首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligounsaturated fatty acid production by selected strains of micromycetes   总被引:2,自引:0,他引:2  
Fifteen strains of filamentous fungi from theCulture Collection of Fungi (Charles University, Prague) were tested for their lipid production, fatty acid composition with emphasis on accumulation of oligounsaturated fatty acids. All cultures contained palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2) and γ-linolenic (18:3) acid (GLA). The mycelium ofCunninghamella elegans, Rhizopus arrhizus, Mortierella parvispora, M. elongata andM. alpina contained arachidonic acid (ARA) in the range of 2.3–33.5% of the total fatty acids. The strains used in our experiment were capable to accumulate a relatively high amount of intracellular lipid (9.6–20.1% in dry biomass). The highest content of GLA (22.3 mg/g) was found inMucor circinelloides. The strain ofM. alpina containing 47.1 mg/g of ARA could be considered as the best producer of ARA.  相似文献   

2.
The production ofl(+)-lactic acid and formation ofγ-linolenic acid by 50Rhizopus strains growing on saccharidic substrates were investigated. Formation of acids was observed on solid cultivation media but mainly during submerged fermentation. Strains with the highest selectivity of bothl(+)-lactic acid production andγ-linolenic acid formation were tested in a laboratory fermenter. The best producer was treated by UV irradiation to increase the fatty acid content in the biomass, especially that ofγ-linolenic acid. The conversion of 10% saccharidic substrate by this newly prepared strainRhizopus arrhizus CCM 8109 results in more than 95% of theoretical yield ofl(+)-lactic acid and permits a volume productivity of 0.4 gγ-linolenic acid per liter.  相似文献   

3.
Summary Various lipases have been evaluated as biocatalysts for the enrichment of -linolenic acid from a commercial fungal oil derived from Mucor sp. by selective esterification of the fungal oil fatty acids with n-butanol or by selective hydrolysis of the oil. Lipase from M. miehei (Lipozyme), as compared to lipases from Candida cylindracea, Penicillium cyclopium, and Rhizopus arrhizus, was found to be most effective in the enrichment of -linolenic acid in unesterified fatty acids upon esterification of the fungal oil fatty acids with n-butanol. Thus, the -linolenic acid content could be raised from 10.4% in the starting material to 68.8% in the unesterified fatty acids. Selective hydrolysis of the fungal oil triacyglycerols using Lipozyme resulted in about 1.5-fold enrichment of -linolenic acid in the unhydrolysed acylglycerols. Other lipases tested, such as those from P. cyclopium, C. cylindracea, R. arrhizus, Penicillium sp. (Lipase G), porcine pancreas and Chromobacterium viscosum, were also rather ineffective in the enrichment of -linolenic acid by selective hydrolysis of the fungal oil triacylglycerols. Offprint requests to: K. D. Mukherjee  相似文献   

4.
cDNA clones encoding cytochrome b5 fusion desaturases were isolated from Primula cortusoides L. and Primula luteola Ruprecht, species previously shown to preferentially accumulate either n−6 or n−3 Δ6-desaturated fatty acids, respectively. Functional characterisation of these desaturases in yeast revealed that the recombinant Primula enzymes displayed substrate preferences, resulting in the predominant synthesis of either γ-linolenic acid (n−6) or stearidonic acid (n−3). Independent expression of the two Primula desaturases in transgenic Arabidopsis thaliana confirmed these results, with γ-linolenic acid and stearidonic acid accumulating in both leaf and seed tissues to different levels, depending on the substrate specificity of the desaturase. Targeted lipid analysis of transgenic Arabidopsis lines revealed the presence of Δ6-desaturated fatty acids in the acyl-CoA pools of leaf but not seed tissue. The implications for the transgenic synthesis of C20 polyunsaturated fatty acids via the elongation of Δ6-desaturated fatty acids are discussed, as is the potential of using Primula desaturases in the synthesis of C18 n−3 polyunsaturated fatty acids such as stearidonic acid.  相似文献   

5.
Studies on the application of functional lipids such as polyunsaturated fatty acids (PUFAs) have proceeded in various fields regarding health and dietary requirements in a search for novel and rich sources. Filamentous fungus Mortierella alpina 1S-4 produces triacylglycerols rich in arachidonic acid, ones reaching 20 g/L and containing 30–70% arachidonic acid as to the total fatty acids. Mutants derived from M. alpina 1S-4, defective in Δ5 and Δ6 desaturases, accumulate triacylglycerols rich in unique PUFAs, i.e., dihomo-γ-linolenic acid and Mead acid, respectively. Furthermore, various mutants derived from M. alpina 1S-4 have led to the production of oils containing n−1, n−3, n−4, n−6, n−7, and n−9 PUFAs. A variety of genes encoding fatty acid desaturases and elongases involved in PUFA biosynthesis in M. alpina 1S-4 has been isolated and characterized. Molecular breeding of M. alpina strains by means of manipulation of these genes facilitates improvement of PUFA productivity and elucidation of the functions of enzymes involved in PUFA biosynthesis.  相似文献   

