首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Henrich  H M Piper  J Schrader 《Life sciences》1987,41(21):2381-2388
Isolated metabolically stable cardiomyocytes from adult rats and mongrel dogs were used to characterize the mechanism underlying the antiadrenergic effect of adenosine. In a system not affected by cellular heterogeneity, isoproterenol (3 x 10(-9) M - 10(-5) M) in the presence of adenosine deaminase (5U/ml) dose dependently increased cellular cAMP (5-80 pmol/mg). The effect of isoproterenol (0.1 microM) was inhibited by various adenosine derivatives, the rank order of potency being in the rat: (-)-N6-(R-phenyl-isopropyl)-adenosine (R-PIA) greater than 5'-N-ethylcarboxamidoadenosine (NECA) greater than S-PIA, and in the dog NECA greater than R-PIA greater than S-PIA. The cAMP increase induced by forskolin (1 microM) was attenuated in the rat by R-PIA. 8-phenyltheophylline (3 microM) antagonized the effect of R-PIA on isoproterenol-stimulated cAMP formation. Basal cAMP content was not influenced by R-PIA or NECA. Omission of adenosine deaminase from the incubation medium attenuated the isoproterenol-induced cAMP increase in the rat by about 30%. Our findings provide evidence for the presence of adenylate cyclase-coupled A1-adenosine receptors on cardiomyocytes which may mediate the antiadrenergic effect of adenosine in the heart.  相似文献   

2.
Estrogen replacement therapy reduces risk of cardiovascular events by altering coronary vasoregulation and distribution of blood flow. Vessel reactivity and blood flow distribution were assessed in anesthetized female rabbits in the following groups: 1) sham, 2) ovariectomy, 3) ovariectomy + 17beta-estradiol, and 4) ovariectomy + dehydroepiandrosterone. After a 2-wk treatment, cardiac hemodynamics, vascular reserve, and blood flow were evaluated during the following infusions: 1) NaCl, or vehicle (0.5 ml/min), 2) acetylcholine (2 mg/kg), 3) isoproterenol (2 mg. kg(-1). min(-1)), and 4) chromonar (8 mg/kg). In hearts from ovariectomized rabbits, autoregulatory blood flow was preserved despite lower diastolic perfusion pressures (55 +/- 8 vs. 64 +/- 8 mmHg in sham) and rate-pressure product (14.4 +/- 0.8 vs. 19.3 +/- 0.8 beats/min. mmHg x 10(-3)). Estrogen replacement therapy restored coronary pressure and reserve, and all drugs increased vascular conductance. In conclusion, in hearts from ovariectomized rabbits, vascular reserve declined because coronary pressure was lower; however, blood flow was preserved at a higher level than expected for oxygen demand. Estrogen replacement therapy restores myocardial oxygen supply-demand indices and returns coronary pressure-flow data to levels observed in animals with intact ovaries.  相似文献   

3.
To investigate whether nandrolone decanoate (ND)-pretreatment can modulate (1) beta-adrenoceptor expression and (2) myocardial contractility in response to beta-adrenoceptors stimulation with isoproterenol (ISO), in hearts of both normal and stressed rats. Rats were treated with 15 mg/(kgday) of Deca-Durabolin (ND, 1 ml i.m.) or with vehicle (oil) for 14 days. The day after the last injection, the dose-response to ISO (1 x 10(-8), 5 x 10(-8) and 10(-7)M), was studied in isolated rat hearts harvested from unstressed animals (unstressed+vehicle (control) or unstressed+ND) or from stressed animals (stressed+vehicle or stressed+ND): acute stress protocol consisted in restrain for 1h immediately before sacrifice. ND-pretreatment increased beta(2)-adrenoceptor expression. In baseline conditions all hearts had a similar left ventricular developed pressure (LVDP) and maximum rate of increase of LVDP (dP/dt(max)). In hearts of unstressed+vehicle or unstressed+ND, ISO caused a similar increase in LVDP (+90-100%) and dP/dt(max) (+120-150%). However, hearts of stressed+vehicle animals showed a marked depression of inotropic response to ISO (i.e. for ISO 1 x 10(-8),-55% in LVDP response versus unstressed). Yet, in hearts of stressed+ND-animals the effect of stress was reversed, showing the highest response to ISO (i.e. for ISO 1 x 10(-7), +30% LVDP response versus unstressed). The ND-induced beta(2)-adrenoceptor overexpression does not affect ISO-response in unstressed animals. However, acute stress induces a down-regulation of ISO-response, which is reversed by ND-pretreatment. Since the physiological post-stress down-regulation of adrenergic-response is absent after nandrolone treatment, the heart may be exposed to a sympathetic over-stimulation. This might represent a risk for cardiovascular incidents in anabolic steroid addicts under stressing conditions.  相似文献   

