首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In a recent paper by D. R. Bellwood and C. P. Meyer ('Searching for heat in a marine biodiversity hotspot', Journal of Biogeography , 2009, 36 , 569–576), the authors had two evident objectives: (1) to disprove the theory that the geographical origins of reef organisms could be determined by locating concentrations of endemic species, and (2) to emphasize that the high diversity of the Coral Triangle was due to an accumulation of species from outside that area. With regard to the first point, no such theory had previously been proposed to my knowledge. Second, the accumulation theory was promoted without consideration of the facts supporting the centre of origin hypothesis, except to dismiss it by saying that it had its origin in pre-continental drift ideas. This short response outlines the properties and evidence for the operation of centres of origin in this region.  相似文献   

2.
Repeated exposure and flooding of the Sunda and Sahul shelves during Pleistocene sea‐level fluctuations is thought to have contributed to the isolation and diversification of sea‐basin populations within the Coral Triangle. This hypothesis has been tested in numerous phylogeographical studies, recovering an assortment of genetic patterns that the authors have generally attributed to differences in larval dispersal capability or adult habitat specificity. This study compares phylogeographical patterns from mitochondrial COI sequences among two co‐distributed seastars that differ in their adult habitat and dispersal ability, and two seastar ectosymbionts that differ in their degree of host specificity. Of these, only the seastar Linckia laevigata displayed a classical pattern of Indian‐Pacific divergence, but with only moderate genetic structure (ΦCT = 0.067). In contrast, the seastar Protoreaster nodosus exhibited strong structure (ΦCT = 0.23) between Teluk Cenderawasih and the remainder of Indonesia, a pattern of regional structure that was echoed in L. laevigataCT = 0.03) as well as its obligate gastropod parasite Thyca crystallinaCT = 0.04). The generalist commensal shrimp, Periclimenes soror showed little genetic structuring across the Coral Triangle. Despite species‐specific phylogeographical patterns, all four species showed departures from neutrality that are consistent with massive range expansions onto the continental shelves as the sea levels rose, and that date within the Pleistocene epoch. Our results suggest that habitat differences may affect the manner in which species responded to Pleistocene sea‐level fluctuations, shaping contemporary patterns of genetic structure and diversity.  相似文献   

3.
4.
5.
6.
7.
8.
The Indo‐Malay‐Philippine (IMP) biodiversity hotspot, bounded by the Philippines, the Malay Peninsula and New Guinea, is the epicentre of marine biodiversity. Hypotheses to explain the source of the incredible number of species found there include the centre of overlap hypothesis, which proposes that in this region the distinct faunas of the Pacific and Indian Oceans overlap. Here we review the biogeographical evidence in support of this hypothesis. We examined tropical reef fish distributions, paying particular attention to sister species pairs that overlap in the IMP hotspot. We also review phylogeographical studies of wide‐ranging species for evidence of lineage divergence and overlap in the IMP region. Our synthesis shows that a pattern of isolation between the Pacific and the Indian Ocean faunas is evident across a wide range of taxa. The occurrence of sister species, with one member in each ocean, indicates that the mechanism(s) of isolation has been in effect since at least the Miocene, while phylogeographical studies indicate more recent divergences in the Pleistocene. Divergence in isolation followed by population expansion has led to an overlap of closely related taxa or genetic lineages in the hotspot, contributing to diversity and species richness in the region. These findings are consistent with the centre of overlap hypothesis and highlight the importance of this process in generating biodiversity within the IMP.  相似文献   

9.
This study investigates the genetic structure and phylogeography of a broadcast spawning bivalve mollusc, Pinctada maxima, throughout the Indo‐West Pacific and northern Australia. DNA sequence variation of the mitochondrial cytochrome oxidase subunit I (COI) gene was analysed in 367 individuals sampled from nine populations across the Indo‐West Pacific. Hierarchical AMOVA indicated strong genetic structuring amongst populations (ΦST = 0.372, P < 0.001); however, sequence divergence between the 47 haplotypes detected was low (maximum 1.8% difference) and no deep phylogenetic divergence was observed. Results suggest the presence of genetic barriers isolating populations of the South China Sea and central Indonesian regions, which, in turn, show patterns of historical separation from northern Australian regions. In P. maxima, historical vicariance during Pleistocene low sea levels is likely to have restricted planktonic larval transport, causing genetic differentiation amongst populations. However, low genetic differentiation is observed where strong ocean currents are present and is most likely due to contemporary larval transport along these pathways. Geographical association with haplotype distributions may indicate signs of early lineage sorting arising from historical population separations, yet an absence of divergent phylogenetic clades related to geography could be the consequence of periodic pulses of high genetic exchange. We compare our results with previous microsatellite DNA analysis of these P. maxima populations, and discuss implications for future conservation management of this species. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 632–646.  相似文献   

