首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Gene》1998,211(1):57-62
Three genes potentially encoding novel matrix metalloproteinases (MMPs) were identified by sequence similarity searching of Caenorhabditis elegans genome database, and cDNAs for these MMPs were cloned. The predicted gene products (MMP-C31,-H19 and -Y19) display a similar domain organization to human MMPs. MMP-H19 and -Y19 are unique in that they have an RXKR motif between the propeptide and catalytic domains that is a furin-like cleavage site, and conserved only in stromelysin-3 and membrane-type MMPs. The amino acid sequence homology with MMP-1/human interstitial collagenase at the catalytic domain is 45%, 34% and 23% for MMP-C31, -H19 and -Y19, respectively. Recombinant proteins of C. elegans MMPs cleaved an MMP peptide substrate with efficiency proportional to their amino acid homology with human MMPs. Digestion of gelatin was observed only with MMP-C31. Enzyme activity of MMP-C31 and -H19 was inhibited by human tissue inhibitor of MMPs (TIMP)-1, TIMP-2 and synthetic MMP inhibitors, BB94 and CT543, indicating that the catalytic sites of these C. elegans MMPs are structurally closely related with those of mammalian MMPs.  相似文献   

2.
Troeberg L  Tanaka M  Wait R  Shi YE  Brew K  Nagase H 《Biochemistry》2002,41(50):15025-15035
The inhibitory properties of TIMP-4 for matrix metalloproteinases (MMPs) were compared to those of TIMP-1 and TIMP-2. Full-length human TIMP-4 was expressed in E. coli, folded from inclusion bodies, and the active component was purified by MMP-1 affinity chromatography. Progress curve analysis of MMP inhibition by TIMP-4 indicated that association rate constants (k(on)) and inhibition constants (K(i)) were similar to those for other TIMPs ( approximately 10(5) M(-)(1) s(-)(1) and 10(-)(9)-10(-)(12) M, respectively). Dissociation rate constants (k(off)) for MMP-1 and MMP-3 determined using alpha(2)-macroglobulin to capture MMP dissociating from MMP-TIMP complexes were in good agreement with values deduced from progress curves ( approximately 10(-)(4) s(-)(1)). K(i) and k(on) for the interactions of TIMP-1, -2, and -4 with MMP-1 and -3 were shown to be pH dependent. TIMP-4 retained higher reactivity with MMPs at more acidic conditions than either TIMP-1 or TIMP-2. Molecular interactions of TIMPs and MMPs investigated by IAsys biosensor analysis highlighted different modes of interaction between proMMP-2-TIMP-2 (or TIMP-4) and active MMP-2-TIMP-2 (or TIMP-4) complexes. The observation that both active MMP-2 and inactive MMP-2 (with the active site blocked either by the propeptide or a hydroxamate inhibitor) have essentially identical affinities for TIMP-2 suggests that there are two TIMP binding sites on the hemopexin domain of MMP-2: one with high affinity that is involved in proMMP-2 or hydroxamate-inhibited MMP-2; and the other with low affinity involved in formation of the complex of active MMP-2 and TIMP-2. Similar models of interaction may apply to TIMP-4. The latter low-affinity site functions in conjunction with the active site of MMP-2 to generate a tight enzyme-inhibitor complex.  相似文献   

3.
The function of ancillary domains and modules attached to the catalytic domain of mutidomain proteases, such as the matrix metalloproteinases (MMPs), are not well understood. The importance of discrete MMP substrate binding sites termed exosites on domains located outside the catalytic domain was first demonstrated for native collagenolysis. The essential role of hemopexin carboxyl-domain exosites in the cleavage of noncollagenous substrates such as chemokines has also been recently revealed. This article updates a previous review of the role of substrate recognition by MMP exosites in both preparing complex substrates, such as collagen, for cleavage and for tethering noncollagenous substrates to MMPs for more efficient proteolysis. Exosite domain interaction and movements—“molecular tectonics”—that are required for native collagen triple helicase activity are discussed. The potential role of collagen binding in regulating MMP-2 (gelatinase A) activation at the cell surface reveals unexpected consequences of substrate interactions that can lead to collagen cleavage and regulation of the activation and activity of downstream proteinases necessary to complete the collagenolytic cascade.  相似文献   