4.
The role of ATP-sensitive K(+) (K(ATP)(+)) channels, nitric oxide, and adenosine in coronary exercise hyperemia was investigated. Dogs (n = 10) were chronically instrumented with catheters in the aorta and coronary sinus and instrumented with a flow transducer on the circumflex coronary artery. Cardiac interstitial adenosine concentration was estimated from arterial and coronary venous plasma concentrations using a previously tested mathematical model. Experiments were conducted at rest and during graded treadmill exercise with and without combined inhibition of K(ATP)(+) channels (glibenclamide, 1 mg/kg iv), nitric oxide synthesis (N(omega)-nitro-L-arginine, 35 mg/kg iv), and adenosine receptors (8-phenyltheophylline, 3 mg/kg iv). During control exercise, myocardial oxygen consumption increased ~2.9-fold, coronary blood flow increased ~2.6-fold, and coronary venous oxygen tension decreased from 19.9 +/- 0.4 to 13.7 +/- 0.6 mmHg. Triple blockade did not significantly change the myocardial oxygen consumption or coronary blood flow response during exercise but lowered the resting coronary venous oxygen tension to 10.0 +/- 0.4 mmHg and during exercise to 6.2 +/- 0.5 mmHg. Cardiac adenosine levels did not increase sufficiently to overcome the adenosine receptor blockade. These results indicate that combined inhibition of K(ATP)(+) channels, nitric oxide synthesis, and adenosine receptors lowers the balance between total oxygen supply and consumption at rest but that these factors are not required for local metabolic coronary vasodilation during exercise.  相似文献   

5.
M A Simón  C Calle 《Life sciences》1987,41(21):2411-2417
Beta-adrenergic receptors have been purported to act as possible mediators in the lipolytic effect of somatostatin in vivo. Investigations with isolated rat adipocytes studying the lipolytic activity of somatostatin (1.7 x 10(-7) M), glucagon (8.1 x 10(-8 M) and norepinephrine (10(-6) M), have shown that the lipolytic effect stimulated by somatostatin is not altered by 10(-5) M propranolol (beta-antagonist); is significantly enhanced by 10(-5) M isoproterenol (beta-agonist) and is not altered by the addition of 10(-6) M phenoxybenzamine (alpha-antagonist) or 10(-6) M phenylephrine (alpha-agonist). Similar results were found when lipolysis was stimulated by glucagon, whereas the lipolytic effect stimulated by norepinephrine was blocked by propranolol. These results indicate that the direct lipolytic effect of somatostatin on isolated rat adipocytes does not seem to be mediated through mechanisms involved with adrenergic receptors.  相似文献   

