首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

2.
Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific beta-1,6-glucan antiserum but not with a beta-1,3-glucan antiserum. They lost their beta-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that beta-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure beta-1,3-glucanase, several mannoproteins that were recognized by both the beta-1,6-glucan antiserum and the beta-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that beta-1,3-glucan and beta-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of beta-glucans in the retention of cell wall proteins is discussed.  相似文献   

3.
AIM: The polysaccharide composition of the Saccharomyces cerevisiae cell wall was measured under various growth conditions and was compared with the cell wall structure. METHODS AND RESULTS: Chemical and enzymatic methods were used to determine levels of beta-1,3-glucan and 1,6-glucan, mannan and chitin of the yeast cell wall, whereas the structure/resistance of the wall was qualitatively assessed by the sensibility to the lytic action by zymolyase. It was found that the dry mass and polysaccharides content of the cell wall could vary by more than 50% with the nature of the carbon source, nitrogen limitation, pH, temperature and aeration, and with the mode of cell cultivation (shake flasks vs controlled fermentors). While no obvious correlation could be found between beta-glucan or mannan levels and the susceptibility of whole yeast cells to zymolyase, increase of beta-1,6-glucan levels, albeit modest with respect to the growth conditions investigated, and to a lesser extent that of chitin, was associated with decreased sensitivity of yeast cells to the lytic action by zymolyase. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results indicate that the cell wall structure is merely determined by cross-linking between cell wall polymers, pointed out the role of beta-1,6-glucan in this process. Hence, this study reinforces the idea that enzymes involved in these cross-linking reactions are potential targets for antifungal drugs.  相似文献   

4.
Yeast glucan in the cyst wall of Pneumocystis carinii   总被引:9,自引:0,他引:9  
Ultrastructurally, the cyst wall of Pneumocystis carinii consists of an electron-dense outer layer, an electron-lucent middle layer, and an innermost plasmalemma. This is similar in appearance to the cell wall of some yeasts, e.g. Saccharomyces cerevisiae, which consists of an outer dense layer of mannan, a middle lucent layer of beta-1,3-glucan (yeast glucan) and an innermost plasmalemma. The cyst wall of P. carinii, as well as the cell wall of S. cerevisiae, can be labeled by a variety of methods which stain polysaccharides, such as Gomori's methenamine silver (GMS) and by Aniline blue, a dye which selectively stains beta-1,3-glucan. The treatment of P. carinii cysts with Zymolyase, which the key enzyme is beta-1,3-glucan laminaripentaohydrolase, results in lysis of the outer 2 layers of the cyst wall and the loss of positive staining by both GMS and Aniline blue. The lysis of elements of the cyst wall of P. carinii is achieved under the same conditions and concentration at which Zymolyase lyses the outer 2 layers of the cell wall of viable cells of S. cerevisiae. These observations indicate that a major component of the cyst wall of P. carinii is beta-1,3-glucan.  相似文献   

5.
KEG1/YFR042w of Saccharomyces cerevisiae is an essential gene that encodes a 200-amino acid polypeptide with four predicted transmembrane domains. The green fluorescent protein- or Myc(6)-tagged Keg1 protein showed the typical characteristics of an integral membrane protein and was found in the endoplasmic reticulum by fluorescence imaging. Immunoprecipitation from the Triton X-100-solubilized cell lysate revealed that Keg1 binds to Kre6, which has been known to participate in beta-1,6-glucan synthesis. To analyze the essential function of Keg1 in more detail, we constructed temperature-sensitive mutant alleles by error-prone polymerase chain reaction. The keg1-1 mutant cells showed a common phenotype with Deltakre6 mutant including hypersensitivity to Calcofluor white, reduced sensitivity to the K1 killer toxin, and reduced content of beta-1,6-glucan in the cell wall. These results suggest that Keg1 and Kre6 have a cooperative role in beta-1,6-glucan synthesis in S. cerevisiae.  相似文献   

