首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Nervion River estuary surface samples were taken from March to September 2003 at six sites covering most of the salinity range with the aim to know the biomass and taxonomic composition of phytoplankton assemblages in the different segments. Nine groups of algae including cyanobacteria, diatoms, dinoflagellates, chlorophytes, prasinophytes, euglenophytes, chrysophytes, haptophytes, raphidophytes and cryptophytes were identified by means of a combination of pigment analysis by high-performance liquid chromatography (HPLC) and microscopic observations of live and preserved cells. Diatoms, chlorophytes and cryptophytes were the most abundant algae in terms of cells number, whereas fucoxanthin, peridinin, chlorophyll b (Chl b) and alloxanthin were the most abundant auxiliary pigments. Based on multiple regression analysis, in the outer estuary (stations 0, 1, 2 and 3) about 93% of the chlorophyll a (Chl a) could be explained by algae containing fucoxanthin and by algae containing Chl b, whereas in the rest of the estuary most of the Chl a (about 98%) was accounted for by fucoxanthin, Chl b and alloxanthin containing algae. The study period coincided with that of most active phytoplankton growth in the estuary and fucoxanthin was by far the dominant among those signature pigments. Several diatoms, chrysophytes, haptophytes and raphydophytes were responsible for fucoxanthin among identified species. Besides, dinoflagellates with a pigment pattern corresponding to chrysophytes and type 4 haptophytes were identified among fucoxanthin-bearing algae. Cryptophytes were the most abundant species among those containing alloxanthin. The maximum of Chl b registered at the seaward end in April coincided with a bloom of the prasinophytes Cymbomonas tetramitiformis, whereas the Chl b maxima in late spring and summer were accounted for by prasinophytes in the middle and outer estuary and by several species of chlorophytes in the middle and inner estuary. Other Chl b containing algae were euglenophytes and the dinoflagellate Peridinium chlorophorum. Dinoflagellates constituted generally a minor component of the phytoplankton.  相似文献   

2.
Hansen  U.  Schneiderheinze  J.  Rank  B. 《Photosynthetica》2002,40(3):369-374
Foliage of Scots pine (Pinus sylvestris L.) and pedunculate oak (Quercus robur L.) was collected in a mixed pine/oak forest at canopy positions differing in radiation environment. In both species, chlorophyll (Chl) a/b ratios were higher in foliage of canopy positions exposed to higher irradiance as compared to more shaded crown layers. Throughout the growing season, pine needles exhibited significantly lower Chl a/b ratios than oak leaves acclimated to a similar photon availability. Hence, pine needles showed shade-type pigment characteristics relative to foliage of oak. At a given radiation environment, pine needles tended to contain more neoxanthin and lutein per unit of Chl than oak leaves. The differences in pigment composition between foliage of pine and oak can be explained by a higher ratio of outer antennae Chl to core complex Chl in needles of P. sylvestris which enhances the efficiency of photon capture under limiting irradiance. The shade-type pigment composition of pine relative to oak foliage could have been due to a reduced mesophyll internal photon exposure of chloroplasts in needles of Scots pine, resulting from their xeromorphic anatomy. Hence, the higher drought tolerance of pine needles could be achieved at the expense of shade tolerance.  相似文献   

3.
The lipophilic photosynthetic pigments in Limnothrix redekei, Planktothrix agardhii (cyanobacteria), Stephanodiscus minutulus, Synedra acus (diatoms), Scenedesmus acuminatus, and Scenedesmus armatus (chlorophycean) all isolated from an eutrophic lake were quantitatively determined by HPLC. The algae were grown semi-continuously under nutrient sufficient conditions at 20°C at a 12/12 h light/dark cycle with constant irradiance or with simulated natural light fluctuations as well as at a 6/18 h light/dark cycle with constant irradiance, all at the same daily light exposure. The zeaxanthin and the myxoxanthophyll contents of cyanobacteria were not influenced by fluctuating light, a short photoperiod or a different sampling time. The chlorophyll b/a ratio, the lutein/chlorophyll a ratio, and the neoxanthin content of chlorophycean as well as the chlorophyll c/a and the fucoxanthin/chlorophyll a ratio of diatoms were only slightly influenced by these factors. Therefore in some cases marker pigment contents and in other cases marker pigment/chlorophyll a ratios may be more useful for quantifying the relative importance of different taxonomic groups in natural phytoplankton. Simulated natural light fluctuations or the length of the photoperiod only slightly influenced the pigment content or the marker pigment/chlorophyll a ratio.  相似文献   