4.
The turnover of the collagen triple-helical structure (collagenolysis) is a tightly regulated process in normal physiology and has been ascribed to a small number of proteases. Several members of the matrix metalloproteinase (MMPs) family possess collagenolytic activity, and the mechanisms by which these enzymes process triple helices are beginning to be unraveled. The present study has utilized two triple-helical sequences to compare the cleavage-site specificities of 10 MMPs. One substrate featured a continuous Gly-Xxx-Yyy sequence (Pro-Leu-Gly approximately Met-Arg-Gly), while the other incorporated an interruption in the Gly-Xxx-Yyy repeat (Pro-Val-Asn approximately Phe-Arg-Gly). Both sequences were selectively cleaved by MMP-13 while in linear form, but neither proved to be selective within a triple helix. This suggests that the conformational presentation of substrate sequences to a MMP active site is critical for enzyme specificity, in that activities differ when sequences are presented from an unwound triple helix versus an independent single strand. Differences in specificity between secreted and membrane-type (MT) MMPs were also observed for both sequences, where MMP-2 and MT-MMPs showed an ability to hydrolyze a triple helix at an additional site (Gly-Gln bond). Interruption of the triple helix had different effects on secreted MMPs and MT-MMPs, because MT-MMPs could not hydrolyze the Asn-Phe bond but instead cleaved the triple helix closer to the C terminus at a Gly-Gln bond. It is possible that MT-MMPs have a requirement for Gly in the P1 subsite to be able to efficiently process a triple-helical molecule. Analysis of individual kinetic parameters and activation energies indicated different substrate preferences within secreted MMPs, because MMP-13 preferred the interrupted sequence, while MMP-8 showed little discrimination between non-interrupted and interrupted triple helices. On the basis of the present and prior studies, we can assign unique triple-helical peptidase behaviors to the collagenolytic MMPs. Such differences may be significant for understanding MMP mechanisms of action and aid in the development of selective MMP inhibitors.  相似文献   

5.
The excessive activity of matrix metalloproteinases (MMPs) contributes to pathological processes such as arthritis, tumor growth and metastasis if not balanced by the tissue inhibitors of metalloproteinases (TIMPs). In arthritis, the destruction of fibrillar (type II) collagen is one of the hallmarks, with MMP-1 (collagenase-1) and MMP-13 (collagenase-3) being identified as key players in arthritic cartilage. MMP-13, furthermore, has been found in highly metastatic tumors. We have solved the 2.0 A crystal structure of the complex between the catalytic domain of human MMP-13 (cdMMP-13) and bovine TIMP-2. The overall structure resembles our previously determined MT1-MMP/TIMP-2 complex, in that the wedge-shaped TIMP-2 inserts with its edge into the entire MMP-13 active site cleft. However, the inhibitor is, according to a relative rotation of approximately 20 degrees, oriented differently relative to the proteinase. Upon TIMP binding, the catalytic zinc, the zinc-ligating side chains, the enclosing MMP loop and the S1' wall-forming segment move significantly and in concert relative to the rest of the cognate MMP, and the active site cleft constricts slightly, probably allowing a more favourable interaction between the Cys1(TIMP) alpha-amino group of the inhibitor and the catalytic zinc ion of the enzyme. Thus, this structure supports the view that the central N-terminal TIMP segment essentially defines the relative positioning of the TIMP, while the flanking edge loops determine the relative orientation, depending on the individual target MMP.  相似文献   

6.
Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.  相似文献   

7.
The unregulated activities of matrix metalloproteinases (MMPs) are implicated in disease processes including arthritis and tumor cell invasion and metastasis. MMP activities are controlled by four homologous endogenous protein inhibitors, tissue inhibitors of metalloproteinases (TIMPs), yet different TIMPs show little specificity for individual MMPs. The large interaction interface in the TIMP-1.MMP-3 complex includes a contiguous region of TIMP-1 around the disulfide bond between Cys1 and Cys70 that inserts into the active site of MMP-3. The effects of fifteen different substitutions for threonine 2 of this region reveal that this residue makes a large contribution to the stability of complexes with MMPs and has a dominant influence on the specificity for different MMPs. The size, charge, and hydrophobicity of residue 2 are key factors in the specificity of TIMP. Threonine 2 of TIMP-1 interacts with the S1' specificity pocket of MMP-3, which is a key to substrate specificity, but the structural requirements in TIMP-1 residue 2 for MMP binding differ greatly from those for the corresponding residue of a peptide substrate. These results demonstrate that TIMP variants with substitutions for Thr2 represent suitable starting points for generating more targeted TIMPs for investigation and for intervention in MMP-related diseases.  相似文献   

