. A chiral beta-amino thiol scaffold was evaluated in the addition reaction. Amino thiols tend to provide the highest ee's, in part due to the higher affinity of sulfur for zinc over zirconium. A class of valine-based thiol ligands was identified to be effective for the formation of enantiomerically enriched allylic alcohols in terms of low ligand loading and high % ee.  相似文献   

20.
Astrocytes provide cysteine to neurons by releasing glutathione   总被引:21,自引:0,他引:21  
Cysteine is the rate-limiting precursor of glutathione synthesis. Evidence suggests that astrocytes can provide cysteine and/or glutathione to neurons. However, it is still unclear how cysteine is released and what the mechanisms of cysteine maintenance by astrocytes entail. In this report, we analyzed cysteine, glutathione, and related compounds in astrocyte conditioned medium using HPLC methods. In addition to cysteine and glutathione, cysteine-glutathione disulfide was found in the conditioned medium. In cystine-free conditioned medium, however, only glutathione was detected. These results suggest that glutathione is released by astrocytes directly and that cysteine is generated from the extracellular thiol/disulfide exchange reaction of cystine and glutathione: glutathione + cystine<-->cysteine + cysteine-glutathione disulfide. Conditioned medium from neuron-enriched cultures was also assayed in the same way as astrocyte conditioned medium, and no cysteine or glutathione was detected. This shows that neurons cannot themselves provide thiols but instead rely on astrocytes. We analyzed cysteine and related compounds in rat CSF and in plasma of the carotid artery and internal jugular vein. Our results indicate that cystine is transported from blood to the CNS and that the thiol/disulfide exchange reaction occurs in the brain in vivo. Cysteine and glutathione are unstable and oxidized to their disulfide forms under aerobic conditions. Therefore, constant release of glutathione by astrocytes is essential to maintain stable levels of thiols in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号