4.
The maximum quantum yield of photosystem II was estimated from variable chlorophyll a fluorescence in samples of phytoplankton collected from the Taihu Lake in China to determine the responses of different phytoplankters to irradiance and vertical mixing. Meteorological and environmental variables were also monitored synchronously. The maximum quantum yield of three phytoplankton groups: cyanobacteria, chlorophytes, and diatoms/dinoflagellates, showed a similar diurnal change pattern. F v/F m decreased with a significant depth-dependent variation as irradiance increased during the morning and increased as irradiance declined in the afternoon. Furthermore, the rates of F v/F m depression were dependent upon the photon flux density, whereas the rates of recovery of F v/F m were dependent upon the historical photon density. Moreover, photoinhibition affected the instantaneous growth rates of phytoplankton. Although at noon cyanobacteria had a higher photoinhibition value (up to 41%) than chlorophytes (32%) and diatoms/dinoflagellates (34%) at the surface, no significant difference in diurnal growth rates among the three phytoplankton groups were observed indicating that cyanobacteria could photoacclimate better than chlorophytes and diatoms/dinoflagellates. In addition, cyanobacteria had a higher nonphotochemical quenching value than chlorophytes and diatoms/dinoflagellates at the surface at noon, which indicated that cyanobacteria were better at dissipating excess energy. The ratios of enclosed bottle samples F v/F m to free lake samples F v/F m showed different responses for the three phytoplankton groups to irradiance and vertical mixing when wind speed was approximately constant at about 3.0 m s−1. When wind speed was lower than 3.0 m s−1, cyanobacteria accumulated mainly at the surface and 0.3 m, because of their positive buoyancy, where diurnal growth rates of phytoplankton were relatively higher than those at 0.6 m and 0.9 m. Chlorophytes were homogenized completely by vertical mixing, while diatoms/dinoflagellates avoided active high irradiance by moving downward at noon, and then upward again when irradiance decreased. These results explain the dominance of cyanobacteria in Taihu Lake. Handling editor: L. Naselli-Flores  相似文献   

5.
Samples of the phytoplankton in a freshwater lake, Lake Liddell, New South Wales (Lat: 32° 22 S, Long. 150° 1 E) were collected every 4 weeks between October 1987 and November 1988. Chlorophyll a concentrations ranged from 1.8 g 1–1 to 9.1 g 1–1 and were positively correlated with the following nutrient parameters: total and nett mass additions of nitrate/nitrite-N and total-N, total additions of Kjeldahl-N, and nett mass addition N-P ratios. There was no correlation between lake nutrient concentrations and chlorophyll a. Factors other than nutrient concentrations appeared to be effecting chlorophyll a concentrations as summer levels were low despite nutrient concentrations being at a maximum. In spring and summer the phytoplankton was dominated by chlorophytes, with dinoflagellates and diatoms most abundant in autumn. During winter cyanobacteria were the most abundant. The relative abundance of chlorophytes was positively correlated with in lake nitrate/nitrite-N concentrations whereas the relative abundance of cyanobacteria was negatively correlated with this parameter. Based on chlorophyll a concentrations and the phytoplankton flora Lake Liddell can be classified as mesotrophic.  相似文献   

