共查询到20条相似文献,搜索用时 0 毫秒
1.
Induced mutagenesis was studied inEscherichia coli K12 cells in relation to the level of KecA-protein (P-RecA). In experiments strains AB2497, AB2497(pBR322) and AB2497(pX02) were used. The multicopy plasmid pX02 is a recombinant of pBR322 and recA+ gene ofE. coli K12. Cells carrying this plasmid overproduce the P-RecA constitutively. Mutagenesis was induced by the decay of incorporated 6-3H-thymidine. Mutations of theargE3 (ochre) to Arg+ prototrophy were followed. Besides the frequency of mutations, mutagenic specificity was determined. In cells AB2497(pX02) which overproduce the P-RecA the yield of Arg+ revertants was markedly reduced compared with that in strains AB2497 or AB2497(pBR322), whereas the mutagenic specificity was not changed. In all the strains studied the predominant type of mutation produced was the base substitution in the A: T base pair. 相似文献
2.
P L Moreau 《Biochimie》1985,67(3-4):353-356
The RecA protein of Escherichia coli plays a central role in DNA repair mechanisms. When it is incubated with single-stranded DNA and a nucleoside triphosphate, the purified RecA protein acts both by promoting cleavage of the LexA protein, the repressor of the SOS genes, and by catalyzing strand exchange between a variety of DNA molecules. A model for the regulation of the activity of the RecA protein in a cell exposed to a DNA damaging treatment is proposed. 相似文献
3.
Escherichia coli Br Hcr+ cells transformed with the recombinant multicopy plasmid pBR322 carrying recA gene contain increased amounts of RecA protein. When these cells were UV-irradiated, excision of pyrimidine dimers was reduced by about 50%. It is suggested that the damaged DNA strands may be coated with RecA protein which makes them insensitive to the action of the uvrABC excision nuclease. 相似文献
4.
Hydroxyurea at concentrations higher than 10(-2) M induced the recA and sfiA genes of E. coli as well as the lambda prophage by a pathway independent of the recBC genes. In addition, the hydroxyurea-mediated induction of the SOS response is accompanied by a recA-dependent decrease on the cellular ATP pool. The presence of the multicopy plasmid pPS2, harboring the nrdAB genes (encoding the ribonucleoside reductase enzyme), abolished the hydroxyurea-induced expression of the recA gene. These data lead us to suggest that induction of the SOS response by hydroxyurea is due to the blocking of DNA replication by the inhibition of the ribonucleoside reductase complex activity. 相似文献
5.
6.
Y S Cheng 《Biochemical and biophysical research communications》1983,111(1):104-111
7.
8.
Summary
Escherichia coli PQ 35 cells carrying thesfiA-:lacZ operon fusion were transformed either with a multicopy plasmid containing therecA gene (pHSG262recA) or with a multicopy plasmid alone (pHSG262). Both transformants were UV irradiated. Then induction of thesfiA gene and dimer excision were followed. Amplification of therecA gene partly inhibited bothsfiA gene induction and dimer excision. The following interpretation of this phenomenon is proposed. When the RecA protein is
in bundance, pyrimidine dimers are quickly masked by it. The masked dimers are less efficiently distinguished by excision
nuclease and do not provide the induction signal. Due to this, induction of thesfiA gene as well as dimer excision are inhibited early. 相似文献
9.
RecA protein of Escherichia coli has a third essential role in SOS mutator activity. 总被引:7,自引:12,他引:7
下载免费PDF全文

The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity. 相似文献
10.
11.
Vasilieva S 《Mutation research》2001,496(1-2):89-95
PABA - Vitamin H1 of group B, has obtained increasing fundamental interest as a very potent natural antimutagen after a series of our publications since 1979. In the first set of our experiments, we studied PABA in the assays with the alkylating agent N-methyl-N-nitrosourea (MNU). Mutagenic efficiency of this agent was suppressed up to 10-fold when PABA was administered into Escherichia coli cells concurrently with the mutagen or prior to the mutagenic treatment. NMR spectrometric and UV-spectrophotometric measurements did not reveal an interaction between the direct acting MNU and PABA, typical for some N-nitroso compounds and phenolics. PABA suppressed the error-prone DNA repair pathway induced by UV-irradiation. PABA decreased MNU-induced phage lambda lysogenic induction more than two orders of magnitude. PABA inhibited the thermal shift up to 400-fold in phage lambda from the permissive to non-permissive temperature in E. coli mutant tif-1 and decreased about two-fold W-reactivation of UV-damaged phage lambda. Chloramphenicol treatment of the cells just after the mutagenic treatment prevented the occurrence of PABA specific activity. The results suggest that PABA affects the SOS DNA repair pathway and the mutagenic response of E. coli. PABA appears to be an effective bioantimutagen reducing mutagenesis by modulating the error-prone DNA repair (SOS) response. 相似文献
12.