6.
Zhang X  Li M  Wei D  Wang X  Chen X  Xing L 《Current microbiology》2007,55(2):128-134
The γ-linolenic acid-producing fungus Mortierella isabellina 6-22 is an important industrial strain. To clarify the biosynthetic pathways for polyunsaturated fatty acids in this strain, a disruption vector pD4MI6, including 5′ and 3′ regions of the fatty acid Δ6-desaturase open reading frame as homologous recombination elements and the Escherichia coli hygromycin B (HmB) phosphotransferase gene (hph) as selectable marker, was successfully constructed. Following transformation of pD4MI6 into the hygromycin B-sensitive recipient strain M. isabellina 6-22-4, a Δ6-desaturase gene-defective mutant strain was selected that was unable to produce γ-linolenic acid as determined by gas chromatography and molecular analysis. The morphology and physiology of the mutant, such as colony shape, color, and growth rate, were changed dramatically compared with that of strain M. isabellina 6-22-4.  相似文献   

7.
Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11–18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, α-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], γ-linolenic acid (cis-6,cis-9,cis-12–18:3), columbinic acid (trans-5,cis-9,cis-12–18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from α-linolenic acid, which were identified as cis-9,trans-11,cis-15–18:3, trans-9,trans-11,cis-15–18:3, and trans-10,cis-15–18:2. Four major fatty acids were produced from γ-linolenic acid, which were identified as cis-6,cis-9,trans-11–18:3, cis-6,trans-9,trans-11–18:3, cis-6,trans-10–18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from α-linolenic acid and γ-linolenic acid. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Robin  Jean H. 《Hydrobiologia》1995,300(1):185-190
The effect of various diets containing linoleic and/or -linolenic acids was studied on n-6 fatty acid composition of the rotifer Brachionus plicatilis. The rotifer's abilities for transformations of n-6 fatty acids were evaluated. Diets containing only linolenic acid as n-6 fatty acid induced low levels of other n-6 fatty acids in rotifers while a diet containing also -linolenic acid led to substantial amounts of di homo -linolenic acid in the rotifers through elongation. Desaturation of -linoleic acid to gamma linolenic appears to be the limiting factor of n-6 highly unsaturated fatty acid biosynthesis by the rotifer. Two sets of experiments were compared using different techniques and different sources of -linolenic acid: Spirulina in inert food or borage oil in emulsion with baker's yeast. Rotifers fed with inert diet with Spirulina contained arachidonic acid while those fed with borage oil had very low arachidonic content. High level of n-3 fatty acids incorporated into the diets seemed to exert inhibitory effects on n-6 transformation rate.  相似文献   

9.
Wang P  Wan X  Zhang Y  Jiang M 《Biotechnology letters》2011,33(10):1993-1998
A novel expression system was established in the oleaginous yeast, Lipomyces kononenkoae. The expression vector pLK-rhPHG of L. kononenkoae was constructed and using the hygromycin phosphotransferase gene and green fluorescent protein gene as reporter genes. A delta 6-fatty acid desaturase gene (D6DM) from Cunninghamella echinulata MIAN6 was then expressed in this strain. The recombinant strain accumulated about 1.2% γ-linolenic acid in the total fatty acids.  相似文献   

10.
To identify the genes encoding fatty acid elongases for the biosynthesis of polyunsaturated fatty acids (PUFAs), we isolated a cDNA via degenerate PCR and RACE-PCR from Acanthopagrus schlegelii with a high similarity to the ELOVL5-like elongases of mammals and fishes. This gene is termed AsELOVL5 and encodes a 294 amino acid protein. When AsELOVL5 was expressed in Saccharomyces cerevisiae, it conferred an ability to elongate γ-linolenic acid (18:3 n−6) to di-homo-γ-linolenic acid (20:3 n−6). In addition, the transformed cells converted arachidonic acid (20:4 n−6) and eicosapentaenpic acid (20:5 n−3) to docosatetraenoic acid (22:4 n−6) and docosapentaenoic acid (22:5 n−3), respectively. These results indicate that the AsELOVL5 gene encodes a long-chain fatty acid elongase capable of elongating C18Δ6/C20Δ5 but not C22 PUFA substrates.  相似文献   