6.
Triton X-100, a detergent commonly used to solubilize higher plant thylakoid membranes, was found to be deleterious to Dunaliella LHC II. It disrupted the transfer of excitation energy from chlorophyll b to chlorophyll a. Based on analysis of pigments and immunoassays of LHC II apoproteins from sucrose density gradient fractions, Triton X-100 caused aggregation of the complex, but apparently did not remove chlorophyll b from the apoprotein. Following solubilization with Triton X-100 only CPI could be resolved by electrophoresis. In contrast, solubilization of Dunaliella thylakoids with octyl--D-glucopyranoside preserved energy transfer from chlorophyll b to chlorophyll a. This detergent also effectively prevented aggregation on sucrose gradients and preserved CPI oligomers, as well as LHCP1 and LHCP3 on non-denaturing gels. Solubilization with Deriphat gave similar results. We propose that room temperature fluorescence excitation and emission spectroscopy be used in conjunction with other biophysical and biochemical probes to establish the effects of detergents on the integrity of light harvesting chlorophyll protein complexes. Methods used here may be applicable to other chlorophytes which prove refractory to protocols developed for higher plants.Abbreviations LHC II light harvesting chlorophyll protein complex associated with photosystem II - LHCP1 and LHCP3 monomeric and oligomeric forms of LHC II, respectively, observed on non-denaturing gels - LiDS lithium dodecylsulphate - PMSF phenylmethylsulfonyl fluoride  相似文献   

7.
1. Pigment analysis by high‐performance liquid chromatography (HPLC) combined with data analysis using the CHEMTAX program has proven to be a fast and precise method for determining the abundance of phytoplankton groups in marine environments. To determine whether CHEMTAX is applicable also to freshwater phytoplankton, 20 different species of freshwater algae were cultured and their pigment/chlorophyll a (Chl a) ratios determined for exponential growth at three different light intensities and for stationary growth at one light intensity. 2. The different treatments had a relatively insignificant impact on the absolute values of the diagnostic pigment/Chl a ratios, with the exception of cyanobacteria and cryptophytes for which the zeaxanthin/Chl a and alloxanthin/Chl a ratios varied considerably. 3. The pigment ratios were tested on samples collected in six different eutrophic Danish lakes during two summer periods using the CHEMTAX program to calculate the biomass of the phytoplankton groups as Chl a. The CHEMTAX‐derived seasonal changes in Chl a biomass corresponded well with the volume of the microscopically determined phytoplankton groups. More phytoplankton groups were detected by the pigment method than by the microscopic method. 4. Applying the pigment ratios developed in this study, the pigment method can be used to determine the abundance of the individual phytoplankton groups, which are useful as biological water quality indicators when determining the ecological status of freshwater lakes.  相似文献   

8.
Carbon to chlorophyll a (C:Chl) ratios, assimilation numbers (A.N.) and turnover times of natural populations of individual species and taxonomic groups were extracted from a long-term database of phytoplankton wet-weight biomass, chlorophyll a concentrations, and primary production in Lake Kinneret, Israel. From a database spanning more than a decade, we selected data for samples dominated by a single species or taxonomic group. The overall average of C:Chl was highest for cyanophytes and lowest for diatoms, while chlorophytes and dinoflagellates showed intermediate values. When converting chlorophyll a to algal cellular carbon this variability should be taken into account. The variability in C:Chl within each phylum and species (when data were available) was high and the variability at any particular sampling date tended to be greater than the temporal variability. The average chlorophyll a-normalized rate of photosynthetic activity of cyanophytes was higher and that of the dinoflagellates lower than that of other phyla. Turnover time of phytoplankton, calculated using primary productivity data at the depth of maximal photosynthetic rate, was longest in dinoflagellates and shortest in cyanophytes, with diatoms and chlorophytes showing intermediate values. The more extreme C:Chl and turnover times of dinoflagellates and cyanobacteria in comparison with chlorophytes and diatoms should be taken into consideration when employed in ecological modeling.  相似文献   