Survival and induction of the SOS system by 5-azacytidine, an analog of cytidine, were studied in Escherichia coli K-12. This compound did not produce any effect on the viability of dcm and dam dcm mutants. Furthermore, recA430 and lexA1 strains (both mutations interfere with LexA repressor cleavage but not recombination proficiency) were more resistant than the wild-type strain of E. coli K-12. In contrast, recBC and recA13 mutants were more sensitive to 5-azacytidine than the wild type. Transient exposure of E. coli to 5-azacytidine for 60 min induced both recA-dependent inhibition of cell division and induction of lambda prophage in Dcm+ strains but not in Dcm- mutants. Expression of both functions was dependent on recBC exonuclease. On the other hand, 5-azacytidine was unable to trigger the induction of umuCD and mucB genes and no amplification of RecA protein synthesis in either Dcm+ or Dcm- strains was observed. These last results are in agreement with previously reported data suggesting that there is a discrimination in the expression of the several SOS functions and that some SOS genes may be induced without amplification of RecA protein synthesis. 相似文献
13.
We report that polyamines have an effect on the SOS response of the umu operon in polyamine-deficient mutant and wild-type Escherichia coli strains carrying the umu'-'lacZ fusion. H2O2 effectively induces umu'-'lacZ in the wild type, but not significantly in the mutant strain. Exogenous polyamines did not restore the umu induction in the mutant to the wild-type level. In logarithmically growing cells, the basal expression of umu gene in the mutant is about five times higher than that of the wild type. The addition of polyamines to the growth medium markedly reduces the basal expression to the wild-type level. This reduction is due not to growth rate but to the polyamine itself. Our results suggest that polyamines are essentially involved in the SOS induction of the umu operon in E. coli. 相似文献
14.
Christina A. Cherrington M. Hinton G.R. Pearson I. Chopra 《Journal of applied microbiology》1991,70(2):156-160
Sublethal concentrations of formic acid (10 mmol/l) and propionic acid (5 mmol/l) at pH 5.0 preferentially inhibit DNA synthesis and stop cell multiplication in the absence of a corresponding cessation in the increase of culture turbidity. The possibility that the acids induce the SOS response by starving cells of thymine or by causing physical damage to the DNA molecule has now been investigated. Accumulation of thymine into the cytoplasm of whole cells was not inhibited by either acid. Mutants defective in excision repair ( uvrA6 ), recombination repair ( recA56 ) and polymerase activity ( polA1 ) were not more sensitive to the acids than their isogenic parent. No significant increase in cell length was observed from measurements of transmission electron microscope images of acid-treated cells. It is concluded, therefore, that sublethal concentrations of formic and propionic acid inhibit DNA synthesis without physically damaging DNA molecule, or starving the cell of essential thymine or otherwise inducing an SOS response. 相似文献
15.
C A Cherrington M Hinton G R Pearson I Chopra 《The Journal of applied bacteriology》1991,70(2):156-160
Sublethal concentrations of formic acid (10 mmol/l) and propionic acid (5 mmol/l) at pH 5.0 preferentially inhibit DNA synthesis and stop cell multiplication in the absence of a corresponding cessation in the increase of culture turbidity. The possibility that the acids induce the SOS response by starving cells of thymine or by causing physical damage to the DNA molecule has now been investigated. Accumulation of thymine into the cytoplasm of whole cells was not inhibited by either acid. Mutants defective in excision repair (uvr A6), recombination repair (rec A56) and polymerase activity (pol A1) were not more sensitive to the acids than their isogenic parent. No significant increase in cell length was observed from measurements of transmission electron microscope images of acid-treated cells. It is concluded, therefore, that sublethal concentrations of formic and propionic acid inhibit DNA synthesis without physically damaging DNA molecule, or starving the cell of essential thymine or otherwise inducing an SOS response. 相似文献
16.
Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo
下载免费PDF全文

The Escherichia coli beta sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the beta clamp (beta159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., DeltarecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., DeltapolB or DeltaumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo. 相似文献
17.
Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7 总被引:8,自引:0,他引:8
H E Huber B B Beauchamp C C Richardson 《The Journal of biological chemistry》1988,263(27):13549-13556
Escherichia coli has a unique enzyme, deoxyguanosine triphosphate triphosphohydrolase (dGTPase) that cleaves dGTP into deoxyguanosine and tripolyphosphate. An E. coli mutant, optA1, has a 50-fold increased level of the dGTPase (Beauchamp, B.B., and Richardson, C.C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 2563-2567). Successful infection of E. coli optA1 by bacteriophage T7 is dependent on a 10-kDa protein encoded by gene 1.2 of the phage. In this report we show that the gene 1.2 protein is a specific inhibitor of the E. coli dGTPase. Gene 1.2 protein inhibits dGTPase activity by forming a complex with the dGTPase with an apparent stoichiometry of two monomers of gene 1.2 protein/tetramer of dGTPase. The interaction is reversible with a half-life of the complex of 30 min and an apparent binding constant Ki of 35 nM. The binding of inhibitor of dGTPase is cooperative, indicating allosteric interactions between dGTPase subunits with a Hill coefficient of 1.7. The interaction is modulated differentially by DNA, RNA, and deoxyguanosine mono-, di-, and triphosphate. Both the binding of the substrate dGTP and of the inhibitor gene 1.2 protein induce conformational changes in dGTPase. The conformation of the enzyme in the presence of saturating concentrations of dGTP virtually prevents the association with, and the dissociation from, gene 1.2 protein. 相似文献
18.
The SOS response is an important mechanism which allows Escherichia coli cells to maintain genome integrity. Two key proteins in SOS regulation are LexA (repressor) and RecA (coprotease). The signal for SOS induction is generated at the level of a RecA filament. Depending on the type of DNA damage, a RecA filament is produced by specific activities (helicase, nuclease and RecA loading) of either RecBCD, RecF or a hybrid recombination pathway. It was recently demonstrated that RecA loading activity is essential for the induction of the SOS response after UV-irradiation. In this paper we studied the genetic requirements for SOS induction after introduction of a double-strand break (DSB) by the I-SceI endonuclease in a RecA loading deficient recB mutant (recB1080). We monitored SOS induction by assaying beta-galactosidase activity and compared induction of the response between strains having one or more inactivated mechanisms of RecA loading and their derivatives. We found that simultaneous inactivation of both RecA loading functions (in recB1080 recO double mutant) partially impairs SOS induction after introduction of a DSB. However, we found that the RecJ nuclease is essential for SOS induction after the introduction of a DSB in the recB1080 mutant. This result indicates that RecJ is needed to prepare ssDNA for subsequent loading of RecA protein. It implies that an additional type of RecA loading could exist in the cell. 相似文献
19.
The survival of Escherichia coli following treatment with a low dose (1-3 mM) of hydrogen peroxide (H(2)O(2)) that causes extensive mode-one killing of DNA repair mutants is stimulated by the induction of the SOS regulon. Results for various mutants indicate that induction of recA and RecA protein-mediated recombination are critical factors contributing to the repair of H(2)O(2)-induced oxidative DNA damage. However, because DNA damage activates RecA protein's coprotease activity essential to cleavage of LexA repressor protein and derepression of all SOS genes, it is unclear to what extent induction of RecA protein stimulates this repair. To make this determination, we examined mode-one killing of DeltarecA cells carrying plasmid-borne recA (P(tac)-recA(+)) and constitutively expressing a fully induced level of wild-type RecA protein when SOS genes other than recA are non-inducible in a lexA3 (Ind(-)) genetic background or inducible in a lexA(+) background. At a H(2)O(2) dose resulting in maximal killing, DeltarecA lexA3 (Ind(-)) cells with P(tac)-recA(+) show 40-fold greater survival than lexA3 (Ind(-)) cells with chromosomal recA having a low, non-induced level of RecA protein. However, they still show 10- to 15-fold lower survival than wild-type cells and DeltarecA lexA(+) cells with P(tac)-recA(+). To determine if the inducible RuvA protein stimulates survival, we examined a ruvA60 mutant that is defective for the repair of UV-induced DNA damage. This mutant also shows 10- to 15-fold lower survival than wild-type cells. We conclude that while induction of RecA protein has a pronounced stimulatory effect on the recombinational repair of H(2)O(2)-induced oxidative DNA damage, the induction of other SOS proteins such as RuvA is essential for wild-type repair. 相似文献
20.
Effects of overproducing the universal stress protein, UspA, in Escherichia coli K-12. 总被引:1,自引:2,他引:1
下载免费PDF全文

A plasmid with the structural uspA gene under the control of a tac promoter was used to study the effects of altering uspA expression levels under various growth conditions. We found that increasing UspA synthesis to levels corresponding to physiologically induced levels decreased the cell growth rate in minimal medium and reduced or abolished the cells' capacity to adapt to upshift conditions. As was demonstrated by two-dimensional gel electrophoresis, increased uspA expression caused global changes in the pattern of protein synthesis. In addition, electrophoretic analysis together with V8 protease peptide mapping demonstrated that the pIs of some specific proteins became more acidic as a result of the elevation of the levels of UspA. 相似文献