首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

2.
In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve toward more negative potentials and an increase in current amplitude at negative and more at positive potential. Currents were inhibited by r-iberiotoxin (r-IbTX, 50 nM) and charybdotoxin (ChTX, 50 nM). These data indicate that human breast cancer cells express large-conductance Ca2+-activated K+ (BK) channels. BK current-density increased in cells synchronized at the end of G1, as compared with those in the early G1 phase. This increased current-density paralleled the enhancement in BK mRNA levels. Blocking BK channels with r-IbTX, ChTX or both induced a slight depolarization in cells arrested in the early G1, late G1, and S phases and accumulated cells in the S phase, but failed to induce cell proliferation. Thus, the expression of the BK channels was cell-cycle-dependent and seems to contribute more to the S phase than to the G1 phase. However, these K+ channels did not regulate the cell proliferation because of their minor role in the membrane potential.  相似文献   

3.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

4.
Alamethicin causes a concentration-dependent increase of [Ca2+]i in suspensions of bovine adrenal chromaffin cells loaded with fura-2. The basal levels of Cai2+ (234 +/- 37 nM; n = 4) increased to a maximum of 2347 +/- 791 nM (n = 3) with 100 micrograms/ml alamethicin. In the presence of 1 mM Cae2+ the increase reached a plateau within about 2-5 s. This increase was due to Ca2+ entry into chromaffin cells, since in the absence of Cae2+ alamethicin did not modify [Ca2+]i. This contrasts with ionomycin (1 microM) which produced a Cai2+ transient even in the absence of Cae2+. Mn2+ ions also entered chromaffin cells in the presence of alamethicin, as measured by the quenching of fura-2 fluorescence following excitation at 360 nm. Resting chromaffin cells had a measurable permeability to Mn2+ which was drastically increased by cell depolarization by K+ (50 mM) addition. This suggests that Mn2+ is able to permeate voltage-dependent Ca2+ channels. Ni2+ uptake into either resting or K(+)-stimulated chromaffin cells was undetectable, but addition of alamethicin induced rapid uptake of this cation. The alamethicin-induced entry of Ni2+ was decreased by 50 mM K+. Overall, the results are compatible with the formation by alamethicin of ion channels in chromaffin cell plasma membranes.  相似文献   

5.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

6.
Kuo YC  Tsai WJ  Meng HC  Chen WP  Yang LY  Lin CY 《Life sciences》2001,68(11):1271-1286
In the hope of identifying agents of therapeutic value in glomerulonephritis from Chinese herbs, we found that methanolic extracts of Polygonum hypoleucum Ohwi (P. hypoleucum Ohwi) inhibit human mesangial cells proliferation activated with interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) previously. This study was designed to identify bioactive components from P. hypoleucum Ohwi and elucidate their action mechanisms. We tested four anthraquinones emodin, emodin 1-O-beta-D-glucoside (49A), physcion (62A), and physcion 1-O-beta-D-glucoside (50A) purified from P. hypoleucum Ohwi for their effects on human mesangial cell proliferation and cytokines production in vitro. On a percentage basis, emodin had the highest suppressing activity on the human mesangial cells proliferation activated by IL-1beta and IL-6. The IC50 of emodin on human mesangial cells proliferation were 17.9+/-1.2 microM. In contrast to 49A, 50A, and 62A, emodin also decreased IL-1beta, IL-6 and tumor necrosis factor-alpha (TNF-alpha) production in human mesangial cells activated with IL-1beta and IL-6. The IC50 of emodin on IL-1beta, IL-6 and TNF-alpha production in activated human mesangial cells were 16.6+/-1.8 microM, 8.2+/-1.3 microM, and 9.5+/-1.6 microM, respectively. Moreover, IL-1beta and TNF-alpha mRNA expression in activated human mesangial cells was impaired by emodin. The intracellular free Ca2+ concentration ([Ca2+]i) in IL-1beta and IL-6 activated human mesangial cells was decreased by emodin. It is unlikely that cytotoxicity was involved because no cell deaths were observable. We hypothesize that the inhibitory mechanisms of emodin on activated human mesangial cells proliferation may be related to the impairments of gene expression and production of cytokines and [Ca2+]i in the cells.  相似文献   

