共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new members (Sar1a and Sar1b) of the SAR1 gene family have been identified in mammalian cells. Using immunoelectron microscopy, Sar1 was found to be restricted to the transitional region where the protein was enriched 20-40-fold in vesicular carriers mediating ER to Golgi traffic. Biochemical analysis revealed that Sar1 was essential for an early step in vesicle budding. A Sar1-specific antibody potently inhibited export of vesicular stomatitis virus glycoprotein (VSV-G) from the ER in vitro. Consistent with the role of guanine nucleotide exchange in Sar1 function, a trans-dominant mutant (Sar1a[T39N]) with a preferential affinity for GDP also strongly inhibited vesicle budding from the ER. In contrast, Sar1 was not found to be required for the transport of VSV-G between sequential Golgi compartments, suggesting that components active in formation of vesicular carriers mediating ER to Golgi traffic may differ, at least in part, from those involved in intra-Golgi transport. The requirement for novel components at different stages of the secretory pathway may reflect the recently recognized differences in protein transport between the Golgi stacks as opposed to the selective sorting and concentration of protein during export from the ER. 相似文献
2.
The platelet-derived growth factor (PDGF) modulated growth response of the MG-63 human osteosarcoma cell line, which neither expresses c-sis mRNA nor secretes a PDGF analogue, was characterized. Scatchard analysis demonstrated that the MG-63 cells have 23,000 receptors per cell with a Kd of 5 X 10(-11) M. The receptor became phosphorylated, in a PDGF concentration-dependent manner, when 32P-orthophosphate-labeled cells were treated with PDGF for 3 h at 4 degrees C. The phosphorylated receptor was identified by autoradiography and gel electrophoresis after isolation of the 32P-labeled receptor using a solid-phase monoclonal antibody directed against phosphotyrosine. Binding of the receptor to the antibody was inhibited by 5 mM phenyl phosphate, further suggesting that PDGF stimulated tyrosine-specific receptor autophosphorylation. In addition, treatment of MG-63 cells with PDGF for 3 h at 37 degrees C induced a 7.5-fold increase in c-myc mRNA accumulation as analyzed on Northern gels. However, MG-63 cells grew equally well in either serum-(which contains PDGF) or plasma-(which does not) supplemented medium. Furthermore, PDGF did not stimulate DNA synthesis in growth arrested MG-63 cells, nor did it potentiate DNA synthesis modulated by somatomedin C. Thus MG-63 cells are a naturally occurring cell variant in which PDGF stimulates c-myc expression but does not modulate mitogenesis. 相似文献
3.
Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell. 相似文献
4.
Replication of cowpea mosaic virus (CPMV) is associated with small membranous vesicles that are induced upon infection. The effect of CPMV replication on the morphology and distribution of the endomembrane system in living plant cells was studied by expressing green fluorescent protein (GFP) targeted to the endoplasmic reticulum (ER) and the Golgi membranes. CPMV infection was found to induce an extensive proliferation of the ER, whereas the distribution and morphology of the Golgi stacks remained unaffected. Immunolocalization experiments using fluorescence confocal microscopy showed that the proliferated ER membranes were closely associated with the electron-dense structures that contain the replicative proteins encoded by RNA1. Replication of CPMV was strongly inhibited by cerulenin, an inhibitor of de novo lipid synthesis, at concentrations where the replication of the two unrelated viruses alfalfa mosaic virus and tobacco mosaic virus was largely unaffected. These results suggest that proliferating ER membranes produce the membranous vesicles formed during CPMV infection and that this process requires continuous lipid biosynthesis. 相似文献
5.
In the present study we have shown that treatment of SH-SY5Y cells with either thapsigargin or tunicamycin is associated with a significant decrease in ROUTINE and ATP-coupled mitochondrial respiration as well as a decrease in spare and maximal respiratory capacity. We have also shown that treating cells with either thapsigargin or tunicamycin is associated with significant changes in mitochondrial membrane potential (ΔΨm) generation, which is mainly associated with the reversal of the succinyl-CoA ligase reaction and a decreased activity of complex II. Despite the induction of endoplasmic reticulum (ER) specific unfolded protein response (UPR), as documented by increased expression of HRD1, ER stress did not induce mitochondrial UPR since the expression of both mitochondrial protease LONP1 and mitochondrial chaperone HSP60 was not significantly altered. Inhibition of IRE1α ribonuclease with STF-083010 did not protect the SH-SY5Y cells from ER stress-induced mitochondrial dysfunction. STF-083010 itself had significant impact on both mitochondrial respiration and generation of ΔΨm, which has mainly been associated with the uncoupling of respiratory chain from ATP synthesis. 相似文献
6.