8.
The propeptide domain of secreted matrix metalloproteinases (MMPs) is responsible for maintaining the latency of these proteinases. Recently, the propeptide domain of the prototype membrane type matrix metalloproteinase (MT1-MMP) was demonstrated to act as an intramolecular chaperone (Cao, J., Hymowitz, M., Conner, C., Bahou, W. F., and Zucker, S. (2000) J. Biol. Chem. 275, 29648-29653). In the current study, the role of an unique four-amino acid sequence in the propeptide domain of MT1-MMP was examined. The sequence (42)YGYL(45) is conserved in the propeptide domain of all six members of the MT-MMP subfamily, but not in secreted MMPs. Mutant MT1-MMP cDNAs coding for alanine substitutions (single and double amino acid sequences) in this conserved propeptide region were transfected into COS-1 cells deficient in endogenous MT1-MMP. As demonstrated by immunofluorescence, mutant MT1-MMP protein was synthesized and displayed on the plasma membrane of transfected cells. Alanine substitutions within the (42)YGYL(45) sequence proved to be detrimental for enzyme function in terms of activation of proMMP-2 and binding TIMP-2 to the cell surface (MT1-MMP serves as a cell surface receptor for TIMP-2). In contrast to wild-type MT1-MMP-transfected cells, mutant MT1-MMP-transfected cells were incapable of degrading and migrating on a fibronectin substrate. These data indicate that the conserved (42)YGYL(45) sequence within the propeptide domain of MT-MMPs is required for intramolecular chaperone function of these intrinsic membrane proteinases.  相似文献   

9.
Matrix metalloproteinase (MMP)-2 and MMP-9 are closely related metalloproteinases that are implicated in angiogenesis. The two proteins have a similar domain structure and highly homologous catalytic domains, making them an excellent comparative model for understanding the structural basis of substrate recognition by the MMP family. Although the two MMPs exhibit some overlap in substrate recognition, our recent work showed that MMP-2 can cleave a set of peptide substrates that are only poorly recognized by MMP-9 (Chen, E. I., Kridel, S. J., Howard, E. W., Li, W., Godzik, A., and Smith, J. W. (2002) J. Biol. Chem. 277, 4485-4491). Mutations at the P(2) position of these peptide substrates dramatically reduced their selectivity for MMP-2. Inspection of the corresponding S(2) pocket of the substrate-binding cleft of the protease reveals that MMP-9 contains an Asp, whereas MMP-2 contains Glu. Here, we test the hypothesis that this conservative substitution has a role in substrate selectivity. Mutation of Glu(412) in MMP-2 to Asp significantly reduced the hydrolysis of selective substrates, with only a minor effect on hydrolysis of non-selective substrates. The predominant effect of the mutation is at the level of k(cat), or turnover rate, with reductions reaching as high as 37-fold. The residues that occupy this position in other MMPs are highly variable, providing a potential structural basis for substrate recognition across the MMP family.  相似文献   

10.
The biological functions of matrix metalloproteinases (MMPs) extend beyond extracellular matrix degradation. Non-proteolytic activities of MMPs are just beginning to be understood. Herein, we evaluated the role of proMMPs in cell migration. Employing a Transwell chamber migration assay, we demonstrated that transfection of COS-1 cells with various proMMP cDNAs resulted in enhancement of cell migration. Latent MMP-2 and MMP-9 enhanced cell migration to a greater extent than latent MMP-1, -3, -11 and -28. To examine if proteolytic activity is required for MMP-enhanced cell migration, three experimental approaches, including fluorogenic substrate degradation assay, transfection of cells with catalytically inactive mutant MMP cDNAs, and addition of hydroxamic acid-derived MMP inhibitors, were employed. We demonstrated that the proteolytic activities of MMPs are not required for MMP-induced cell migration. To explore the mechanism underlying MMP-enhanced cell migration, structure-function relationship of MMP-9 on cell migration was evaluated. By using a domain swapping approach, we demonstrated that the hemopexin domain of proMMP-9 plays an important role in cell migration when examined by a transwell chamber assay and by a phagokinetic migration assay. TIMP-1, which interacts with the hemopexin domain of proMMP-9, inhibited cell migration, whereas TIMP-2 had no effect. Employing small molecular inhibitors, MAPK and PI3K pathways were found to be involved in MMP-9-mediated cell migration. In conclusion, we demonstrated that MMPs utilize a non-proteolytic mechanism to enhance epithelial cell migration. We propose that hemopexin homodimer formation is required for the full cell migratory function of proMMP-9.  相似文献   