7.
We have studied the modulation by intracellular Ca2+ of the epithelial Ca2+ channel, ECaC, heterologously expressed in HEK 293 cells. Whole-cell and inside-out patch clamp current recordings were combined with FuraII-Ca2+ measurements:1. Currents through ECaC were dramatically inhibited if Ca2+ was the charge carrier. This inhibition was dependent on the extracellular Ca2+ concentration and occurred also in cells buffered intracellularly with 10 mM BAPTA.2. Application of 30 mM [Ca(2)]e induced in non-Ca2+] buffered HEK 293 cells at -80 m V an increase in intracellular Ca2+([Ca2]i) with a maximum rate of rise of 241 +/-15nM/s (n= 18 cells) and a peak value of 891 +/- 106 nM. The peak of the concomitant current with a density of 12.3 +/- 2.6 pA/pF was closely correlated with the peak of the first-time derivative of the Ca2+ transient, as expected if the Ca2+ transient is due to influx of Ca2+. Consequently, no Ca2+] signal was observed in cells transfected with the Ca2+ impermeable ECaC mutant, D542A, in which an aspartate in the pore region was neutralized.3. Increasing [Ca2+]i by dialyzing the cell with pipette solutions containing various Ca2+] concentrations, all buffered with 10 mM BAPTA, inhibited currents through ECaC carried by either Na+ or Ca2+] ions. Half maximal inhibition of Ca(2+)currents in the absence of monovalent cations occurred at 67 nM (n between 6 and 8), whereas Na+ currents in the absence of Ca2+] and Mg2+ were inhibited with an IC50 of 89 nM (n between 6 and 10). Currents through ECaC in the presence of 1 mM Ca2+ and Na+, which are mainly carried by Ca2+, are inhibited by [Ca2]i with an IC50of 82 nM (n between 6 and 8). Monovalent cation currents through the Ca2+impermeable D542A ECaC mutant were also inhibited by an elevation of [Ca2]i (IC50 = 123 nM, n between 7 and 18). 4. The sensitivity of ECaC currents in inside-out patches for [Ca2]i was slightly shifted to higher concentrations as compared with whole cell measurements. Half-maximal inhibition occurred at 169 nM if Na+ was the charge carrier (n between 4 and 11) and 228 nM at 1 mM [Ca2]e (n between 4 and 8).5. Recovery from inhibition upon washout of extracellular Ca2+ (whole-cell configuration) or removal of Ca2+ from the inner side of the channel (inside-out patches) was slow in both conditions. Half-maximal recovery was reached after 96 +/- 34 s (n= 15) in whole-cell mode and after 135 +/- 23 s (n = 17) in inside-out patches.6. We conclude that influx of Ca2+ through ECaC and [Ca2]i induce feedback inhibition of ECaC currents, which is controlled by the concentration of Ca2+ in a micro domain near the inner mouth of the channel. Slow recovery seems to depend on dissociation of Ca( 2+ from an internal Ca2+ binding site at ECaC.  相似文献   

8.
The steady-state content of active (dephospho) pyruvate dehydrogenase (PDHA) of suspensions of coupled rat brain mitochondria oxidizing succinate was found to be markedly increased with increasing free Ca2+ ion concentration of the medium, with a half-maximal effect at 10(-6.43) M Ca2+. Other ions were present in these studies at concentrations appropriate for the cytosol. Depolarization of the plasma membrane of synaptosomes caused an increase in the steady-state content of PDHA, with veratridine giving a larger increase than depolarization by 33 mM-KCl. Values were 68 +/- 1% (n = 13) and 81 +/- 1% (n = 19) of maximal activity, for control incubations and incubations in the presence of 30 microM-veratridine, respectively. Measurements of cytosolic free Ca2+ concentrations ([Ca2+]cyt.) in these suspensions of synaptosomes, with the use of the fluorescent Ca2+-indicator Quin-2, indicated an increase on depolarization, with the change due to 30 microM-veratridine being larger in extent than that due to 33 mM-KCl. Values were 217 +/- 21 nM (n = 15), 544 +/- 48 nM (n = 15) and 783 +/- 75 nM (n = 14) for control, KCl-depolarized and veratridine-depolarized synaptosomes respectively. Experiments in which synaptosomes were treated with Ruthenium Red, an inhibitor of mitochondrial Ca2+ uptake, gave much lower resting contents of PDHA (42 +/- 2% of maximal), but failed to prevent totally an increase on depolarization. Addition of an excess of EGTA to the synaptosomal suspension just before the addition of veratridine resulted in a partial diminution in the response of PDHA content. Parallel studies with Quin-2 indicated no increase in [Ca2+]cyt. on addition of veratridine, under these conditions. Thus an increase in [Ca2+]cyt. forms only a part of the mechanism whereby pyruvate dehydrogenase interconversion responds to depolarization. A decrease in the ATP/ADP ratio may also be important, as inferred from the results of experiments with ouabain, which inhibits the Na+ + K+-dependent ATPase.  相似文献   

