首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cDNA encoding Taka-amylase A (EC.3.2.1.1, TAA) was isolated to identify functional amino acid residues of TAA by protein engineering. The putative catalytic active-site residues and the substrate binding residue of TAA were altered by site-directed mutagenesis: aspartic acid-206, glutamic acid-230, aspartic acid-297, and lysine-209 were replaced with asparagine or glutamic acid, glutamine or aspartic acid, asparagine or glutamic acid, and phenylalanine or arginine, respectively. Saccharomyces cerevisiae strain YPH 250 was transformed with the expression plasmids containing the altered cDNA of the TAA gene. All the transformants with an expression vector containing the altered cDNA produced mutant TAAs that cross-reacted with the TAA antibody. The mutant TAA with alteration of Asp206, Glu230, or Asp297 in the putative catalytic site had no alpha-amylase activity, while that with alteration of Lys209 in the putative binding site to Arg or Phe had reduced activity.  相似文献   

2.
The modification of Taka-amylase A (TAA) [EC 3.2.1.1] of Aspergillus oryzae by diethylpyrocarbonate (DEP) was carried out at 25 degrees C and at pH 5.8 (0.1 M acetate buffer). Two out of the six histidine residues were modified with 4.6 mM DEP, and two or three histidine residues were modified with 23 mM DEP. In both cases, one of them was protected from modification by the presence of 15% maltose. The results suggest that two or three out of the six histidine residues are exposed on the surface of the TAA molecule, and one of them exists near the maltose binding site. Ethoxycarbonylation of histidine residues of TAA caused loss of the amylase activity and activation of the hydrolysis of phenyl alpha-maltoside (phi alpha M). The kinetic parameters of the modified TAA for several substrates and analogs were determined at 25 degrees C and at pH 5.3 (0.08 M acetate buffer). From the results, it was found that this alteration of the enzyme activity by the modification was not due to a change in Km value but to a change in k0 value. Thus, some of the histidine residues in TAA are suggested to play an important role in the enzyme catalytic function.  相似文献   

3.
An α-amylase from Aspergillus oryzae, Taka-amylase A (TAA), was cleaved into peptide fragments by an acid protease. Inactivation of TAA was greatly retarded by the addition of α-cyclodextrin or Ca2+. TAA peptide fragments were separated into two groups having no and high affinity to the substrate, soluble starch. This separation was done by the forced affinity chromatography method by a column of epichlorohydrin cross-linked soluble starch gel. Three peptides were isolated from the high-affinity fragments, purified by the ODS-120T column, and their amino acids were sequenced. Peptides I, II, and III originated from α2-helix, α3-helix, and β2-sheet, respectively, and all of these were located in the (β/α)8 barrel of the main domain of TAA molecule. A stereo graphic view showed that Peptides I–III were at the cleft near the catalytic site. Occurrence of a Trp residue in all three peptides strongly suggested that Trp was very important in the binding of TAA to the substrate, soluble starch.  相似文献   

4.
A cross-linked modification of Taka-amylase A (TAA) by o-phthalaldehyde gave two enzymes, M1- and M2-TAA, which had optimum pH lower than that of native TAA by 0.5 to 1.0 pH units. The modified enzymes showed higher maltosidase activity, and produced glucose even at the initial period of hydrolysis, in contrast to the native TAA. The modification caused more than a 500-fold decrease in the k0 value of native TAA for alpha-amylase activity, but a definite increase in k0 value of 109. 1 min-1 (native TAA) to 460.0 min-1 (M1-TAA) and 147.1 min-1 (M2-TAA) for maltotriose was evidence for improvement of maltosidase activity of modified enzymes.  相似文献   

5.
A cross-linked modification of Lys residue located at the subsite of the enzyme active site of Taka-amylase A was attained by the use of the fluorescent reagent of o-phthalaldehyde (OPA). The fluorescence and uv absorption at 337 nm derived from the isoindole ring, which was produced by cross-linking through the epsilon-amino group of Lys and the thiol group of the Cys residue, provided the evidence for the OPA-mediated inactivation of Taka-amylase A. Kinetic analysis showed that 1 mol of OPA per mole of enzyme was incorporated, which corresponded closely with the value obtained by the uv absorption. Because the OPA inactivation was retarded by the substrate analog of alpha-cyclodextrin, OPA modification was classified as a type of affinity labeling reaction. A remarkable increase in the pI value from 4.0 to 5.6 upon the modification led to clear separation of the modified enzyme from the native Taka-amylase A by a DEAE-Sephacel column and led to the charge isomer pattern on gel electrophoresis performed according to the method of Hedrick and Smith. Moreover, the affinity gel electrophoresis showed that the modified enzyme completely lost the affinity for the substrate soluble starch, which indicated that the subsite modification occurred.  相似文献   