11.
The Δ9-elongase isolated from Thraustochytrium aureum, which contains a high level of polyunsaturated fatty acids (PUFAs), was demonstrated to be associated with the synthesis of C20 PUFAs. The TaELO gene contains a 825 bp ORF that encodes a protein of 274 amino acids that shares a high similarity with other PUFA elongases. The expression of the TaELO gene in Pichia pastoris resulted in the elongation of linoleic acid (LA, C18:2; n-6) and α-linolenic acid (ALA, C18:3; n-3) to eicosadienoic acid (EDA, C20:2; n-6) and eicosatrienoic acid (ETrA, C20:3; n-3), respectively. The endogenous conversion rate of LA and ALA to EDA and ETrA was 32.68 and 38.57%, respectively. In addition, TaELO was also able to synthesize eicosenoic acid (C20:1; n-9) from oleic acid (OA, C18:1; n-9), even though the conversion level was low (2.81%). Furthermore, TaELO was able to carry out the 6Δ-elongation of γ-linolenic acid (GLA, C18:3; n-6) to dihomo-γ-linolenic acid (DGLA, C20:3; n-6) and Δ5-elongation of eicosapentaenoic acid (EPA, C20:5; n-3) to docosapentaenoic acid (DPA, C22:5; n-3). The conversion rate of GLA to DGLA and EPA to DPA were 93 and 28.36%, respectively. The TaELO protein was confirmed to have multifunctional activities, such as Δ9, Δ6, and Δ5-elongations as well as the elongation of monounsaturated fatty acid.  相似文献   

12.
13.
Delta 6-fatty acid desaturase (D6DES) is used in the synthesis of polyunsaturated fatty acids (PUFAs) from microorganisms to higher animals, including arachidonic acid (ARA) and eicosapentaenoic acid (EPA). A 1,338 bp full-length cDNA encoding D6DES was cloned from Acanthopagrus schlegeli (AsD6DES) through degenerate- and RACE-PCR methods. A recombinant vector expressing AsD6DES (pYES-AsD6DES) was subsequently constructed and transformed into Saccharomyces cerevisiae to test the enzymatic activity of AsD6DES towards the production of n-6 and n-3 fatty acids. The exogenously expressed AsD6DES produced γ-linolenic acid (18:3 n-6) and stearidonic acid (18:4n-3) at 26 and 36% from exogenous linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3), respectively, indicating that it is essentially a delta 6-fatty acid desaturase.  相似文献   

14.
Summary Various Mortierella fungi were assayed for their productivity of arachidonic acid (ARA). Only strains belonging to the subgenus Mortierella accumulated detectable amounts of ARA together with dihomo--linolenic acid. None of the strains belonging to the subgenus Micromucor tested accumulated these C-20 fatty acids, although they produced a C-18 fatty acid, -linolenic enic acid. A soil isolate, M. alpina 1S-4, was found to grow well in a liquid medium containing glucose and yeast extract as carbon and nitrogen sources, respectively. Addition of several natural oils such as olive and soybean oils to the medium increased the accumulation of ARA. Under optimal culture conditions in a 5-1 bench-scale fermentor, the fungus produced 3.6 g/l of ARA in 7 days. On cultivation for 10 days at 28°C in a 2000-1 fermentor, the same fungus produced 22.5 kg/kl mycelia (dry weight) containing 9.9 kg lipids, in which ARA comprised 31.0% of the total fatty acids. On standing the harvested mycelia for a further 6 days, major mycelial fatty acids (i.e. palmitic acid, oleic acid, linoleic acid, etc.) other than ARA rapidly decomposed and the ARA content of the total fatty acids reached nearly 70%.  相似文献   

15.
16.
Liu J  Li D  Yin Y  Wang H  Li M  Yu L 《Biotechnology letters》2011,33(10):1985-1991
The open reading frame of the Δ6-desaturase gene was isolated from Mortierella alpina W15 and the gene was cloned into a pPIC3.5K vector. The vector was transformed into Pichia pastoris GS115 and expression was induced with methanol. The Δ6-desaturase expressed in P. pastoris GS115 catalyzed the conversion of linoleic acid to γ-linolenic acid but not the conversion of α-linolenic acid to octadecatetraenoic acid. The results indicate that the Δ6-desaturase gene from M. alpina W15 has substrate specificity in different organisms. Phylogenetic analysis revealed that Δ6-desaturase genes can be divided into four monophyletic groups. This work paves the way for further study of the functions of Δ6-desaturase in fatty acid metabolism and its three-dimensional structure.  相似文献   