6.
The UDP-glucose:glycoprotein glucosyltransferase (UGGT) is an endoplasmic reticulum sensor for quality control of glycoprotein folding. Saccharomyces cerevisiae is the only eukaryotic organism so far described lacking UGGT-mediated transient reglucosylation of N-linked oligosaccharides. The only gene in S. cerevisiae with similarity to those encoding UGGTs is KRE5. S. cerevisiae KRE5 deletion strains show severely reduced levels of cell wall beta-1,6-glucan polymer, aberrant morphology, and extremely compromised growth or lethality, depending on the strain background. Deletion of both alleles of the Candida albicans KRE5 gene gives rise to viable cells that are larger than those of the wild type (WT), tend to aggregate, have enlarged vacuoles, and show major cell wall defects. C. albicans kre5/kre5 mutants have significantly reduced levels of beta-1,6-glucan and more chitin and beta-1,3-glucan and less mannoprotein than the WT. The remaining beta-1,6-glucan, about 20% of WT levels, exhibits a beta-1,6-endoglucanase digestion pattern, including a branch point-to-linear stretch ratio identical to that of WT strains, suggesting that Kre5p is not a beta-1,6-glucan synthase. C. albicans KRE5 is a functional homologue of S. cerevisiae KRE5; it partially complements both the growth defect and reduced cell wall beta-1,6-glucan content of S. cerevisiae kre5 viable mutants. C. albicans kre5/kre5 homozygous mutant strains are unable to form hyphae in several solid and liquid media, even in the presence of serum, a potent inducer of the dimorphic transition. Surprisingly the mutants do form hyphae in the presence of N-acetylglucosamine. Finally, C. albicans KRE5 homozygous mutant strains exhibit a 50% reduction in adhesion to human epithelial cells and are completely avirulent in a mouse model of systemic infection.  相似文献   

7.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

8.
Physical and biological properties of the fungal cell wall are determined by the composition and arrangement of the structural polysaccharides. Cell wall polymers of fungi are classically divided into two groups depending on their solubility in hot alkali. We have analyzed the alkali-insoluble fraction of the Aspergillus fumigatus cell wall, which is the fraction believed to be responsible for fungal cell wall rigidity. Using enzymatic digestions with recombinant endo-beta-1,3-glucanase and chitinase, fractionation by gel filtration, affinity chromatography with immobilized lectins, and high performance liquid chromatography, several fractions that contained specific interpolysaccharide covalent linkages were isolated. Unique features of the A. fumigatus cell wall are (i) the absence of beta-1,6-glucan and (ii) the presence of a linear beta-1, 3/1,4-glucan, never previously described in fungi. Galactomannan, chitin, and beta-1,3-glucan were also found in the alkali-insoluble fraction. The beta-1,3-glucan is a branched polymer with 4% of beta-1,6 branch points. Chitin, galactomannan, and the linear beta-1, 3/1,4-glucan were covalently linked to the nonreducing end of beta-1, 3-glucan side chains. As in Saccharomyces cerevisiae, chitin was linked via a beta-1,4 linkage to beta-1,3-glucan. The data obtained suggested that the branching of beta-1,3-glucan is an early event in the construction of the cell wall, resulting in an increase of potential acceptor sites for chitin, galactomannan, and the linear beta-1,3/1,4-glucan.  相似文献   

9.
Abstract Cell wall proteins of Saccharomyces cerevisiae are anchored by means of a β-1,6-glucan-containing side-chain. It is not known whether this chain is linked to the protein part (e.g. through carbohydrate side-chains) or to the glycosylphosphatidylinositol (GPI) moiety of cell wall proteins. An IgA protease recognition site was introduced in Cwp2p, a β-1,6-glucosylated cell wall protein, immediately N-terminal from the omega amino acid (the attachment site of the GPI moiety). Proteolytic cleavage of this site revealed that the β-1,6-glucan epitope was not linked to the protein part. We conclude that neither N - or O -glycosylation is involved in β-glucosylation of cell wall proteins. This confirms that the glycan core of the GPI moiety is the probable β-1,6-glucan attachment site.  相似文献   

10.
In Candida albicans wild-type cells, the beta1, 6-glucanase-extractable glycosylphosphatidylinositol (GPI)-dependent cell wall proteins (CWPs) account for about 88% of all covalently linked CWPs. Approximately 90% of these GPI-CWPs, including Als1p and Als3p, are attached via beta1,6-glucan to beta1,3-glucan. The remaining GPI-CWPs are linked through beta1,6-glucan to chitin. The beta1,6-glucanase-resistant protein fraction is small and consists of Pir-related CWPs, which are attached to beta1,3-glucan through an alkali-labile linkage. Immunogold labelling and Western analysis, using an antiserum directed against Saccharomyces cerevisiae Pir2p/Hsp150, point to the localization of at least two differentially expressed Pir2 homologues in the cell wall of C. albicans. In mnn9Delta and pmt1Delta mutant strains, which are defective in N- and O-glycosylation of proteins respectively, we observed enhanced chitin levels together with an increased coupling of GPI-CWPs through beta1,6-glucan to chitin. In these cells, the level of Pir-CWPs was slightly upregulated. A slightly increased incorporation of Pir proteins was also observed in a beta1, 6-glucan-deficient hemizygous kre6Delta mutant. Taken together, these observations show that C. albicans follows the same basic rules as S. cerevisiae in constructing a cell wall and indicate that a cell wall salvage mechanism is activated when Candida cells are confronted with cell wall weakening.  相似文献   