6.
The purpose of this study was to determine whether the protective effects of adenosine on myocardial ischemia-reperfusion injury are altered with age, and if so, to clarify the mechanisms that underlie this change related to nitric oxide (NO) derived from the vascular endothelium. Isolated perfused rat hearts were exposed to 30 min of ischemia and 60 min of reperfusion. In the adult hearts, administration of adenosine (5 micromol/l) stimulated NO release (1. 06 +/- 0.19 nmol. min(-1). g(-1), P < 0.01 vs. vehicle), increased coronary flow, improved cardiac functional recovery (left ventricular developed pressure 79 +/- 3.8 vs. 57 +/- 3.1 mmHg in vehicle, P < 0.001; maximal rate of left ventricular pressure development 2,385 +/- 103 vs. 1,780 +/- 96 in vehicle, P < 0.001), and reduced myocardial creatine kinase loss (95 +/- 3.9 vs. 159 +/- 4.6 U/100 mg protein, P < 0.01). In aged hearts, adenosine-stimulated NO release was markedly reduced (+0.42 +/- 0.12 nmol. min(-1). g(-1) vs. vehicle), and the cardioprotective effects of adenosine were also attenuated. Inhibition of NO production in the adult hearts significantly decreased the cardioprotective effects of adenosine, whereas supplementation of NO in the aged hearts significantly enhanced the cardioprotective effects of adenosine. The results show that the protective effects of adenosine on myocardial ischemia-reperfusion injury are markedly diminished in aged animals, and that the loss in NO release in response to adenosine may be at least partially responsible for this age-related alteration.  相似文献   

7.
Pressure-flow autoregulation of the intact superior mesenteric artery (SMA) was demonstrated in the fasted, pentobarbital-anesthetized cat by use of a micrometer-controlled screw clamp to produce progressive decreases in vascular pressure. Administration (ia) of bolus doses of 8-phenyltheophylline (8-PT) were followed by infusion of adenosine to verify adenosine antagonism. 8-PT doses were progressively doubled until adenosine responses were blocked. If higher doses of 8-PT were used, SMA flow declined to very low levels and autoregulatory curves could not be obtained. Comparison of vasodilator responses to isoproterenol and adenosine before and after adenosine receptor blockade verified that, whereas adenosine responses were blocked, isoproterenol effects were not altered. The autoregulation was quantitated using three methods (the autoregulatory index, the percent decrease in vascular resistance, and the slope index) as blood pressure was reduced from a standardized control pressure of 110 mmHg (1 mmHg = 133.3 Pa). Maximal vasodilation appeared at a blood pressure of 56 +/- 5 mmHg (range 34-70). 8-PT resulted in dose-related antagonism of the dilator response to exogenous adenosine and autoregulation. All indices of autoregulation were significantly reduced by 8-PT. The data are compatible with the hypothesis that pressure-flow autoregulation in the SMA is not myogenic (responding to altered transmural pressure) but is dependent upon local concentrations of adenosine.  相似文献   

8.
We hypothesized that low-pressure reperfusion may limit myocardial necrosis and attenuate postischemic contractile dysfunction by inhibiting mitochondrial permeability transition pore (mPTP) opening. Male Wistar rat hearts (n = 36) were perfused according to the Langendorff technique, exposed to 40 min of ischemia, and assigned to one of the following groups: 1) reperfusion with normal pressure (NP = 100 cmH(2)O) or 2) reperfusion with low pressure (LP = 70 cmH(2)O). Creatine kinase release and tetraphenyltetrazolium chloride staining were used to evaluate infarct size. Modifications of cardiac function were assessed by changes in coronary flow, heart rate (HR), left ventricular developed pressure (LVDP), the first derivate of the pressure curve (dP/dt), and the rate-pressure product (RPP = LVDP x HR). Mitochondria were isolated from the reperfused myocardium, and the Ca(2+)-induced mPTP opening was measured using a potentiometric approach. Lipid peroxidation was assessed by measuring malondialdehyde production. Infarct size was significantly reduced in the LP group, averaging 17 +/- 3 vs. 33 +/- 3% of the left ventricular weight in NP hearts. At the end of reperfusion, functional recovery was significantly improved in LP hearts, with RPP averaging 10,392 +/- 876 vs. 3,969 +/- 534 mmHg/min in NP hearts (P < 0.001). The Ca(2+) load required to induce mPTP opening averaged 232 +/- 10 and 128 +/- 16 microM in LP and NP hearts, respectively (P < 0.001). Myocardial malondialdehyde was significantly lower in LP than in NP hearts (P < 0.05). These results suggest that the protection afforded by low-pressure reperfusion involves an inhibition of the opening of the mPTP, possibly via reduction of reactive oxygen species production.  相似文献   