6.
A study of Taka-amylase A of conidia from Aspergillus oryzae RIB40 was done. During the research, proteins from conidia and germinated conidia were analyzed using SDS-PAGE, 2-D gel electrophoresis, Western blot analysis, MALDI-TOF Mass spectrometry, and native-PAGE combined with activity staining of TAA. The results showed that TAA exists not only in germinated conidia but also in conidia. Some bands representing degraded products of TAA were detected. Conidia, which formed on starch (SCYA), glucose (DCYA), and glycerol (GCYA) plates, contained mature TAA. Only one active band of TAA was detected after native-PAGE activity staining. In addition, TAA activity was detected in cell extracts of conidia using 0.5 M acetate buffer, pH 5.2, as extraction buffer, but was not detected in whole conidia or cell debris. The results indicate that TAA exists in conidia in active form even when starch, glucose, or glycerol is used as carbon source. TAA might belong to a set of basal proteins inside conidia, which helps in imbibition and germination of conidia.  相似文献   

7.
Structure and possible catalytic residues of Taka-amylase A   总被引:39,自引:0,他引:39  
A complete molecular model of Taka-amylase A consisting of 478 amino acid residues was built with the aid of amino acid sequence data. Some typical structural features of the molecule are described. A model fitting of an amylose chain in the catalytic site of the enzyme showed a possible productive binding mode between substrate and enzyme. On the basis of the difference Fourier analysis and the model fitting study, glutamic acid (Glu230) and aspartic acid (Asp297), which are located at the bottom of the cleft, were concluded to be the catalytic residues, serving as the general acid and base, respectively.  相似文献   

8.
1. O-6-Deoxy-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose, O-6-chloro-6-deoxy-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose, O-6-bromo-6-deoxy-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose, and O-6-deoxy-6-iodo-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose were prepared, taking advantage of the substrate specificities of Taka-amylase A and glucoamylase, and the action of Taka-amylase A on these substrates was investigated. 2. The Michaelis constant Km and the molecular activity ko were determined at 37 degrees C and pH 5.2 using the modified maltotrioses. The values of Km and ko decreased upon modification of maltotriose and those of ko/Km were in agreement with the comparative initial rates for the corresponding derivatives of phenyl alpha-maltoside at low substrate concentrations. This result suggested that a subsite of the enzyme may have a specific interaction with halogen atoms in the substrate. 3. All halogenomaltotrioses examined showed substrate inhibition at high substrate concentrations.  相似文献   

9.
Crystalline Taka-amylase A, prepared from Takadiastase, was fractionated into four fractions by DEAE-Sephacel and Concanavalin A-Sepharose column chromatography. The relative weight ratio of the fractions was 90 : 4 : 4 : 2. They had similar molecular weights (51,000), amino acid compositions, and hydrolytic activity against soluble starch, but different phenyl maltosidase activities and electrophoretic mobilities on polyacrylamide gel electrophoresis. Three of the fractions mainly had the high mannose type sugar chain with the sugar composition of Man5-GlcNAc2, but the other fraction had only one N-acetylglucosamine residue as the sugar chain. These results suggested that Taka-amylase A was heterogeneous both in the sugar portions and in the polypeptide portions.  相似文献   

10.
1. Five and four tryptophan residues in Taka-amylase A [EC 3.2.1.1] of A. oryzae (TAA) were modified with dimethyl(2-hydroxy-5-nitrobenzyl)-sulfonium bromide (K-IWS) in the absence and the presence of 15% maltose (substrate analog), respectively. Only one tryptophan residue was modified with dimethyl(2-methoxy-5-nitrobenzyl)-sulfonium bromide (K-IIWS) irrespective of the presence or absence of maltose. Kinetic parameters (molecular activity, k0, Michaelis constant, Km, and inhibitor constant, Ki) of the enzyme modified with K-IWS and K-IIWS were determined. The k0 value decreased with increase in the number of modified residues, but Km and Ki values and the type of inhibition were not altered by the modification. 2. The fluorescence quenching reaction of TAA with N-bromosuccinimide (NBS) proceeded in three phases. The second-order rate constants of the three phases were determined to be (4.3 +/- 0.5) x 10(5) M-1 . s-1, (2.1 +/- 0.3) x 10(3) M-1 . s-1 and (1.7 +/- 0.2) x 10(2) M-1 . s-1, respectively. In the presence of maltose, the first phase was further separated into two phases with rate constants of (4.6 +/- 0.6) x 10(6) M-1 . s-1 and (6.9 +/- 1.1) x 10(4) M-1 . s-1, respectively. On the basis of the results, it is estimated that five out of nine tryptophan residues are accessible to the solvent and among them, two tryptophan residues are substantially exposed: one is located in the maltose binding site near the catalytic site (its modification affects the catalytic function), and the other exists on the enzyme surface far from the active site.  相似文献   

