首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein 4.1 is a globular 80-kDa component of the erythrocyte membrane skeleton that enhances spectrin–actin interaction via its internal 10-kDa domain. Previous studies have shown that protein 4.1 mRNA is expressed as multiple alternatively spliced isoforms, resulting from the inclusion or exclusion of small cassette sequences called motifs. By tissue screening for protein 4.1 isoforms, we have observed new features of an already complex pattern of alternative splicing within the spectrin/actin binding domain. In particular, we found a new 51-nt exon that is present almost exclusively in muscle tissue. In addition, we have isolated multiple genomic clones spanning over 200 kb, containing the entire erythroid and nonerythroid coding sequence of the human locus. The exon/intron structure has now been characterized; with the exception of a 17-nt motif, all of the alternatively spliced motifs correspond to individual exons. The 3′-untranslated region (UTR) has also been completely sequenced using various PCR and genomic-sequencing methods. The 3′ UTR, over 3 kb, accounts for one-half of the mature mRNA.  相似文献   

3.
4.
5.
Rat stomach and testis cDNAs corresponding to two alternatively spliced mRNAs encoding variants of a P-type ion-transport ATPase that closely resembles the yeast secretory pathway Ca2+ pump have been isolated and characterized. A partial kidney cDNA was identified previously using an oligonucleotide probe corresponding to part of the sarcoplasmic reticulum Ca(2+)-ATPase [Gunteski-Hamblin, A., Greeb, J., & Shull, G.E. (1988) J. Biol. Chem. 263, 15032-15040]. In the present study, we first isolated and characterized a stomach cDNA that contains the entire coding sequence. The 919 amino acid enzyme has the same apparent transmembrane organization and contains all of the conserved domains present in other P-type ATPases. Northern blot analyses demonstrate that 3.9- and 5-kilobase mRNAs corresponding to the cDNA were present in all tissues examined, suggesting that the protein it encodes performs a housekeeping function. Rat testis also contained a 3.7-kilobase mRNA that hybridized with a probe from the 5' end of the stomach cDNA but did not hybridize with a probe from the 3' end. Cloning and characterization of cDNAs corresponding to the smaller testis mRNA revealed that it is derived from the same gene but encodes a variant of the enzyme in which the C-terminal residue, Val-919, is replaced by the sequence Phe-919-Tyr-Pro-Lys-Ile-923. Similarity comparisons show that the two enzymes are more closely related to the known Ca2+ pumps than to other P-type ATPases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP-Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.  相似文献   

9.
10.
11.
Alternative splicing of glucokinase mRNA in rat liver.   总被引:3,自引:0,他引:3       下载免费PDF全文
The sequences of two near full-length cDNAs encoding rat liver glucokinase are reported. One of the cDNAs is essentially identical to the cDNA cloned by Andreone, Printz, Pilkis, Magnuson & Granner. [(1989) J. Biol. Chem. 264, 363-369]. The other cDNA contains a 151 bp insertion and a downstream 52 bp deletion. The inserted block of bases has been shown to originate from an optional cassette exon, termed 2A, between the previously described exons 1 and 2. The conceptual translation product from the variant mRNA is identical to the original glucokinase protein for the first 15 amino acids. Next there is a novel polypeptide sequence of 87 residues, comprising 50 residues encoded by the cassette exon and 37 residues specified by an altered reading frame in exon 2. Due to the 52 bp deletion, 17 amino acids of the reference sequence are then missing, after which the sequence reverts to the original. Northern blot analysis with oligonucleotide probes has shown that alternatively spliced mRNA represents about 5% of total glucokinase mRNA. Alternative splicing of glucokinase mRNA in liver may explain earlier findings of minor isoforms of hepatic glucokinase.  相似文献   

12.
A number of studies in recent years have linked polymorphisms within the serotonin transporter (5HTT) gene to affective disorders and anxiety traits. The human 5HTT mRNA is alternatively spliced, and the splice variants are equally expressed in the human placental cell line and dorsal raphe. In this study, using 5' rapid amplification of cDNA ends, we show that the rat 5HTT mRNA is alternatively spliced, leading to three distinct mRNAs differing in the 5' untranslated region. To determine whether the three alternatively spliced mRNA species that contain one of the following untranslated regions (i) exon 1A, 63 bp (ii) exon 1A + 1B, 125 bp or (iii) exon 1C, 101 bp, were expressed in a tissue-specific manner, we used RT-PCR and exon-specific oligonucleotide hybridization. Our results suggest two of the variants (1A + 1B and 1A) may utilize the same promoter; however, they are not equally expressed. While in the adult CNS and adrenal medulla, the shorter mRNA consisting of exon 1A was considerably more abundant, in the stomach and heart, the two variants were equally expressed. The third splice variant exon 1C is only expressed in the gut and to a lesser extent in the heart. The data from this study suggest the splice variant consisting of exon 1C may utilize a distinct promoter compared to the other two.  相似文献   