9.
We have investigated the cardioprotective effects of novel tetrahydroisoquinoline nitrobenzylmercaptopurine riboside (NBMPR) analog nucleoside transport (NT) inhibitors, compounds 2 and 4, in isolated perfused rat hearts. Langendorff-perfused heart preparations were subjected to 10 min of treatment with compound 2, compound 4, or vehicle (control) followed by 30 min of global ischemia and 120 min of reperfusion. For determination of infarct size, reperfusion time was 180 min. At 1 microM, compounds 2 and 4 provided excellent cardioprotection, with left ventricular developed pressure (LVDP) recovery and end-diastolic pressure (EDP) increase of 82.9 +/- 4.0% (P<0.001) and 14.1 +/- 2.0 mmHg (P<0.03) for compound 2-treated hearts and 79.2 +/- 5.9% (P<0.002) and 7.5 +/- 2.7 mmHg (P<0.01) for compound 4-treated hearts compared with 41.6 +/- 5.2% and 42.5 +/- 6.5 mmHg for control hearts. LVDP recovery and EDP increase were 64.1 +/- 4.2% and 29.1 +/- 2.5 mmHg for hearts treated with 1 microM NBMPR. Compound 4 was the best cardioprotective agent, affording significant cardioprotection, even at 0.1 microM, with LVDP recovery and EDP increase of 76.0 +/- 4.9% (P<0.003) and 14.1 +/- 1.0 mmHg (P<0.03). At 1 microM, compound 4 and NBMPR reduced infarct size, with infarct area-to-total risk area ratios of 29.13 +/- 3.17 (P<0.001) for compound 4 and 37.5 +/- 3.42 (P<0.01) for NBMPR vs. 51.08 +/- 5.06% for control hearts. Infarct size was more effectively reduced by compound 4 than by NBMPR (P<0.02). These new tetrahydroisoquinoline NBMPR analogs are not only potent cardioprotective agents but are, also, more effective than NBMPR in this model.  相似文献   

10.
Urotensin II (U-II) is a cyclic peptide, recently cloned in man and present in cardiac tissue and arteries. The effects of human U-II (hU-II) on coronary perfusion pressure (CPP) were investigated in isolated rat hearts perfused retrogradely via the aorta at constant flow. hU-II produced a concentration-dependent increase in CPP (pEC50 8.6 +/- 0.3, n = 8), the maximum increase in CPP (12 +/- 4 mmHg) was obtained at 10(-7) M hU-II. At higher concentrations of hU-II CPP fell back towards baseline. Endothelin-1 produced a maximum increase in CPP of 63 +/- 11 mmHg within the concentration-range studied. Addition of the NO synthase inhibitor L N(G)nitro-arginine methyl ester (10(-4) M) and the cyclooxygenase inhibitor, indomethacin (10(-5) M) to the perfusion solution had no effect on the pEC50 value for hU-II, but significantly increased the maximum constriction (to 34 +/- 7 mmHg, n = 8, p < 0.05) and inhibited the later dilator response to hU-II. These results suggest that receptors for hU-II are present in the coronary vasculature and that smooth muscle contraction is modulated by the release of dilator factors, including NO and prostacyclin. Endothelial function is therefore likely to be of primary importance in modulating the coronary vasoconstrictor effects of hU-II in vivo.  相似文献   