9.
Litvaitis  M. K. 《Hydrobiologia》2002,468(1-3):135-145
Parsimony and neighbor-joining analyses of 16S rDNA nucleotide sequences of 68 species and strains of cyanobacteria and prochlorophytes supported a monophyletic Nostocales, a monophyletic Stigonematales, three independent lineages of prochlorophytes within the cyanobacteria, and a paraphyletic Chroococcales (p<0.0001) and Oscillatoriales (p = 0.0147). Within the Oscillatoriales, the genus Oscillatoria formed an unnatural taxon (p<0.0001) and needs major revisions. Using constraint analysis, the genus Microcystis was found to be monophyletic and the paraphyletic positions of Microcystis elabens and M. holsatica are probably due to long-branch attraction. Further, a separation of Chroococcales based on varying levels of polyunsaturated fatty acids is more consistent with nucleotide-based phylogenies than with existing morphological groupings. It is proposed that Chroococcales be redefined to exclude the genus Microcystis, and that a new order be erected for Microcystis. Finally, it is more parsimonious to assume a common cyanobacterial/prochlorophyte ancestor, than to evoke de novo synthesis of chlb in each prochlorophyte lineage plus in the lineage leading to green chloroplasts. This common ancestor is proposed to have contained both chlorophyll a and b plus phycobilins. Subsequent multiple losses of chlb in cyanobacteria and the loss of chla and phycobilins in prochlorophytes, led to the currently observed pigment distribution. It is therefore, recommended that Prochlorales be reclassified as cyanobacteria.  相似文献   

10.
The utility of absorbance and fluorescence-emission spectra for discriminating among microalgal phylogenetic groups, selected species, and phycobilin- and non-phycobilin-containing algae was examined using laboratory cultures. A similarity index algorithm, in conjunction with fourth-derivative transformation of absorbance spectra, provided discrimination among the chlorophyll [Chl] a/phycobilin (cyanobacteria), Chl a/Chl c/phycobilin (cryptophytes), Chl a/Chl b (chlorophytes, euglenophytes, prasinophytes), Chl a/Chl c/fucoxanthin (diatoms, chrysophytes, raphidophytes) and Chl a/Chl c/peridinin (dinoflagellates) spectral classes, and often between}among closely related phylogenetic groups within a class. Spectra for phylogenetic groups within the Chl a/Chl c/fucoxanthin, Chl a/Chl c/peridinin, Chl a/phycobilins and Chl a/Chl c/phycobilin classes were most distinguishable from spectra for groups within the Chl a/Chl b spectral class. Chrysophytes/diatoms/raphidophytes and dinoflagellates (groups within the comparable spectral classes, Chl a/Chl c/fucoxanthin and Chl a/Chl c/peridinin, respectively) displayed the greatest similarity between/among groups. Spectra for phylogenetic groups within the Chl a/Chl c classes displayed limited similarity with spectra for groups within the Chl/phycobilin classes. Among the cyanobacteria and chlorophytes surveyed, absorbance spectra of species possessing dissimilar cell morphologies were discriminated, with the greatest range of differentiation occurring among cyanobacteria. Among the cyanobacteria, spectra for selected problematic species were easily discriminated from spectra from each other and from other cyanobacteria. Fluorescence-emission spectra were distinct among spectral classes and the similarity comparisons involving fourth-derivative transformation of spectra discriminated the increasing contribution of distinct cyanobacterial species and between phycobilin- and non-phycobilin-containing species within a hypothetical mixed assemblage. These results were used to elucidate the application for in situ moored instrumentation incorporating such approaches in water quality monitoring programmes, particularly those targeting problematic cyanobacterial blooms.  相似文献   

11.
Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithified stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, β-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll zeaxanthin, echinenone, β-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a with in the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids: chlorophyll a ratios (0.84–2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.  相似文献   