11.
A convenient detection of sugar chains in Taka-amylase A (TAA) was done by using 40 μg of enzyme, where a decrease in the UV absorption of NaIO4 during the periodate oxidation reaction was monitored. The periodate-oxidized sugar chain was labeled with a fluorescent reagent, N-1-ethylenediaminonaphthalene (EDAN), by incubation at pH 9.5 and 30°C for 1 h. The excess EDAN was removed by either quenching with o-phthaladehyde or Bio-Gel P-2 gel adsorption. Among the peptide fragments prepared from the EDAN-labeled TAA, a fluorescent peptide corresponding to the sugar chain was distinguished by the ODS column. These results suggest that periodate oxidation and subsequent fluorescent labeling were useful for the sensitive analysis of various glycoprotein samples.  相似文献   

12.
The structures of a major oligosaccharide of Taka-amylase A, shown below, is proposed based on the results of chemical (methylation and acetolysis) and enzymatic (digestions with exo and endo-glycosidases) analyses. This structure is an amendment of that proposed by Yamaguchi et al. (1971) (J. Biochem. 70, 587-594), in which one more mannose residue is attached (Formula: see text) through an alpha 1,2 linkage to the mannose residue which is alpha 1,3-linked to the intermost mannose residue.  相似文献   

13.
Five modified moltooligosaccharides, phenyl O-6-amino-6-deoxy-alpha-D- glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyransoide (AG4P), phenyl O-(alpha-D-glucopyranosyluronic acid)-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-d-glucopyran osy l- (1----4)-alpha-D-glucopyranoside (CG4P), phenyl O-6-amino-6-deoxy-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyra nos yl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyranoside (AG5P), phenyl O-(alpha-D-glucopyranosyluronic acid)-(1----4)-O-alpha-D-glucopyranosyl- (1----4)-O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1-- --4)- alpha-D-glucopyranoside (CG5P), and phenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)- O-alpha-D-glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-a lph a-D- glucopyranoside (FG4P), were prepared to examine the active site of Taka-amylase A (TAA) [EC 3.2.1.1, Aspergillus oryzae]. Phenyl alpha-maltotetraoside (G4P) was predominantly hydrolyzed by TAA to maltose and phenyl alpha-maltoside (G2P). While G2P, phenyl alpha-glucoside (GP), and phenol were liberated from AG4P in the ratio of 7:63:30. G4P, phenyl alpha-maltotrioside (G3P), G2P, and GP were liberated from G5P in the ratio of 1:20:73:6, but AG5P was almost completely hydrolyzed to modified maltotriose and G2P. On the hydrolysis of CG4P and CG5P, no remarkable change was observed except for a decrease in the relative reaction rates compared with G4P and G5P, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The molecular structure of Taka-amylase A, an alpha-amylase from Aspergillus oryzae, has been studied at 6 A resolution by X-ray diffraction analysis. The electron density map showed a non-crystallographic three-fold screw arrangement of the molecules in the crystal. The molecule is an ellipsoid with approximate dimensions of 80 x 45 x 35 A and contains a hollow which may correspond to the active center. The inhibitor molecules bind to Taka-amylase A at four different sites, one of which is located in the hollow of the enzyme. The probable position of a thiol group is discussed in connection with heavy atom binding.  相似文献   

15.
Native Taka-amylase A (α-amylase produced by Asp. oryzae) was coupled with 1-dimethylaminonaphthalene-5-sulfonyl chloride. When disulfide bonds of the modified enxyme were split by reduction or by reduction and subsequent carboxymethylation, its fluorescent properties changed markedly. It was suggested that the hydrophobic dye group is incorporated into a hydrophobic region as the consequence of the flexibility gained by the polypeptide chain by the cleavage of disulfide bonds.  相似文献   

16.
A kinetic analysis is described of the periodate oxidation of a dextran in which all the 93% of oxidisable D-glucose residues contained a 2,3,4-triol system. Measurements were made of the periodate consumed and the formic acid liberated by the dextran, the periodate consumed and the formaldehyde liberated by samples that had been partially oxidised and then reduced with sodium borohydride, and the glycerol and erythritol released from these samples by acid hydrolysis. Initially, the oxidisable D-glucose residues decayed according to second-order kinetics. After the first oxidative attack, ~ 40% of the singly oxidised residues very rapidly consumed a second mole of periodate, while the remainder consumed further periodate at about one-seventh of the rate of an intact D-glucose residue. Residues cleaved between positions 3 and 4 were generated 7.5 times faster than residues cleaved between positions 2 and 3, but the two kinds of singly oxidised residue subsequently decayed at similar rates. Towards the end of their reaction, the rate of decay of intact, oxidisable D-glucose residues declined in a way that was simply correlated with the proportion of doubly oxidised residues in the chains. A simple scheme is presented that explains these facts in terms of intra-residual hemiacetal formation by singly oxidised residues, and inter-residual hemiacetal formation between doubly oxidised residues and intact D-glucose residues adjacent to them in the chains.  相似文献   