11.
Increases in cardiac activity induce autoregulatory coronary vasodilation. The intermediate steps which trigger this process are thought to be myocardial hypoxia which induces the release of vasodilator mediator(s). The present study examines the relationships between mechanical activity, oxygen tension, and release of vasodilator material in isolated perfused hearts. Guinea-pig isolated hearts were perfused in series, the effluent from donor hearts being regassed prior to entry to recipient hearts. Histamine (1 microgram) and isoproterenol (10 ng) increased the rate and tension of donor hearts and produced predominant coronary vasodilator responses which were followed by the appearance of vasodilator material in the recipient (falls in perfusion pressure, 9.8 +/- 1.1 and 9.1 +/- 2.5 mmHg) (1 mmHg = 133.322 Pa). Exposure of donor hearts to hypoxia also caused vasodilatation and release of vasodilator material (fall in pressure, 11.4 +/- 1.6 mmHg). Pacing-induced tachycardia (6 Hz) of donor hearts promoted the release of vasodilator material, the fall in recipient heart pressure being 11.5 +/- 1.8 mmHg. This was abolished by beta-adrenoceptor blockade and when donor hearts were from reserpine-pretreated guinea pigs. In was concluded that pacing released endogenous catecholamines which in turn released the vasodilator material. Pacing per se did not cause vasodilatation or release of the vasodilator. The Po2 of perfusates from donor hearts was reduced by pacing at 5 Hz (25.7 +/- 5.2 mmHg) and by isoproterenol (10 ng, 32.0 +/- 3.7 mmHg), indicative of an elevated oxygen extraction. The isoproterenol-induced falls in Po2 were abolished by beta-adrenoceptor blockade. However, the pacing-induced falls in Po2 persisted, the values occurring before (25.7 +/- 5.2 mmHg) and after propranolol (45.7 +/- 4.5 mmHg) and before (32.1 +/- 1.1 mmHg) and after practolol (27.3 +/- 4.1 mmHg) not differing significantly (p greater than 0.05). These falls in perfusate Po2 were not accompanied by coronary vasodilatation or release of vasoactive material. Perfusate Po2 changes could therefore be dissociated from the coronary vasodilatation and vasoactive material release, suggesting that hypoxia may not be a prerequisite for the metabolic autoregulatory vasodilatation in response to myocardial hyperactivity induced by cardiac stimulants.  相似文献   

12.
Renal resistance to antidiuretic hormone (ADH) has been speculated to be a mechanism of transient nephrogenic diabetes insipidus occurring during late pregnancy. In order to study possible involvement of ovarian steroids in this mechanism, their effect on cyclic adenosine 3':5'-monophosphate (cAMP) response to arginine vasopressin (AVP) was examined utilizing rat and human renal medullary cells in monolayer culture. In both rat and human cells, estradiol significantly reduced cAMP response to AVP; estradiol at 1.84 x 10(-8) M, 1.84 x 10(-7) M and 1.84 x 10(-6) M decreased cAMP production stimulated by 10(-8) M AVP to 78 +/- 5%, 67 +/- 2% (P less than 0.05) and 52 +/- 1% (P less than 0.001) of the control in rat renal cells, respectively, and in human renal cells the effect of estradiol was comparable to that in rat cells. In rat renal cells, progesterone also reduced cAMP response to AVP dose-dependently; progesterone at 1.59 x 10(-7) M, 1.59 x 10(-6) M and 1.59 x 10(-5) M decreased cAMP production stimulated by 10(-8) M AVP to 87 +/- 1%, 72 +/- 5% (P less than 0.001) and 37 +/- 5% (P less than 0.001) of the control, respectively. On the other hand, corticosterone and dexamethasone at concentrations ranging from 10(-8) M to 10(-5) M and aldosterone at concentrations ranging from 10(-9) M to 10(-5) M did not alter cAMP response to AVP significantly. The suppressive effect of estradiol increased with time until six hours and thereafter it reached a plateau.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Adenosine relaxes the coronary arteries of various species through A2 receptors. The aim of the present investigation was to evaluate the relaxing effects of adenosine in relation to the role of calcium in bovine coronary arteries by studying the vasodilatory effect of adenosine in normal and calcium-free medium and on calcium-45 efflux into calcium-free medium. Acetylcholine (ACh) and norepinephrine (NE) were used to induce tone in coronary artery rings. Adenosine, 5'-(N-ethylcarboxamido)adenosine (NECA), and N6-(L-phenylisopropyl)adenosine (L-PIA) produced concentration-dependent relaxations of the coronary artery rings. Both in normal and calcium-free medium, the order of potency for adenosine analogs (NECA greater than L-PIA greater than adenosine) was similar and 8-phenyltheophylline antagonized the relaxation responses to adenosine and its analogs. Removal of extracellular calcium shifted the concentration-response curves to the right in a parallel fashion, slowed the rate of relaxation, and in NE contracted rings reduced the maximum responses for adenosine and its analogs. In calcium-free medium, adenosine was without an effect on calcium-45 efflux in the presence of ACh. However, adenosine inhibited the stimulated calcium-45 efflux induced by NE. The data suggest that the vasodilatory action of adenosine in bovine coronary smooth muscle has both extracellular calcium-dependent and -independent components.  相似文献   