11.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

12.
The mammalian collagenases are a subgroup of the matrix metalloproteinases (MMPs) that are uniquely able to cleave triple helical fibrillar collagens. Collagen breakdown is an essential part of extracellular matrix turnover in key physiological processes including morphogenesis and wound healing; however, unregulated collagenolysis is linked to important diseases such as arthritis and cancer. The tissue inhibitors of metalloproteinases (TIMPs) function in controlling the activity of MMPs, including collagenases. We report here the structure of a complex of the catalytic domain of fibroblast collagenase (MMP-1) with the N-terminal inhibitory domain of human TIMP-1 (N-TIMP-1) at 2.54 A resolution. Comparison with the previously reported structure of the TIMP-1/stromelysin-1 (MMP-3) complex shows that the mechanisms of inhibition of both MMPs are generally similar, yet there are significant differences in the protein-protein interfaces in the two complexes. Specifically, the loop between beta-strands A and B of TIMP-1 makes contact with MMP-3 but not with MMP-1, and there are marked differences in the roles of individual residues in the C-D connector of TIMP-1 in binding to the two MMPs. Structural rearrangements in the bound MMPs are also strikingly different. This is the first crystallographic structure that contains the truncated N-terminal domain of a TIMP, which shows only minor differences from the corresponding region of the full-length protein. Differences in the interactions in the two TIMP-1 complexes provide a structural explanation for the results of previous mutational studies and a basis for designing new N-TIMP-1 variants with restricted specificity.  相似文献   

13.
14.
15.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs). TIMP molecules are made up of two domains: an N-terminal domain that associates with the catalytic cleft of the metalloproteinases (MP) and a smaller C-terminal domain whose role in MP association is still poorly understood. This work is aimed at investigating the role of the C-terminal domain in MP selectivity. In this study, we replaced the C-terminal domain of TIMP-1 with those of TIMP-2, -3 and -4 to create a series of “T1:TX” chimeras. The affinity of the chimeras against ADAM10, ADAM17, MMP14 and MMP19 was investigated. We can show that replacement of the C-terminal domain by those of other TIMPs dramatically increased the affinity of TIMP-1 for some MPs. Furthermore, the chimeras were able to suppress TNF-α and HB-EGF shedding in cell-based setting. Unlike TIMP-1, T1:TX chimeras had no growth-promoting activity. Instead, the chimeras were able to inhibit cell migration and development in several cancer cell lines. Our findings have broadened the prospect of TIMPs as cancer therapeutics. The approach could form the basis of a new strategy for future TIMP engineering.  相似文献   

16.
17.
BACKGROUND AND AIMS: Helicobacter pylori infection results in an active, chronic inflammation of the gastric mucosa. Previous studies have highlighted the importance of matrix metalloproteinases (MMPs) in diseases involving mucosal inflammation, prompting us to investigate MMP activity in H. pylori-induced gastritis. METHODS: Gastric biopsies were obtained from H. pylori-infected and uninfected volunteers, and MMP activity was assessed using substrate gel electrophoresis. MMP production was also evaluated by immunohistochemistry and real time-polymerase chain reaction. In parallel, tissue inhibitors of MMPs (TIMP) levels and TIMP-MMP complexes were examined in corresponding tissues using enzyme-linked immunosorbent assays and Western blotting. Finally, MMP production by gastric macrophages was determined after stimulation with H. pylori. RESULTS: Antral mucosa of H. pylori-infected subjects demonstrated a 19-fold higher MMP-9 activity than that of uninfected individuals. MMP-2 was present at lower levels, but was also increased in H. pylori-infected individuals, while there was no difference in the total levels of TIMP-1 and TIMP-2 between the groups of volunteers. Significant numbers of MMP-9-containing cells were only found in the H. pylori-infected antral mucosa. Tissue-resident macrophages were significantly increased in H. pylori-infected individuals, and double-staining showed MMP-9 colocalized to macrophages. Furthermore, gastric macrophages secreted MMP-9 in response to H. pylori bacteria. A corresponding 10-fold increase of gene expression of MMP-9 was seen in patients infected with H. pylori compared to uninfected individuals. CONCLUSIONS: Helicobacter pylori infection results in a substantial increase in MMP-9 and MMP-2 activity in the gastric mucosa, probably contributed to in large part by tissue-resident macrophages, while no changes were seen in the TIMP levels. The net increase in gastric MMP activity is likely to contribute to tissue damage during H. pylori-associated gastritis.  相似文献   