9.
Decreasing the external sodium concentration ([Na+]e) to 10 mM in the presence of 280 mM sucrose had no significant effect on phosphocreatine (PCr) or on intracellular pH (pHi) as assessed using 31P nuclear magnetic resonance spectroscopy. Zero [Na+]e in the presence of 300 mM sucrose caused a fall in PCr levels to 50% of control values, and the pHi fell to 6.85 from a control value of 7.30. 1H nuclear magnetic resonance spectroscopy confirmed that the sucrose had not entered the tissue. The decreases in PCr content and in pHi, known to occur on depolarization using 40 mM external potassium concentration ([K+]e), were further decreased in the presence of 10 mM [Na+]e), to 51.4 +/- 4.0 and 6.80 +/- 0.10% of control values, respectively. The free intracellular magnesium concentration was significantly increased from a control value of 0.37 +/- 0.10 mM to 0.66 +/- 0.13 mM (p less than 0.001), when [Na+]e was decreased to 10 mM, but was not further affected by high [K+]e or zero Na+. Membrane permeabilities of the sodium substitutes N-methyl-D-glucamine (NMG), tris(hydroxymethyl)aminomethane (Tris), tetramethylammonium (TMA), and choline were assessed using 1H nuclear magnetic resonance spectroscopy. In the presence of 10 mM [Na+]e, NMG, TMA, and choline (all at 140 mM) were taken up and remained within the tissue for at least 2 h, but no uptake of Tris (140 mM) or sucrose (above) could be detected. Tissue lactate levels (from the lactate/N-acetyl aspartate ratio) increased in the presence of the substitutes that were taken up, although no change in pH was detected.  相似文献   

10.
Effect of different concentration of K+ in perfusion fluid ([K+]) (5.9 mM, 3.6 mM, 2.38 mM) and the heart temperatures of 20 degrees C and below on the rat heart rate in the Langendorf preparations, were examined in conditions of retrograde perfusion with a modified Krebs-Henseleit buffer at constant perfusion volume. The lowering of [K+] diminished the temperature/heart rate ratio and depressed the heart standstill temperature from 12.3 +/- 0.6 degrees C at [K+] 5.9 mM (n = 12) to 6.7 +/- 0.6 degrees C at [K+] 3.6 mM (n = 5) and to 2.24 +/- 0.40 degrees C at [K+] 2.38 mM (n = 5). Temperature of the cold heart standstill had the liner relationship to Ig[K+]. Change the perfusion fluid with 5.9 mM K+ after heart cold standstill by the perfusion fluid with 3.6 mM K+ restored the heart beats to the rate of 40-50 min-1 in some experiments. The second heart standstill was at the mean temperature 3.6 degrees C lower than the first one.  相似文献   