14.
The pressure gradients of the canine coronary circulation were measured in 37 dogs during control and following eight interventions: left stellate ganglion or left vagosympathetic trunk stimulation, as well as isoproterenol, acetylcholine, noradrenaline, adenosine, phenylephrine, or adrenaline infusions. During control, pressure gradients in the epicardial coronary arteries (measured from the aorta to coronary artery branch) were 15.2 +/- 1 mmHg (1 mmHg (1 mmHg = 133.32 Pa) during systole and 10.6 +/- 1.5 mmHg during diastole. Adrenaline increased this systolic gradient, while acetylcholine and phenylephrine decreased it. In contrast, the pressure gradients in the small coronary arteries (from the branch of an epicardial artery to the pressure in an obstructed coronary artery) were 56 +/- 1.3 mmHg during systole and 63.7 +/- 1.3 mmHg during diastole. These gradients were increased by phenylephrine during both systole and diastole, noradrenaline and adrenaline during diastole and decreased by isoproterenol (systolic), left vagosympathetic trunk stimulation (diastolic), acetylcholine (systolic and diastolic), and adenosine (diastolic). The microcirculation and small vein gradients during control were 16.4 +/- 1.2 mmHg during systole and 8.5 +/- 0.8 mmHg during diastole. Decreases in this gradient were produced by isoproterenol, acetylcholine, and adenosine during systole and adenosine during diastole. These observations are consistent with the concept that the coronary circulation has considerable regulatory capacity in all of its component parts. Specifically, epicardial arteries appear to function as both conduits and as resistance vessels, small arteries as major resistance vessels, and the microcirculation and small veins as both capacitors and resistors.  相似文献   

15.
N-oleoyldopamine (OLDA), a bioactive lipid originally found in the mammalian brain, is an endovanilloid that selectively activates the transient receptor potential vanilloid type 1 (TRPV1) channel. This study tests the hypothesis that OLDA protects the heart against ischemia and reperfusion (I/R) injury via activation of the TRPV1 in wild-type (WT) but not in gene-targeted TRPV1-null mutant (TRPV1(-/-)) mice. Hearts of WT or TRPV1(-/-) mice were Langendorffly perfused with OLDA (2 x 10(-9) M) in the presence or absence of CGRP8-37 (1 x 10(-6) M), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; RP-67580 (1 x 10(-6) M), a selective neurokinin-1 receptor antagonist; chelerythrine (5 x 10(-6) M), a selective protein kinase C (PKC) antagonist; or tetrabutylammonium (TBA, 5 x 10(-4) M), a nonselective K(+) channel antagonist, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), coronary flow (CF), and left ventricular peak positive dP/dt (+dP/dt) were evaluated after I/R. OLDA improved recovery of cardiac function after I/R in WT but not TRPV1(-/-) hearts by increasing LVDP, CF, and +dP/dt and by decreasing LVEDP. CGRP8-37, RP-67580, chelerythrine, or TBA abolished the protective effect of OLDA in WT hearts. Radioimmunoassay showed that the release of substance P (SP) and CGRP after OLDA treatment was higher in WT than in TRPV1(-/-) hearts, which was blocked by chelerythrine or TBA. Thus OLDA exerts a cardiac protective effect during I/R injury in WT hearts via CGRP and SP release, which is abolished by PKC or K(+) channel antagonists. The protective effect of OLDA is void in TRPV1(-/-) hearts, supporting the notion that TRPV1 mediates OLDA-induced protection against cardiac I/R injury.  相似文献   