12.
Iron is an important factor in algal blooms because it is involved in cyanobacterial pigment biosynthesis and therefore has the ability to influence the pigment status of algal cells. This role in pigment biosynthesis offers the opportunity for rapid monitoring of iron availability to cyanobacteria through spectral reflectance characterization. In the present study, the freshwater cyanobacterium Microcystis viridis was cultured with different levels of iron. Cell density, cellular content of iron and photosynthetic pigments, and spectral reflectivity of M. viridis were determined daily during the course of the culture experiment. The results showed that at the lowest iron concentration (0.01 μM) the growth of M. viridis was seriously limited, and the maximal cell density was only approximately 6.4% of the density observed with an iron concentration of 18 μM. Iron availability dramatically affected chlorophyll a, carotenoid and phycocyanin content, with the greatest impact on chlorophyll a. The iron‐induced changes in content and ratios of pigments were detectable through spectral reflectance. Eleven spectral indices previously developed for the estimation of concentrations and/or ratios of pigments and a newly proposed chlorophyll a/phycocyanin index were found to be suitable for generating sensitive regression models between cellular iron content and spectral parameters. The comprehensive application of key sensitive spectral indices and regression equations should help to support monitoring and diagnosis of iron availability to cyanobacteria via remote sensing.  相似文献   

13.
Nagata N  Satoh S  Tanaka R  Tanaka A 《Planta》2004,218(6):1019-1025
Chlorophyll b is a photosynthetic antenna pigment found in prochlorophytes and chlorophytes. In chlorophytes, its biosynthesis regulates the photosynthetic antenna size. Chlorophyll b is synthesized from chlorophyll a in a two-step oxygenation reaction by chlorophyllide a oxygenase (CAO). In this study, we first identified the entire sequence of a prochlorophyte CAO gene from Prochlorothrix hollandica to compare it with those from chlorophytes, and we examined the catalytic activity of the gene product. Southern blot analysis showed that the CAO gene is presented in one copy in the P. hollandica genome. The P. hollandica CAO gene (PhCAO) has a coding capacity for 367 amino acids, which is much smaller than that of Arabidopsis thaliana (537 amino acids) and Oryza sativa (542 amino acids) CAO genes. In spite of the small size, PhCAO catalyzed the formation of chlorophyll b. By comparing these sequences, we classified the land-plant sequences into four parts: the N-terminal sequence predicted to be a transit peptide, the successive conserved sequence unique in land plants (A-domain, 134 amino acids), a less-conserved sequence (B-domain, 30 amino acids) and the C-terminal conserved sequence common in chlorophytes and prochlorophytes (C-domain, 337 to 344 amino acids). We demonstrated that the C-domain is sufficient for catalytic activity by transforming the cyanobacterium Synechocystis sp. PCC6803 with the C-domain from A. thaliana. In this paper, the role of the A-domain is discussed in relation to the formation of light-harvesting chlorophyll a/b–protein complexes in land plants.Abbreviations CAO Chlorophyllide a oxygenase - CP Chlorophyll protein - HPLC High-performance liquid chromatography - LHC Light-harvesting complex - PCR Polymerase chain reaction - PS Photosystem  相似文献   

14.
In this work we assessed spatial and temporal variation of leaf pigment content of Clusia hilariana, a dominant CAM tree on the sandy coastal plains of SE Brazil. Chlorophyll a + b concentration, chlorophyll a/b ratio, and total carotenoid concentration were measured three times during the wet season. Chlorophyll a + b and total carotenoids decreased while the chlorophyll a/b ratio increased after a series of dry spells. We discuss our results in the context of Clusia literature, and argue that leaf-level pigmentation changes are an important source of phenotypic flexibility during acclimation to fluctuating light levels and groundwater availability.  相似文献   