11.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

12.
The integrative activity of K+ ions in the CNS was studied in urethane-anaesthetized rats. Changes in the potassium ion concentration in the extracellular space ([K+]e) of the cerebral cortex were studied by means of ion-selective K+ microelectrodes introduced into the brain with an implanted micro-drive allowing measurement in the immobilized animal. EEG desynchronizations evoked by various arousal stimuli or of spontaneous origin were accompanied by a small, but definitely measurable and reliably reproducible [K+]e increment. In arousal reactions evoked by nociceptive stimuli and ammonia fumes, [K+]e rose from a resting value of 3 mM by a mean 0.31 +/- 0.04 mM and 0.61 +/- 0.15 mM respectively. The mean duration of the increase was 37 and 305 sec and the mean duration of corresponding EEG desynchronization 47 and 48 sec; the amplitude of the [K+]e change lagged 15 and 39 sec behind maximum EEG desynchronization. Periodic spontaneous desynchronizations lasting 123 sec, which were evidently associated with the sleep cycle and were accompanied by a [K+]e increment of 0.4 +/- 0.04 mM, occurred in two rats. Repeated nociceptive stimuli led to the elaboration of a conditioned arousal reaction manifested in a [K+]e increment prior to their application. [K+]e changes in arousal reactions were found to be a more sensitive index of the general activity of the neuronal population than DC potential changes.  相似文献   

13.
S Diamant  B Avraham  D Atlas 《FEBS letters》1987,219(2):445-450
The possible involvement of phosphoinositides' turnover in the process of neurotransmitter release in the central nervous system (CNS) was studied using rat brain slices and synaptosomes. A depolarizing concentration of potassium chloride (25 mM) induces an 8.6 +/- 0.4% increase of [3H]noradrenaline [( 3H]NA) fractional release in cerebral cortical slices above spontaneous release, and 15 mM KCl induces a 3-fold increase of [3H]NA release in rat brain synaptosomes. Neomycin, an aminoglycoside which binds phosphoinositides, inhibits the potassium-induced release in cortical slices with an IC50 = 0.5 +/- 0.07 mM and with IC50 = 0.2 +/- 0.03 mM in synaptosomes. Veratridine, a veratrum alkaloid which increases membrane permeability to sodium ions and causes depolarization of neuronal cells, induces a net 13.4 +/- 0.3% increase of [3H]NA fractional release above spontaneous release in cortical slices. In analogy to K+ stimulation, neomycin inhibits the veratridine-stimulated release in cortical slices with an IC50 = 0.65 +/- 0.1 mM. It appears that the recycling of phosphoinositides, which is necessary for Ca2+ mobilization, participates in the Ca2+-dependent induced neurotransmitter release in the central nervous system.  相似文献   

14.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

15.
Vasoactive intestinal peptide (VIP) stimulates active Cl- secretion by the intestinal epithelium, a process that depends upon the maintenance of a favorable electrical driving force established by a basolateral membrane K+ conductance. To demonstrate the role of this K- conductance, we measured short-circuit current (I(SC)) across monolayers of the human colonic secretory cell line, T84. The serosal application of VIP (50 nM) increased I(SC) from 3 +/- 0.4 microA/cm2 to 75 +/- 11 microA/cm2 (n = 4), which was reduced to a near zero value by serosal applications of Ba2+ (5 mM). The chromanol, 293B (100 microM), reduced I(SC) by 74%, but charybdotoxin (CTX, 50 nM) had no effect. We used the whole-cell voltage-clamp technique to determine whether the K+ conductance is regulated by cAMP-dependent phosphorylation in isolated cells. VIP (300 nM) activated K+ current (131 +/- 26 pA, n = 15) when membrane potential was held at the Cl- equilibrium potential (E(Cl-) = -2 mV), and activated inward current (179 +/- 28 pA, n = 15) when membrane potential was held at the K+ equilibrium potential (E(K+) = -80 mV); however, when the cAMP-dependent kinase (PKA) inhibitor, PKI (100 nM), was added to patch pipettes, VIP failed to stimulate these currents. Barium (Ba2+ , 5 mM), but not 293B, blocked this K+ conductance in single cells. We used the cell-attached membrane patch under conditions that favor K + current flow to demonstrate the channels that underlie this K+ conductance. VIP activated inwardly rectifying channel currents in this configuration. Additionally, we used fura-2AM to show that VIP does not alter the intracellular Ca2+ concentration, [Ca2 +]i. Caffeine (5 mM), a phosphodiesterase inhibitor, also stimulated K+ current (185 +/- 56 pA, n = 8) without altering [Ca2+]i. These results demonstrate that VIP activates a basolateral membrane K+ conductance in T84 cells that is regulated by cAMP-dependent phosphorylation.  相似文献   