17.
The effect of dietary supplementation of old rats (26–33 months) with hydrogenated peanut oil on the activity of mitochondrial enzymes in skeletal muscles has been studied. The activities of NADH-coenzyme Q1 oxidoreductase, cytochrome c oxidase, and citrate synthase were determined spectrophotometrically in muscle homogenates. The activities of respiratory complexes I and IV were shown to significantly decrease with the age compared to the activity of the same enzymes in young animals, while the activity of citrate synthase was virtually unchanged. The fatty acid composition of muscle homogenates of old rats differed from that of young animals by a reduced content of myristic, oleic, linoleic, and α-linolenic acids and enhanced content of dihomo-γ-linolenic, arachidonic, and docosahexaenoic acids. Per oral supple-mentation of the old rats with hydrogenated peanut oil completely restored the activity of complex IV and increased the activity of complex I to 80% of the value observed in muscles of young animals, reducing the content of stearic, dihomo-γ-linolenic, arachidonic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids relative to that in the groups of old and young rats. The content of oleic and linoleic acids increased relatively to that in the group of the old rats, as well as young animals. The possible mechanisms of the restoration of the activity of the respiratory enzymes under the administration of hydrogenated peanut oil are discussed.  相似文献   

18.
The improvement of nutritional quality is one potential application for the genetic modification of plants. One possible target for such manipulation is the modification of fatty acid metabolism. In this work, expression of a borage Δ6-desaturase cDNA in tomato (Lycopersicon esculentum L.) has been shown to produce γ-linolenic acid (GLA; 18:3 Δ6,9,12) and octadecatetraenoic acid (OTA; 18:4 Δ6,9,12,15) in transgenic leaf and fruit tissue. This genetic modification has also, unexpectedly, resulted in a reduction in the percentage of linoleic acid (LA 18:2 Δ9,12) and a concomitant increase in the percentage of α-linolenic acid (ALA; 18:3 Δ9,12,15) in fruit tissue. These changes in fatty acid composition are thought to be beneficial for human health.  相似文献   

19.
Two relatively rare fatty acids, γ-linolenic acid (GLA) and stearidonic acid (STA), have attracted much interest due to their nutraceutical and pharmaceutical potential. STA, in particular, has been considered a valuable alternative source for omega-3 fatty acids due to its enhanced conversion efficiency in animals to eicosapentaenoic acid when compared with the more widely consumed omega-3 fatty acid, α-linolenic acid (ALA), present in most vegetable oils. Exploiting the wealth of information currently available on in planta oil biosynthesis and coupling this information with the tool of genetic engineering it is now feasible to deliberately perturb fatty acid pools to generate unique oils in commodity crops. In an attempt to maximize the STA content of soybean oil, a borage Δ6 desaturase and an Arabidopsis Δ15 desaturase were pyramided by either sexual crossing of transgenic events, re-transformation of a Δ6 desaturase event with the Δ15 desaturase or co-transformation of both desaturases. Expression of both desaturases in this study was under the control of the seed-specific soybean β-conglycinin promoter. Soybean events that carried only the Δ15 desaturase possessed a significant elevation of ALA content, while events with both desaturases displayed a relative STA abundance greater than 29%, creating a soybean with omega-3 fatty acids representing over 60% of the fatty acid profile. Analyses of the membrane lipids in a subset of the transgenic events suggest that soybean seeds compensate for enhanced production of polyunsaturated fatty acids by increasing the relative content of palmitic acid in phosphatidylcholine and other phospholipids.  相似文献   

20.
Genetic manipulation of the oil-yielding crop plants for better oil quality through biotechnological methods is an important aspect of crop improvement. Due to the inherent absence of the Δ6-desaturase (d6D) function, Brassica juncea, an oil-yielding crop plant, is unable to synthesize γ-linolenic acid (GLA), a nutritionally important fatty acid although the crop plant synthesizes the precursor fatty acids required for GLA production. Cyanobacterial d6D introduces carbon–carbon double bond onto linoleic acid (C18:2) and α-linolenic acid (C18:3) by desaturation processes for production of GLA and octadecatetraenoic acid (OTA) respectively. In the present investigation, d6D coding sequence from Synechocystis sp. PCC6803 was cloned by polymerase chain reaction and introduced into B. juncea through Agrobacterium-mediated transformation technique. Both cytosolic as well as seed-specific expression of d6D were attempted. The transformed plants show production of GLA and OTA in contrast to their absence in the untransformed control plants adducing evidence for introgression and functional expression of the cyanobacterial d6D gene in B. juncea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号