16.
The regulation of the glucose transport system by catecholamines and insulin has been studied in isolated rat cardiomyocytes. In the basal state, 1-isoproterenol exhibited a biphasic concentration-dependent regulation of 3-O-methylglucose transport. At low concentrations (less than 10 nM), isoproterenol induced a maximal inhibition of 65-70% of the basal rates, while at higher concentrations (greater than 10 nM) a 25-70% stimulation of transport was observed. In the presence of adenosine deaminase, the inhibition of isoproterenol at low doses was attenuated. No effect of adenosine deaminase was observed on the stimulation of transport at high doses of isoproterenol. The inhibitory effect of isoproterenol returned when N6-phenylisopropyladenosine (a non-metabolizable analog of adenosine) was included along with adenosine deaminase. Dibutyryl cAMP and forskolin both inhibited basal transport rates. In the presence of maximally stimulating concentrations of insulin, cardiomyocyte 3-O-methylglucose transport was generally elevated 200-300% above basal levels. In the presence of isoproterenol, insulin stimulation was inhibited at both high and low concentrations of catecholamine, with maximum inhibition occurring at the lowest concentrations tested. When cells were incubated with both adenosine deaminase and isoproterenol, the inhibition of the insulin response was greater at all concentrations of catecholamine and was almost completely blocked at isoproterenol concentrations of 10 nM or less. Dibutyryl cAMP inhibited the insulin response to within 10% of basal transport levels, while forskolin completely inhibited all transport activity in the presence of insulin. These results suggest that catecholamines regulate basal and insulin-stimulated glucose transport via both cAMP-dependent and cAMP-independent mechanisms and that this regulation is modulated in the presence of extracellular adenosine.  相似文献   

17.
To test whether endothelium-derived nitric oxide (NO) regulates mitochondrial respiration, NO was pharmacologically modulated in isolated mouse hearts, which were perfused at constant flow to sensitively detect small changes in myocardial O2 consumption (MVO2). Stimulation of NO formation by 10 microM bradykinin (BK) increased coronary venous nitrite release fivefold to 58 +/- 33 nM (n = 17). Vasodilatation by BK, adenosine (1 microM), or papaverine (10 microM) decreased perfusion pressure, left ventricular developed pressure (LVDP), and MVO2. In the presence of adenosine-induced vasodilatation, stimulation of endothelial NO synthesis by BK had no effect on LVDP and MVO2. Also, inhibition of NO formation by NG-monomethyl-l-arginine (l-NMMA, 100 microM) did not significantly alter LVDP and MVO2. Similarly, intracoronary infusion of authentic NO 2 microM were contractile dysfunction and MVO2 reduction observed. Because BK-induced stimulation of endothelial NO formation and basal NO are not sufficient to impair MVO2 in the saline-perfused mouse heart, a tonic control of the respiratory chain by endothelial NO is difficult to conceive.  相似文献   