13.
Three mRNA species for human muscle phophofructokinase containing heterogeneous 5' untranslated sequences were identified through cDNA cloning. Type A mRNA was essentially the same as that reported previously (Nakajima, H., et al. (1987) FEBS Lett. 223, 113). Type B mRNA was considered to be the major gene product, which contained an extra non-coding sequence within the 5' untranslated region of type A mRNA. Amplification of mRNA by polymerase chain reaction revealed that types A and B mRNAs shared a common precursor RNA, and were alternatively spliced. Type C mRNA, homologous to the cDNA sequence from a placenta library (Sharma, P. M. et al., (1989) Gene 77, 177), was considered to be under the control of an alternative promotor.  相似文献   

14.
15.
The goal of functional genomics is to determine the function of each protein encoded by an organism. Typically, this is done by inactivating individual genes and, subsequently, analyzing the phenotype of the modified organisms. In higher eukaryotes, where a tremendous amount of alternative splicing occurs, such approaches are not feasible because they have the potential to simultaneously affect multiple proteins that could have quite distinct and important functions. Thus, it is necessary to develop techniques that inactivate only a subset of proteins synthesized from genes encoding alternatively spliced mRNAs. Here we demonstrate that RNA interference (RNAi) can be used to selectively degrade specific alternatively spliced mRNA isoforms in cultured Drosophila cells. This is achieved by treating the cells with double-stranded RNA corresponding to an alternatively spliced exon. This technique may prove to be a powerful tool to assess the function of proteins synthesized from alternatively spliced mRNAs. In addition, these results have implications regarding the mechanism of RNAi in Drosophila.  相似文献   

16.
We have isolated two cDNA clones encoding human acidic fibroblast growth factor (aFGF) which represent the utilization of alternative upstream exons in aFGF mRNA. Isolation and sequence analysis of genomic clones spanning the first coding exon and each of the upstream sequences confirms that the divergent 5' sequences are separate exons, spliced alternatively to the first coding exon 34 nucleotides upstream of the initiator AUG codon. Restriction mapping of the genomic clones provides a minimum size estimate of 45 kilobase pairs for the aFGF locus.  相似文献   

17.
A J Harmar  V Hyde  K Chapman 《FEBS letters》1990,275(1-2):22-24
The neuropeptides substance P and neurokinin A are synthesised from a family of precursor polypeptides encoded by the preprotachykinin A (PPT) gene. In addition to a mRNA (beta-PPT) containing all 7 exons of the gene, alternatively spliced mRNAs lacking either exon 4 (gamma-PPT) or exon 6 (alpha-PPT) have been identified. We have determined the sequences of cDNA clones encoding four variants of PPT mRNA from rat dorsal root ganglion (DRG), including a novel mRNA species (delta-PPT) in which both exons 4 and 6 are absent. The sequence of delta-PPT predicts the existence of a novel tachykinin precursor polypeptide.  相似文献   

18.
19.
We have isolated the rat gene encoding isoform 3 of the plasma membrane Ca(2+)-ATPase (PMCA3) and have determined its exon/intron organization. The PMCA3 gene contains 24 exons and spans approximately 70 kilobases. In addition, we have analyzed the splicing and polyadenylation patterns leading to the production of an alternative 4.5-kilobase (PMCA3) skeletal muscle mRNA that differs from the previously characterized 7.5-kilobase brain mRNA (Greeb, J., and Shull, G. E. (1989) J. Biol. Chem. 264, 18569-18576). cDNA cloning, Northern blot hybridization, and polymerase chain reaction analyses of the 4.5-kilobase mRNA demonstrate (i) the inclusion of a novel 68-nucleotide exon (exon 22) that is specific for skeletal muscle and significantly alters the calmodulin-binding domain and (ii) the utilization of an alternative polyadenylation site following exon 23 which eliminates the last coding exon (exon 24) and 3'-untranslated sequence of the 7.5-kilobase mRNA. We have also identified a 42-nucleotide exon (exon 8) that is included in the skeletal muscle PMCA3 mRNAs, but may be either included or excluded in the brain mRNAs. Exon 8 is inserted immediately before the sequence encoding a putative phospholipid binding domain and thus may alter regulatory interactions of the enzyme with acidic phospholipids.  相似文献   

20.
The vertebrate fast skeletal muscle troponin T gene, TnTf, produces a complexity of isoforms through differential mRNA splicing. The mechanisms that regulate splicing and the physiological significance of TnTf isoforms are poorly understood. To investigate these questions, we have determined the complete sequence structure of the quail TnTf gene, and we have characterized the developmental expression of alternatively spliced TnTf mRNAs in quail embryonic muscles. We report the following: 1) the quail TnTf gene is significantly larger than the rat TnTf gene and has 8 non-homologous exons, including a pectoral muscle-specific set of alternatively spliced exons; 2) specific sequences are implicated in regulated exon splicing; 3) a 900-base pair sequence element, composed primarily of intron sequence flanking the pectoral muscle-specific exons, is tandemly repeated 4 times and once partially, providing direct evidence that the pectoral-specific TnT exon domain arose by intragenic duplications; 4) a chicken repeat 1 retrotransposon element resides upstream of this repeated intronic/pectoral exon sequence domain and is implicated in transposition of this element into an ancestral genome; and 5) a large set of novel isoforms, produced by regulated exon splicing, is expressed in quail muscles, providing insights into the developmental regulation, physiological function, and evolution of the vertebrate TnTf isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号