16.
We investigated a possible role of nifedipine-insensitive high voltage-activated (NI-HVA) Ca2+ channels in arterial diameter regulation in the semi-terminal branches of rabbit mesenteric artery (RMA). From these branches, NI-HVA Ca2+ currents showing almost identical properties to those previously identified in a similar region of guinea-pig [Circulation Research 1999;85:596-605] were recorded with whole-cell patch clamp recording. With video-microscopic measurement, the diameter of RMA segments perfused intraluminally at a constant rate (2-6 mL/h; 269 +/- 9 micro m, n = 27) decreased by 50-60% by raising the external K+ concentration ([K+]o) to 75 mM, a substantial part of which remained after addition of 1-10 micro M nifedipine (44 +/- 5% of initial diameter, n = 27). This nifedipine-insensitive diameter decrease (NI-DD) appeared to consist of initial transient and subsequent tonic phases (this separation was, however, not always clear), was resistant to tetrodotoxin, and was completely abolished in Ca2+-free or 100 micro M Cd2+-containing bath solutions. The magnitude of NI-DD increased depending on [K+]o with a threshold concentration of 20-40 mM. Raising the external Ca2+ concentration dose-dependently increased the magnitude of NI-DD, the extent being more prominent in the late tonic phase. Combined application of caffeine (10 mM) with ryanodine (3 micro M) produced a large transient NI-DD, which strongly attenuated the NI-DD evoked by a subsequent elevation in [K+]o. Using the fura-2 spectrofluorimetric Ca2+ imaging technique, a nifedipine-insensitive [Ca2+]i increase showing similar [K+]o-dependence and Cd2+ sensitivity to NI-DD was observed. These properties of NI-DD accord with those of NI-HVA Ca2+ channels, thus suggesting their contribution to small arterial diameter regulation in RMA.  相似文献   

17.
The effects of 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br cGMP) on intracellular free calcium concentrations ([Ca2+]i) in cultured rat aortic vascular smooth muscle cells (VSMCs) loaded with fura-2 were recorded microfluorometrically. Irrespective of whether VSMCs were at rest (in 5 mM K+ PSS), under Ca2+ depletion (in Ca2+-free medium for 10 min) and K+ depolarization (in high K+ PSS), [Ca2+]i was actively reduced and reached a new and lower steady-state level with the application of 8-Br cGMP. This may be the first and direct evidence that cGMP, a putative mediator of various vasodilators, actively reduces [Ca2+]i in VSMCs.  相似文献   

18.
We have developed a novel method for measuring steady-state force-[Ca2+]i relations in isolated, membrane-intact rat trabeculae that are microinjected with Fura-2 salt. Twitches are markedly slowed after inhibition of phasic Ca2+ release and uptake from the sarcoplasmic reticulum by addition of cyclopiazonic acid and ryanodine. During relaxation of slowed twitches, force and [Ca2+]i trace a common trajectory in plots of force versus [Ca2+]i, despite very different histories of contraction. The common trajectory thereby provides a high resolution determination of the steady-state relation between force and [Ca2+]i. Using this method, we show that 1 microM isoproterenol, a beta-adrenergic agonist, causes a rightward shift (Hill function K1/2 increased from 0.39 +/- 0.07 microM to 0.82 +/- 0.23 microM, p < 0.02, n = 6) and a decreased slope (nH decreased from 5.4 +/- 1.1 to 4.0 +/- 1.4, p < 0.02) of the steady-state force-[Ca2+]i curve, with no change in maximal force (Fmax = 99.2 +/- 2.2% of control). In contrast, 2 microM EMD 53998, a racemic thiadiazinone derivative, causes a leftward shift (K1/2 decreased from 0.42 +/- 0.02 microM to 0.30 +/- 0.06 microM, p < 0.02, n = 4) with no change in slope of the steady-state force-[Ca2+]i curve, accompanied by a modest increase in maximal force (Fmax = 107.1 +/- 4.6% of control, p < 0.02). To gain mechanistic insight into these modulatory events, we developed a simple model of cooperative thin filament activation that predicts steady-state force-[Ca2+]i relationships. Model analysis suggests that isoproterenol decreases cooperativity arising from nearest-neighbor interactions between regulatory units on the thin filament, without change in the equilibrium constant for Ca2+ binding. In contrast, the effects of EMD 53998 are consistent with an increase in the affinity of strong-binding cross-bridges, without change in either the affinity of troponin C for Ca2+ or cooperative interactions.  相似文献   