15.
Recruitment of total phytoplankton, chlorophytes and cyanobacteria from lake sediments to the water column was studied using photosynthetic pigments at one site (1.5 m) in Lake Taihu, a large shallow lake in China. Samples were taken weekly from the migration traps installed on the bottom from March to May 2004. Abundance of total phytoplankton, chlorophytes and cyanobacteria were represented by Chlorophyll (Chl) a, b, and phycocyanin (PC), respectively. Over the three months, total phytoplankton, chlorophytes, and cyanobacteria corresponding to 48.9%, 68.9% and 316.2% of their initial concentrations in surface sediments were recruited in Lake Taihu. However, compared with their increase in pelagic abundance over the same period, the recruitment accounted for a rather small inoculum. Accompanying the recruitment, total phytoplankton and chlorophytes declined and cyanobacteria increased in the upper 0–2 cm sediments; colonies of Microcystis aeruginosa in the water column enlarged from small size with several cells to large colonies with hundreds of cells. Thus, overwintering and subsequent growth renewal of pelagic phytoplankton merits further study and comparison with benthic survival and recruitment. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Phytoplankton pigments and community composition in Lake Tanganyika   总被引:3,自引:0,他引:3  
1. A 2‐year (2002–2003) survey of chlorophyll and carotenoid pigments is reported for two off‐shore stations of Lake Tanganyika, Kigoma (Tanzania) and Mpulungu (Zambia), and from three cruises between those sites. Chlorophyll a concentrations were low (0.3–3.4 mg m?3) and average chlorophyll a integrated through the 100 m water column were similar for both stations and years (36.4–41.3 mg m?2). Most pigments were located in the 0–60 m layer and decreased sharply downward. Chlorophyll a degradation products (phaeophytins and phaeophorbides) were detected at 100 m depth, whereas carotenoids became undetectable. Temporal and seasonal variation of the vertical distribution of pigments was high. 2. The biomass of phytoplankton groups was calculated from marker pigment concentrations over the 0–100 m water column using the CHEMTAX software. On average for the study period, chlorophytes dominated in the northern station, followed by cyanobacteria T1 (type 1, or Synechococcus pigment type), whereas cyanobacteria T1 dominated in the south. Cyanobacteria T2 (type 2, containing echinenone), presumably corresponding to filamentous taxa, were detected in the rainy season. Diatoms (and chrysophytes) developed better in the dry season conditions, with a deep mixed layer and increased nutrient availability. Very large variation in the vertical distribution of algal groups was observed. 3. Our observations on phytoplankton composition are broadly consistent with those from previous studies. Our pigment data provide evidence for the lake‐wide importance of picocyanobacteria and high interannual variation and spatial heterogeneity of phytoplankton in Lake Tanganyika, which may render difficult assessment of long‐term changes in phytoplankton driven by climate change.  相似文献   

17.
Light-harvesting Chl a/b protein complexes were isolated from the higher plant Sinapis alba, the green alga Chlorella fusca, and the prasinophycean alga Mantoniella squamata by mild gel electrophoresis. The energy transfer from chlorophyll b and the accessory xanthophyll was measured by means of fluoresence spectroscopy at 77 K. The pigment composition of the isolated antenna complexes was determined by high performance liquid chromatography in order to calculate the number of light absorbing molecules per chlorophyll a in the different light-harvesting complexes. These results were complemented by the quantitation of the pigments in total thylakoids as well as in the different electrophoretic fractions. On the basis of these data the in vivo ratios of xanthophylls per chlorophyll a could be estimated. The results show that the light-harvesting complexes from Chlorella and from Sinapis exhibit identical ratios of total xanthophylls per chlorophyll a. By contrast, in the prasinophycean alga Mantoniella, the light-harvesting complex markedly differs from the other chlorophyll b containing proteins. It contains, in addition to neoxanthin and violaxanthin, high amounts of prasinoxanthin and its epoxide, which contribute significantly to light absorption. The concentration of chlorophyll b in the complex is very much higher in the antenna of Mantoniella than in those of Chlorella and Sinapis. Furthermore, it must be emphasized that in addition to chlorophyll b, a third chlorophyll species acts in the energy transfer to chlorophyll a. This chlorophyll c-like pigment is found to be present in a concentration which improves very efficiently the absorption in blue light. In light of these results it can be concluded that the absorption cross section in Mantoniella is higher not only because of an enhanced number of light-harvesting particles in the membrane, but also because of a higher ratio of accessory pigments to chlorophyll a.Abbreviations Chl Chlorophyll - FP Free Pigments - HPLC High Performance Liquid Chromatography - LHC Light-harvesting Chlorophyll protein complex - PAGE Polyacrylamide Gel Electrophoresis - PS Photosystem  相似文献   