10.
11.
The geographical pattern of speciation and the relationship between floral variation and species ranges were investigated in the tribe Sinningieae (Gesneriaceae), which is found mainly in the Atlantic forests of Brazil. Geographical distribution data recorded on a grid system of 0.5 x 0.5 degree intervals and a near-complete species-level phylogenetic tree of Sinningieae inferred from a simultaneous analysis of seven DNA regions were used to address the role of geographical isolation in speciation. Geographical range overlaps between sister lineages were measured across all nodes in the phylogenetic tree and analyzed in relation to relative ages estimated from branch lengths. Although there are several cases of species sympatry in Sinningieae, patterns of sympatry between sister taxa support the predominance of allopatric speciation. The pattern of sympatry between sister taxa is consistent with range shifts following allopatric speciation, except in one clade, in which the overlapping distribution of recent sister species indicates speciation within a restricted geographical area and involving changes in pollinators and habitats. The relationship between floral divergence and regional sympatry was also examined by analyzing floral contrasts, phenological overlap, and the degree of sympatry between sister clades. Morphological contrast between flowers is not increased in sympatry and phenological divergence is more apparent between allopatric clades than between sympatric clades. Therefore, our results failed to indicate a tendency for sympatric taxa to minimize morphological and phenological overlap (geographic exclusion and/or character displacement hypotheses). Instead, they point toward adaptation in phenology to local conditions and buildup of sympatries at random with respect to flower morphology. Additional studies at a lower geographical scale are needed to identify truely coexisting species and the components of their reproductive isolation.  相似文献   

12.
In a recent paper (Bellwood & Meyer, Journal of Biogeography , 2009, 36 , 569–576), we critically evaluated the utility of marine endemics for marking the geographical origins of species. In reply, Briggs (2009) identified two issues that needed clarification: (1) whether endemics are assumed to mark the geographical origins of species or areas of exceptionally high rates of origination, and (2) whether our evaluation of the role of endemics disproves the centre of origin hypothesis. Of these two issues, the first can be clearly resolved by recourse to the original literature that explicitly states that it has been assumed that endemics do indeed mark the probable sites of origin of species. The second is equally clear: our evidence does not and can not disprove the centre of origin theory. We suggest, however, that the current data, and endemics in particular, provide limited support for centre of origin theories and that they are more consistent with some centre of accumulation theories. The Indo-Australian Archipelago (IAA; Coral Triangle) therefore appears to be an area where species persist, a centre of survival, regardless of the site of origin of species.  相似文献   

13.
The Indo‐Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove biotope. Cerithidea is a genus of marine and brackish‐water snails restricted to mangrove habitats in the Indo‐West Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation may have been driven by isolation during low sea‐level stands, during episodes preceding the Plio‐Pleistocene glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to part of Wallace's Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society © 2013 The Linnean Society of London, 2013, 110 , 564–580.  相似文献   

14.
15.
The littorine genus Bembicium , restricted to Australia and Lord Howe and Norfolk Islands, provides special opportunities to examine the effects of contrasting modes of development on genetic divergence over large spatial and temporal scales. Two species, Bembicium auratum and Bembicium nanum , have planktotrophic larvae, and large, overlapping geographical distributions, whereas the three direct developers, Bembicium vittatum , Bembicium melanostoma , and Bembicium flavescens , are geographical replacements. Phylogenetic analysis of genetic distances at 28 allozyme loci supported the current taxonomic treatment of the genus and monophyly of the direct developers. Both individually and as a clade, the direct developers showed substantially greater divergence than the species with planktotrophic larvae. Controlling for geographical distance and for particular sections of coastline, genetic subdivision within the direct developers was shown to be much higher than in the planktotrophs. Low levels of subdivision in B. auratum and B. nanum over distances of 4000–6800 km indicate maintenance of substantial genetic connectivity, independent of habitat and biogeographical history. By contrast, the direct developers show clear genetic impacts of their geographical histories. Despite extreme genetic subdivision within species, the direct developers B. vittatum and B. melanostoma have geographically coherent and complementary distributions, associated with biogeographical provinces. Thus, speciation appears to be driven by special biogeographical circumstances, rather than simply by genetic divergence of locally isolated populations.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 689–704.  相似文献   