17.
O-alpha-D-Glucopyranosyl-(1 leads to 4)-O-6-deoxy-6-iodo-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose (6'-MT), O-alpha-D-glucopyranosyl-(1 leads to 4)-6-deoxy-6-iodo-D-glucopyranose (6-M), and O-6-deoxy-6-iodo-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose (6'-M) were prepared and their inhibitory action against Taka-amylase A [EC 3.2.1.1, alpha-1, 4-glucan 4-glucanohydrolase, Aspergillus oryzae] was investigated. The inhibitor constants of 6'-MT and 6'-M were 10 mM and 54 mM, respectively, and both inhibitors showed mixed-type inhibition. 6-M scarcely inhibited the enzyme action.  相似文献   

18.
Taka-amylase A (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1), which contains a single asparagine-linked oligosaccharide unit, was digested with almond glycopeptidase immobilized on Sepharose 6B at 20 degrees C for 4 h. A maximum of 10% of the parent protein was isolated as apoprotein by column chromatography on Con-A Sepharose. The characteristics of the apoprotein were compared to those of the native Taka-amylase A. The removal of the sugar chain from Taka-amylase. A caused no change in the pH-activity profile or in kinetic parameters of the hydrolysis of soluble starch. The stability of the apoprotein toward changing pH and digestion by proteases did not show any appreciable difference from that of the native Taka-amylase. These results suggest that the carbohydrate moiety of Taka-amylase A is not an essential participant in the catalysis.  相似文献   

19.
We observed that α-amylase (Taka-amylase A; TAA) activity in the culture broth disappeared in the later stage of submerged cultivation of Aspergillus oryzae. This disappearance was caused by adsorption of TAA onto the cell wall of A. oryzae and not due to protein degradation by extracellular proteolytic enzymes. To determine the cell wall component(s) that allows TAA adsorption efficiently, the cell wall was fractionated by stepwise alkali treatment and enzymatic digestion. Consequently, alkali-insoluble cell wall fractions exhibited high levels of TAA adsorption. In addition, this adsorption capacity was significantly enhanced by treatment of the alkali-insoluble fraction with β-glucanase, which resulted in the concomitant increase in the amount of chitin in the resulting fraction. In contrast, the adsorption capacity was diminished by treating the cell wall fraction with chitinase. These results suggest that the major component that allows TAA adsorption is chitin. However, both the mycelium and the cell wall demonstrated the inability to allow TAA adsorption in the early stage of cultivation, despite chitin content in the cell wall being identical in both early and late stages of cultivation. These results suggest the existence of unidentified factor(s) that could prevent the adsorption of TAA onto the cell wall. Such factor(s) is most likely removed or diminished from the cell wall following longer cultivation periods.  相似文献   

20.
The action pattern and mechanism of the Taka-amylase A-catalyzed reaction were studied quantitatively and kinetically by product analysis, using a series of maltooligosaccharides from maltotriose (G3) to maltoheptaose (G7) labeled at the reducing end with 14C-glucose. A marked concentration dependency of the product distribution from the end-labeled oligosaccharides was found, Especially with G3 and G4 as substrates. The relative cleavage frequency at the first glycosidic bond counting from the nonreducing end of the substrate increases with increasing substrate concentration. Further product analyses with unlabeled and end-labeled G3 as substrates yielded the following findings: 1) Maltose is produced in much greater yield than glucose from unlabeled G3 at high concentration (73 mM). 2) Maltooligosaccharides higher than the starting substrate were found in the hydrolysate of labeled G3. 3) Nonreducing end-labeled maltose (G-G), which is a specific product of condensation, was found to amount to only about 4% of the total labeled maltose. Based on these findings, it was concluded that transglycosylation plays a significant role in the reaction at high concentrations of G3, although the contribution of condensation cannot be ignored. A new method for evaluating subsite affinities is proposed; it is based on the combination of the kinetic parameter (ko/Km) and the bond-cleavage distribution at a sufficiently low substrate concentration, where transglycosylation and condensation can be ignored. This method was applied to evaluate the subsite affinities of Taka-amylase A. Based on a reaction scheme which involves hydrolysis, transglycosylation and condensation, the time courses of the formation of various products were simulated, using the Runge-Kutta-Gill method. Good agreement with the experimental results was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号