18.
We studied the impact of systemic infusion of the nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on coronary flow reserve (CFR) in patients with coronary artery disease (CAD). We have previously demonstrated that CFR to adenosine was significantly increased after systemic infusion of L-NMMA in normal volunteers but not in recently transplanted denervated hearts. At baseline, myocardial blood flow (MBF; ml x min(-1) x g(-1)) was measured at rest and during intravenous administration of adenosine (140 microg x kg(-1) x min(-1)) in 10 controls (47 +/- 5 yr) and 10 CAD patients (58 +/- 8 yr; P < 0.01 vs. controls) using positron emission tomography and (15)O-labeled water. Both MBF measurements were repeated during intravenous infusion of 10 mg/kg L-NMMA. CFR was calculated as the ratio of MBF during adenosine to MBF at rest. CFR was significantly higher in healthy volunteers than in CAD patients and increased significantly after L-NMMA in controls (4.00 +/- 1.10 to 6.15 +/- 1.35; P < 0.0001) and in patients, both in territories subtended by stenotic coronary arteries (>70% luminal diameter; 2.06 +/- 1.13 to 3.21 +/- 1.07; P < 0.01) and in remote segments (3.20 +/- 1.23 to 3.92 +/- 1.62; P < 0.05). In conclusion, CFR can be significantly increased in CAD by a systemic infusion of L-NMMA. Similarly to our previous findings in normal volunteers, this suggests that adenosine-induced hyperemia in CAD patients is constrained by a mechanism that can be relieved by systemic NOS inhibition with L-NMMA.  相似文献   

19.
1. The activities of ecto- and cytosolic 5'-nucleotidase (EC 3.1.3.5), adenosine kinase (EC 2.7.1.20), adenosine deaminase (EC 3.5.4.4) and AMP deaminase (EC 3.5.4.6) were compared in ventricular myocardium from man, rats, rabbits, guinea pigs, pigeons and turtles. The most striking variation was in the activity of the ecto-5'-nucleotidase, which was 20 times less active in rabbit heart and 300 times less active in pigeon heart than in rat heart. The cytochemical distribution of ecto-5'-nucleotidase was also highly variable between species. 2. Adenosine formation was quantified in pigeon and rat ventricular myocardium in the presence of inhibitors of adenosine kinase and adenosine deaminase. 3. Both adenosine formation rates and the proportion of ATP catabolized to adenosine were greatest during the first 2 min of total ischaemia at 37 degrees C. Adenosine formation rates were 410 +/- 40 nmol/min per g wet wt. in pigeon hearts and 470 +/- 60 nmol/min per g wet wt. in rat hearts. Formation of adenosine accounted for 46% of ATP plus ADP broken down in pigeon hearts and 88% in rat hearts. 4. The data show that, in both pigeon and rat hearts, adenosine is the major catabolite of ATP in the early stages of normothermic myocardial ischaemia. The activity of ecto-5'-nucleotidase in pigeon ventricle (16 +/- 4 nmol/min per g wet wt.) was insufficient to account for adenosine formation, indicating the existence of an alternative catabolic pathway.  相似文献   

20.
We previously reported that canine collateral-dependent coronary arteries exhibit impaired relaxation to adenosine but not sodium nitroprusside. In contrast, exercise training enhances adenosine sensitivity of normal porcine coronary arteries. These results stimulated the hypothesis that chronic coronary occlusion and exercise training produce differential effects on cAMP- versus cGMP-mediated relaxation. To test this hypothesis, Ameroid occluders were surgically placed around the proximal left circumflex coronary artery (LCx) of female Yucatan miniature swine 8 wk before initiating sedentary or exercise training (treadmill run, 16 wk) protocols. Relaxation to the cAMP-dependent vasodilators adenosine (10(-7) to 10(-3) M) and isoproterenol (3 x 10(-8) to 3 x 10(-5) M) were impaired in collateral-dependent LCx versus nonoccluded left anterior descending (LAD) arterial rings isolated from sedentary but not exercise-trained pigs. Furthermore, adenosine-mediated reductions in simultaneous tension and myoplasmic free Ca(2+) were impaired in LCx versus LAD arteries isolated from sedentary but not exercise-trained pigs. In contrast, relaxation in response to the cAMP-dependent vasodilator forskolin (10(-9) to 10(-5) M) and the cGMP-dependent vasodilator sodium nitroprusside (10(-9) to 10(-4) M) was not different in LCx versus LAD arteries of sedentary or exercise-trained animals. These data suggest that chronic occlusion impairs receptor-dependent, cAMP-mediated relaxation; receptor-independent cAMP- and cGMP-mediated relaxation were unimpaired. Importantly, exercise training restores cAMP-mediated relaxation of collateral-dependent coronary arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号