18.
Human stromelysin-1 is a member of the matrix metalloproteinase (MMP) family of enzymes. The active site glutamic acid of the MMPs is conserved throughout the family and plays a pivotal role in the catalytic mechanism. The structural and functional consequences of a glutamate to glutamine substitution in the active site of stromelysin-1 were investigated in this study. In contrast to the wild-type enzyme, the glutamine-substituted mutant was not active in a zymogram assay where gelatin was the substrate, was not activated by organomercurials and showed no activity against a peptide substrate. The glutamine-substituted mutant did, however, bind to TIMP-1, the tissue inhibitor of metalloproteinases, after cleavage of the propeptide with trypsin. A second construct containing the glutamine substitution but lacking the propeptide was also inactive in the proteolysis assays and capable of TIMP-1 binding. X-ray structures of the wild-type and mutant proteins complexed with the propeptide-based inhibitor Ro-26-2812 were solved and in both structures the inhibitor binds in an orientation the reverse of that of the propeptide in the pro-form of the enzyme. The inhibitor makes no specific interactions with the active site glutamate and a comparison of the wild-type and mutant structures revealed no major structural changes resulting from the glutamate to glutamine substitution.  相似文献   

19.
Membrane type (MT) matrix metalloproteinases (MMPs) are recently recognized members of the family of Zn(2+)- and Ca(2+)-dependent MMPs. To investigate the proteolytic capabilities of human MT4-MMP (i.e. MMP-17), we have cloned DNA encoding its catalytic domain (CD) from a breast carcinoma cDNA library. Human membrane type 4 MMP CD (MT4-MMPCD) protein, expressed as inclusion bodies in Escherichia coli, was purified to homogeneity and refolded in the presence of Zn(2+) and Ca(2+). While MT4-MMPCD cleaved synthetic MMP substrates Ac-PLG-[2-mercapto-4-methylpentanoyl]-LG-OEt and Mca-PLGL-Dpa-AR-NH(2) with modest efficiency, it catalyzed with much higher efficiency the hydrolysis of a pro-tumor necrosis factor-alpha converting enzyme synthetic substrate, Mca-PLAQAV-Dpa-RSSSR-NH(2). Catalytic efficiency with the pro-tumor necrosis factor-alpha converting enzyme substrate was maximal at pH 7.4 and was modulated by three ionizable enzyme groups (pK(a3) = 6.2, pK(a2) = 8.3, and pK(a1) = 10.6). MT4-MMPCD cleaved gelatin but was inactive toward type I collagen, type IV collagen, fibronectin, and laminin. Like all known MT-MMPs, MT4-MMPCD was also able to activate 72-kDa progelatinase A to its 68-kDa form. EDTA, 1,10-phenanthroline, reference hydroxamic acid MMP inhibitors, tissue inhibitor of metalloproteinases-1, and tissue inhibitor of metalloproteinases-2 all potently blocked MT4-MMPCD enzymatic activity. MT4-MMP is, therefore, a competent Zn(2+)-dependent MMP with unique specificity among synthetic substrates and the capability to both degrade gelatin and activate progelatinase A.  相似文献   

20.
The turnover of native collagen has been ascribed to different members of the matrix metalloproteinase (MMP) family. Here, the mechanisms by which neutrophil collagenase (MMP-8), gelatinase A (MMP-2), and the ectodomain of MT1-MMP (ectMMP-14) degrade fibrillar collagen were examined. In particular, the hydrolysis of type I collagen at 37 degrees C was investigated to identify functional differences in the processing of the two alpha-chain types of fibrillar collagen. Thermodynamic and kinetic parameters were used for a quantitative comparison of the binding, unwinding, and hydrolysis of triple helical collagen. We demonstrate that the MMP family has developed at least two distinct mechanisms for collagen unwinding and cleavage. MMP-8 and ectMMP-14 display a similar mechanism (although with different catalytic parameters), which is characterized by binding (likely through the hemopexin-like domain) and cleavage of alpha-1 and/or alpha-2 chains without distinguishing between them and keeping the gross conformation of the triple helix (at least during the first cleavage step). On the other hand, MMP-2 binds preferentially the alpha-1 chains (likely through the fibronectin-like domain, which is not present in MMP-8 and ectMMP-14), grossly altering the whole triple helical arrangement of the collagen molecule and cleaving preferentially the alpha-2 chain. These distinctive mechanisms underly a drastically different mode of interaction with triple helical fibrillar collagen I, according to which the MMP domain is involved in binding. These findings can be related to the different role exerted by these MMPs on collagen homeostasis in the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号