11.
KRE6 (YPR159W) encodes a Golgi membrane protein required for normal beta-1,6-glucan levels in the cell wall. A functional Kre6p is necessary for cell wall protein accumulation in response to changing metabolic conditions. The product of the SED1 (YDR077W) gene is a stress-induced GPI-cell wall protein. Successful incorporation of HA-tagged Sed1p into the cell wall involves KRE6. The double-mutant sed1 kre6 has a reduced growth rate, increased flocculation and increased sensitivity to Zymolyase. A similar phenotype is found in mutants defective in glycosyl-phosphatidyl-insositol (GPI) anchor assembly. These findings support the theory that Kre6p could function as a transglucosylase that allows the incorporation of proteins with a GPI anchor into the cell wall.  相似文献   

12.
The yeast cell wall contains beta1,3-glucanase-extractable and beta1,3-glucanase-resistant mannoproteins. The beta1,3-glucanase-extractable proteins are retained in the cell wall by attachment to a beta1,6-glucan moiety, which in its turn is linked to beta1,3-glucan (J. C. Kapteyn, R. C. Montijn, E. Vink, J. De La Cruz, A. Llobell, J. E. Douwes, H. Shimoi, P. N. Lipke, and F. M. Klis, Glycobiology 6:337-345, 1996). The beta1,3-glucanase-resistant protein fraction could be largely released by exochitinase treatment and contained the same set of beta1,6-glucosylated proteins, including Cwp1p, as the B1,3-glucanase-extractable fraction. Chitin was linked to the proteins in the beta1,3-glucanase-resistant fraction through a beta1,6-glucan moiety. In wild-type cell walls, the beta1,3-glucanase-resistant protein fraction represented only 1 to 2% of the covalently linked cell wall proteins, whereas in cell walls of fks1 and gas1 deletion strains, which contain much less beta1,3-glucan but more chitin, beta1,3-glucanase-resistant proteins represented about 40% of the total. We propose that the increased cross-linking of cell wall proteins via beta1,6-glucan to chitin represents a cell wall repair mechanism in yeast, which is activated in response to cell wall weakening.  相似文献   

13.
Innate immunity depends upon recognition of surface features common to broad groups of pathogens. The glucose polymer beta-glucan has been implicated in fungal immune recognition. Fungal walls have two kinds of beta-glucan: beta-1,3-glucan and beta-1,6-glucan. Predominance of beta-1,3-glucan has led to the presumption that it is the key immunological determinant for neutrophils. Examining various beta-glucans for their ability to stimulate human neutrophils, we find that the minor cell wall component beta-1,6-glucan mediates neutrophil activity more efficiently than beta-1,3-glucan, as measured by engulfment, production of reactive oxygen species, and expression of heat shock proteins. Neutrophils rapidly ingest beads coated with beta-1,6-glucan while ignoring those coated with beta-1,3-glucan. Complement factors C3b/C3d are deposited on beta-1,6-glucan more readily than on beta-1,3-glucan. Beta-1,6-glucan is also important for efficient engulfment of the human pathogen Candida albicans. These unique stimulatory effects offer potential for directed stimulation of neutrophils in a therapeutic context.  相似文献   

14.
Dynamics of cell wall structure in Saccharomyces cerevisiae   总被引:13,自引:0,他引:13  
The cell wall of Saccharomyces cerevisiae is an elastic structure that provides osmotic and physical protection and determines the shape of the cell. The inner layer of the wall is largely responsible for the mechanical strength of the wall and also provides the attachment sites for the proteins that form the outer layer of the wall. Here we find among others the sexual agglutinins and the flocculins. The outer protein layer also limits the permeability of the cell wall, thus shielding the plasma membrane from attack by foreign enzymes and membrane-perturbing compounds. The main features of the molecular organization of the yeast cell wall are now known. Importantly, the molecular composition and organization of the cell wall may vary considerably. For example, the incorporation of many cell wall proteins is temporally and spatially controlled and depends strongly on environmental conditions. Similarly, the formation of specific cell wall protein-polysaccharide complexes is strongly affected by external conditions. This points to a tight regulation of cell wall construction. Indeed, all five mitogen-activated protein kinase pathways in bakers' yeast affect the cell wall, and additional cell wall-related signaling routes have been identified. Finally, some potential targets for new antifungal compounds related to cell wall construction are discussed.  相似文献   

