首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently expanded knowledge of gene regulation clearly indicates that the regulatory sequences of a gene, usually identified as enhancers, are widely distributed in the gene locus, revising the classical view that they are clustered in the vicinity of genes. To identify regulatory sequences for Sox2 expression governing early neurogenesis, we scanned the 50-kb region of the chicken Sox2 locus for enhancer activity utilizing embryo electroporation, resulting in identification of a number of enhancers scattered throughout the analyzed genomic span. The 'pan-neural' Sox2 expression in early embryos is actually brought about by the composite activities of five separate enhancers with distinct spatio-temporal specificities. These and other functionally defined enhancers exactly correspond to extragenic sequence blocks that are conspicuously conserved between the chicken and mammalian genomes and that are embedded in sequences with a wide range of sequence conservation between humans and mice. The sequences conserved between amniotes and teleosts correspond to subregions of the enhancer subsets which presumably represent core motifs of the enhancers, and the limited conservation partly reflects divergent expression patterns of the gene. The phylogenic distance between the chicken and mammals appears optimal for identifying a battery of genetic regulatory elements as conserved sequence blocks, and chicken embryo electroporation facilitates functional characterization of these elements.  相似文献   

2.
Neural plate and sensory placodes share the expression of N-cadherin and Group B1 Sox genes, represented by Sox2. A 219-kb region of the chicken genome centered by the N-cadherin gene was scanned for neural and placodal enhancers. Random subfragments of 4.5 kb average length were prepared and inserted into tkEGFP reporter vector to construct a library with threefold coverage of the region. Each clone was then transfected into N-cadherin-positive (lens, retina and forebrain) or -negative embryonic cells, or electroporated into early chicken embryos to examine enhancer activity. Enhancers 1-4 active in the CNS/placode derivatives and non-specific Enhancer 5 were identified by transfection, while electroporation of early embryos confirmed enhancers 2-4 as having activity in the early CNS and/or sensory placodes but with unique spatiotemporal specificities. Enhancers 2-4 are dependent on SOX-binding sites, and misexpression of Group B1 Sox genes in the head ectoderm caused ectopic development of placodes expressing N-cadherin, indicating the involvement of Group B1 Sox functions in N-cadherin regulation. Enhancers 1, 2 and 4 correspond to sequence blocks conserved between the chicken and mammalian genomes, but enhancers 3 and 5 are unique to the chicken.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
One of the earliest manifestations of neural induction is onset of expression of the neural marker Sox2, mediated by the activation of the enhancers N1 and N2. By using loss and gain of function, we find that Sox2 expression requires the activity of JmjD2A and the Msk1 kinase, which can respectively demethylate the repressive H3K9me3 mark and phosphorylate the activating H3S10 (H3S10ph) mark. Bimolecular fluorescence complementation reveals that the adaptor protein 14-3-3, known to bind to H3S10ph, interacts with JMJD2A and may be involved in its recruitment to regulatory regions of the Sox2 gene. Chromatin immunoprecipitation reveals dynamic binding of JMJD2A to the Sox2 promoter and N-1 enhancer at the time of neural plate induction. Finally, we show a clear temporal antagonism on the occupancy of H3K9me3 and H3S10ph modifications at the promoter of the Sox2 locus before and after the neural plate induction. Taken together, our results propose a series of epigenetic events necessary for the early activation of the Sox2 gene in neural progenitor cells.  相似文献   

14.
15.
16.
Highly conserved non-coding elements (CNEs) linked to genes involved in embryonic development have been hypothesised to correspond to cis-regulatory modules due to their ability to induce tissue-specific expression patterns. However, attempts to prove their requirement for normal development or for the correct expression of the genes they are associated with have yielded conflicting results. Here, we show that CNEs at the vertebrate Sox21 locus are crucial for Sox21 expression in the embryonic lens and that loss of Sox21 function interferes with normal lens development. Using different expression assays in zebrafish we find that two CNEs linked to Sox21 in all vertebrates contain lens enhancers and that their removal from a reporter BAC abolishes lens expression. Furthermore inhibition of Sox21 function after the injection of a sox21b morpholino into zebrafish leads to defects in lens development. These findings identify a direct link between sequence conservation and genomic function of regulatory sequences. In addition to this we provide evidence that putative Sox binding sites in one of the CNEs are essential for induction of lens expression as well as enhancer function in the CNS. Our results show that CNEs identified in pufferfish-mammal whole-genome comparisons are crucial developmental enhancers and hence essential components of gene regulatory networks underlying vertebrate embryogenesis.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号