19.
The effects of the thyroid state on the cytosolic free Ca2+ concentration, [Ca2+]i, of resting and K+-depolarized cardiomyocytes were studied using the fluorescent Ca2+ indicator fura2. The mean resting [Ca2+]i in euthyroid myocytes (89 +/- 8 nM) was not significantly different from that in hyperthyroid myocytes (100 +/- 14 nM). The resting O2-consumption rate was identical for both groups when expressed per mg protein, but a 35% higher value was observed in the hyperthyroid group when expressed per cell on account of the cellular hypertrophy induced by thyroid hormone. Potassium induced depolarization (50 mM [K+]0) raised the level of [Ca2+]i by 50% in both groups. When ATP-coupled respiration was blocked with oligomycin, the 50 mM K+-induced rise in [Ca2+]i was accompanied in both groups by a 40% rise in glycolytic activity as inferred from measurement of lactate production. Ca2+-fluorescence transients were recorded from electrically stimulated myocytes of euthyroid, hyperthyroid and hypothyroid rats. The time taken to reach peak fluorescence (TPL) and that to 50% decay of peak fluorescence (RL0.5) decreased in the direction hypothyroid----hyperthyroid, indicating an increase in Ca2+ fluxes in the same direction. Isoproterenol (1 microM) enhanced the peak Ca2+ fluorescence in electrically stimulated hypothyroid and euthyroid myocytes but not in hyperthyroid myocytes. Both the TPL and RL0.5 were decreased by isoproterenol in euthyroid, but more so in hypothyroid myocytes. None of these parameters were influenced by isoproterenol in the hyperthyroid group. We conclude that (1) thyroid hormone increases neither the O2-consumption rate nor the level of [Ca2+]i of resting cardiomyocytes and (2) the effects of the beta-receptor-agonist isoproterenol on Ca2+ transients of electrically stimulated myocytes, are inversely related to the documented changes in beta-receptor density in heart tissue occurring with alterations in the thyroid state.  相似文献   

20.
Inward rectifier (IR) currents were studied in bovine pulmonary artery endothelial cells in the whole-cell configuration of the patch-clamp technique with extracellular K+ concentrations, [K+]o, ranging from 4.5 to 160 mM. Whether the concentration of free Mg2+ in the intracellular solution, [Mg2+]i, was 1.9 mM or nominally 0, the IR exhibited voltage- and time-dependent gating. The IR conductance was activated by hyperpolarization and deactivated by depolarization. Small steady-state outward IR currents were present up to approximately 40 mV more positive than the K+ reversal potential, EK, regardless of [Mg2+]i. Modeled as a first-order C in equilibrium O gating process, both the opening rate, alpha, and the closing rate, beta, were exponentially dependent on voltage, with beta more steeply voltage dependent, changing e-fold for 9 mV compared with 18 mV for an e-fold change in alpha. Over all [K+]o studied, the voltage dependence of alpha and beta shifted along with EK, as is characteristic of IR channels in other cells. The steady-state voltage dependence of the gating process was well described by a Boltzmann function. The half-activation potential was on average approximately 7 mV negative to the observed reversal potential in all [K+]o regardless of [Mg2+]i. The activation curve was somewhat steeper when Mg-free pipette solutions were used (slope factor, 4.3 mV) than when pipettes contained 1.9 mM Mg2+ (5.2 mV). The simplest interpretation of these data is that IR channels in bovine pulmonary artery endothelial cells have an intrinsic gating mechanism that is not due to Mg block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号