15.
In yeast, glucanase extractable cell wall proteins are anchored to the plasma membrane at an intermediate stage in their biogenesis via a glycosylphosphatidylinositol (GPI) moiety before they become anchored to the wall glucan via a 1,6-glucan linkage. The mechanism of the membrane processing step of cell wall proteins is not known. Here, we report that Ascomycete filamentous fungi involved in food spoilage such as Aspergillus, Paecilomyces and Penicillium, also contain GPI membrane-anchored proteins some of which are processed by an endogenous phospholipase C activity. Furthermore, similar to the situation in yeast, their cell walls contain mannoproteins which are linked to the glucan backbone through a 1,6-glucan linkage. Interestingly, one mould which contains a significant amount of non covalently linked 1,6-glucosylated cell wall proteins, is much more sensitive towards 1,3-glucanases and membrane perturbing peptides than the others.  相似文献   

16.
17.
The cell wall of yeast contains a major structural unit, consisting of a cell wall protein (CWP) attached via a glycosylphosphatidylinositol (GPI)-derived structure to beta 1,6-glucan, which is linked in turn to beta 1, 3-glucan. When isolated cells walls were digested with beta 1,6-glucanase, 16% of all CWPs remained insoluble, suggesting an alternative linkage between CWPs and structural cell wall components that does not involve beta 1,6-glucan. The beta 1,6-glucanase-resistant protein fraction contained the recently identified GPI-lacking, O-glycosylated Pir-CWPs, including Pir2p/Hsp150. Evidence is presented that Pir2p/Hsp150 is attached to beta 1,3-glucan through an alkali-sensitive linkage, without beta 1,6-glucan as an interconnecting moiety. In beta 1,6-glucan-deficient mutants, the beta 1,6-glucanase-resistant protein fraction increased from 16% to over 80%. This was accompanied by increased incorporation of Pir2p/Hsp150. It is argued that this is part of a more general compensatory mechanism in response to cell wall weakening caused by low levels of beta 1,6-glucan.  相似文献   

18.
beta-1,6-Glucan is an essential fungal-specific component of the Saccharomyces cerevisiae cell wall that interconnects all other wall components into a lattice. Considerable biochemical and genetic effort has been directed at the identification and characterization of the steps involved in its biosynthesis. Structural studies show that the polymer plays a central role in wall structure, attaching mannoproteins via their glycosylphosphatidylinositol (GPI) glycan remnant to beta-1,3-glucan and chitin. Genetic approaches have identified genes that upon disruption result in beta-1,6-glucan defects of varying severity, often with reduced growth or lethality. These gene products have been localized throughout the secretory pathway and at the cell surface, suggesting a possible biosynthetic route. Current structural and genetic data have therefore allowed the development of models to predict biosynthetic events. Based on knowledge of beta-1,3-glucan and chitin synthesis, it is likely that the bulk of beta-1,6-glucan polymer synthesis occurs at the cell surface, but requires key prior intracellular events. However, the activity of most of the identified gene products remain unknown, making it unclear to what extent and how directly they contribute to the synthesis of this polymer. With the recent availability of new tools, reagents and methods (including genomics), the field is poised for a convergence of biochemical and genetic methods to identify and characterize the biochemical steps in the synthesis of this polymer.  相似文献   

19.
20.
An antimicrobial peptide termed BCP-2 was purified from barley grain by chitin-affinity treatment and HPLC. The results of amino acid analysis and mass spectrometry of BCP-2 indicate that the peptide is very similar to barley alpha-thionin. BCP-2 and wheat alpha1-thionin were also bound to beta-glucan but not to starch. The binding of BCP-2 to laminarin (beta-1,3-1,6-glucan) and laminarioligosaccharides was supported by fluorescence polarization data. This is the first report on the binding of alpha-thionins to polysaccharide containing chitin and beta-1,3-glucan, which construct fungal cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号