18.
Pigment-based chemotaxonomy and CHEMTAX software have proven to be a valuable phytoplankton monitoring tool in marine environments, but are yet underdeveloped to determine algal assemblages in freshwater ecosystems. The main objectives of this study were (1) to compare the results of direct microscopy and CHEMTAX in describing phytoplankton community composition dynamics in a large, shallow and eutrophic lake; (2) to analyze the efficiency of the pigment-based method to detect changes in phytoplankton seasonal dynamics and during rapid bloom periods; (3) to assess the suitability of specific marker pigments and available marker pigment:chlorophyll a ratios to follow seasonal changes in eutrophic freshwater environment. A 5-year (2009-2013) parallel phytoplankton assessment by direct microscopy and by CHEMTAX was conducted using published marker pigment:chlorophyll a ratios. Despite displaying some differences from microscopy results, the pigment-based method successfully described the overall pattern of phytoplankton community dynamics during seasonal cycle in a eutrophic lake. Good agreement between the methods was achieved for most phytoplankton groups - cyanobacteria, chlorophytes, diatoms and cryptophytes. The agreement was poor in case of chrysophytes and dinoflagellates. Our study shows clearly that published marker pigment:chlorophyll a ratios can be used to describe algal class abundances, but they need to be calibrated for specific freshwater environment. Broader use of this method would enable to expand monitoring networks and increase measurement frequencies of freshwater ecosystems to meet the goals of the Water Framework Directive.  相似文献   

19.
Over the last half century, the most frequently used assay for chlorophylls in higher plants and green algae, the Arnon assay [Arnon DI (1949) Plant Physiol 24: 1–15], employed simultaneous equations for determining the concentrations of chlorophylls a and b in aqueous 80% acetone extracts of chlorophyllous plant and algal materials. These equations, however, were developed using extinction coefficients for chlorophylls a and b derived from early inaccurate spectrophotometric data. Thus, Arnon's equations give inaccurate chlorophyll a and b determinations and, therefore, inaccurate chlorophyll a/b ratios, which are always low. This paper describes how the ratios are increasingly and alarmingly low as the proportion of chlorophyll a increases. Accurate extinction coefficients for chlorophylls a and b, and the more reliable simultaneous equations derived from them, have been published subsequently by many research groups; these new post-Arnon equations, however, have been ignored by many researchers. This Minireview records the history of the development of accurate simultaneous equations and some difficulties and anomalies arising from the retention of Arnon's seriously flawed equations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary High Performance Liquid Chromatography analysis of algal pigments from inter- and subtidal (deep and shallow) sediments from the Kerguelen Islands showed clear differences in the pigment composition at the different stations. High concentrations of chlorophyll c and fucoxanthin were present at all locations, indicating significant diatom densities, chlorophyll b was detected at all sites. At one station the other green algal pigments were also present; here green algae contributed more to chlorophyll a concentrations than diatoms, as estimated by using pigment ratios and microscopic observations. At another location chlorophyll b was associated with a high concentration of diadinoxanthin, indicating an abundance of euglenoids. This indicates that chemotaxonomy can be powerful tool in microphytobenthos studies since enumeration of living cells are difficult as many algae are attached to sediment particles (epipsammic algae). Ways of diagenesis, carotenoid degradation and the role of grazing are briefly mentioned. Phaeophorbide a-like pigments were the most significant chlorophyll a degradation products, with concentrations up to 110 g · g–1 dry weight sediment, i.e. 10 times the chlorophyll a concentration. Some taxonomic estimations, based on pigments ratios, and their limits, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号