16.
To enhance the understanding of larval dispersal in marine organisms, species with a sedentary adult stage and a pelagic larval phase of known duration constitute ideal candidates, because inferences can be made about the role of larval dispersal in population connectivity. Members of the immensely diverse marine fauna of the Indo‐Malay Archipelago are of particular importance in this respect, as biodiversity conservation is becoming a large concern in this region. In this study, the genetic population structure of the pink anemonefish, Amphiprion perideraion, is analyzed by applying 10 microsatellite loci as well as sequences of the mitochondrial control region to also allow for a direct comparison of marker‐derived results. Both marker systems detected a strong overall genetic structure (ΦST = 0.096, P < 0.0001; mean Dest = 0.17; FST = 0.015, P < 0.0001) and best supported regional groupings (ΦCT = 0.199 < 0.0001; FCT = 0.018, < 0.001) that suggested a differentiation of the Java Sea population from the rest of the archipelago. Differentiation of a New Guinea group was confirmed by both markers, but disagreed over the affinity of populations from west New Guinea. Mitochondrial data suggest higher connectivity among populations with fewer signals of regional substructure than microsatellite data. Considering the homogenizing effect of only a few migrants per generation on genetic differentiation between populations, marker‐specific results have important implications for conservation efforts concerning this and similar species.  相似文献   

17.
Rull V 《Molecular ecology》2008,17(11):2722-2729
The evolutionary origin of extant species in the Neotropics, one of the most biodiverse regions of the world, has been widely debated. One hypothesis is that neotropical species emerged primarily during the Quaternary (the last ~2 million years), favoured by alternating glacial/interglacial climates. An opposite view proposes an older Tertiary origin linked primarily to palaeogeographical changes. Here, a thorough review of the available literature on DNA molecular dating shows that the Tertiary–Quaternary debate no longer makes sense. Indeed, the > 1400 neotropical species whose origin has been dated have appeared in a continual fashion since the late Eocene/early Oligocene (~39 million years before present) to the Quaternary. Palaeogeographical mechanisms of speciation are relatively well accepted, but diversification processes linked to climate are still controversial. These results are important to unravel both the origin of present-day biodiversity patterns at both local and global scales and the genetic and environmental mechanisms involved, which are two crucial aspects for suitable biodiversity conservation strategies.  相似文献   

18.
19.
Comparative phylogeographical studies in island archipelagos can reveal lineage-specific differential responses to the geological and climatic history. We analysed patterns of genetic diversity in six codistributed lineages of darkling beetles (Tenebrionidae) in the central Aegean archipelago which differ in wing development and habitat preferences. A total of 600 specimens from 30 islands and eight adjacent mainland regions were sequenced for mitochondrial cytochrome oxidase I and nuclear Muscular protein 20. Individual gene genealogies were assessed for the presence of groups that obey an independent coalescent process using a mixed Yule coalescent model. The six focal taxa differed greatly in the number of coalescent groups and depth of lineage subdivision, which was closely mirrored by the degree of geographical structuring. The most severe subdivision at both mitochondrial DNA and nuclear DNA level was found in flightless lineages associated with presumed stable compact-soil habitats (phrygana, maquis), in contrast to sand-obligate lineages inhabiting ephemeral coastal areas that displayed greater homogeneity across the archipelago. A winged lineage, although associated with stable habitats, showed no significant phylogenetic or geographical structuring. Patterns of nucleotide diversity and local genetic differentiation, as measured using ΦST and hierarchical amova , were consistent with high levels of ongoing gene flow in the winged taxon; frequent local extinction and island recolonisation for flightless sand-obligate taxa; and very low gene flow and geographical structure largely defined by the palaeogeographical history of the region in flightless compact-soil taxa. These results show that differences in dispersal rate, mediated by habitat persistence, greatly influence the levels of phylogeographical subdivision in lineages that are otherwise subjected to the same geological events and palaeoclimatic changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号