Processing of precursor proteins by the proprotein convertases is thought to occur mainly in the trans-Golgi network or post-Golgi compartments. Such cleavage is inhibited by the prosegment of the convertases. During our studies of the use of the inhibitory prosegment of PC1, we noticed that a construct containing the prosegment fused to the C-terminal secretory granule sorting domain was cleaved in the endoplasmic reticulum (ER) at a pair of basic residues, best recognized by furin and PC7. This was further confirmed when this construct was fused at the C-terminus with a KDEL ER-retention signal. This suggests that the convertases could cleave some substrates within the ER, possibly by displacing the inhibitory prosegment associated with them. 相似文献
7.
Resident luminal endoplasmic reticulum (ER) proteins carry a targeting signal (usually KDEL in animal cells) that allows their retrieval from later stages of the secretory pathway. In yeast, the receptor that promotes this selective retrograde transport has been identified as the product of the ERD2 gene. We describe here the properties of a human homolog of this protein (hERD2). Overproduction of hERD2 improves retention of a protein with a weakly recognized variant signal (DDEL). Moreover, overexpression of KDEL or DDEL ligands causes a redistribution of hERD2 from the Golgi apparatus to the ER. Mutation of hERD2 alters the ligand specificity of this effect, implying that it interacts directly with the retained proteins. Ligand control of receptor movement may limit retrograde flow and thus minimize fruitless recycling of secretory proteins. 相似文献
8.
What happens to organelles during mitosis, and how they are apportioned to each of the daughter cells, is not completely clear. We have devised a procedure to address whether Golgi membranes fuse with the Endoplasmic Reticulum (ER) during mitosis via the detection of interactions between ER and Golgi proteins. This procedure involves coexpressing an FKBP-tagged Golgi enzyme with an ER-retained protein fused to FRAP in COS cells. Since treatment with rapamycin induces a tight association between FKBP and FRAP, one would expect rapamycin to trap the FKBP-fused Golgi protein in the ER if it ever visits the ER during mitosis. However, after the doubly transfected cells progress through mitosis in the presence of rapamycin, we find the Golgi protein in the newly formed Golgi stacks and not in the ER. Based on these results, we conclude that Golgi membranes remain separate from the ER during mitosis in mammalian cells. 相似文献
9.
We have examined the properties and intracellular localization of acetylcholine receptors in the C2 muscle cell line and in a variant (T-) that accumulates AChR intracellularly. On immunoblots, the subunit structures of the AChR from wild-type and T- cells were similar except that the gamma and delta subunits of the variant AChR had altered mobilities. Digestion with endoglycosidases H and F demonstrated that this difference results from a failure of high-mannose N-linked oligosaccharides on AChR subunits to be processed to complex forms in the variant. N-linked glycosylation of other proteins in the variant was normal. When examined by immunocytochemistry, the distribution of internal AChR in wild-type cells was consistent with a location both in the endoplasmic reticulum and in the Golgi. Variant cells, however, showed no evidence of Golgi staining. Subcellular fractionation experiments also demonstrated AChR in the Golgi fractions of wild-type cells, but not in those derived from T- cells. We conclude that in T- myotubes most of the AChR fails to be transported out of the endoplasmic reticulum. 相似文献
11.
The vectorial transport of vesicular stomatitis virus (VSV) G protein between the ER and the cis and medial Golgi compartments has been reconstituted using semi-intact (perforated) cells. The transport of VSV-G protein between successive compartments is measured by the sequential processing of the two N-linked oligosaccharide chains present on VSV-G protein to the endoglycosidase (endo) H-resistant structures which have unique electrophoretic mobilities during sodium dodecyl sulfate-gel electrophoresis. The appearance of a form of VSV-G which contains only one endo H-resistant oligosaccharide chain (GH1) is kinetically and biochemically indistinguishable from the appearance of the Man5, endo D-sensitive form (GD), the latter being a processing reaction diagnostic of transport from the ER to the cis Golgi compartment. These results provide evidence that the cis Golgi compartment may contain in addition to alpha-1,2-mannosidase I, both N-acetylglueosamine transferase I and alpha-1,2-mannosidase II. VSV-G protein is subsequently processed to the form which contains two endo H-resistant oligosaccharides (GH2) after a second wave of vesicular transport. Processing of GH1 to GH2 in vitro occurs only after a lag period following the appearance of GH1; processing is sensitive to N-ethylmaleimide, guanosine-5'-O-(3-thiotriphosphate), and a synthetic peptide homologous to the rab1 protein effector domain, and processing is inhibited in the absence of free Ca2+ (in the presence of EGTA), reagents which potently inhibit ER to cis Golgi transport. These results suggest that VSV-G protein proceeds through at least two rounds of vesicular transport from the ER to the medial Golgi compartment for processing to the GH2 form, providing a model system to study the regulation of the vectorial membrane fission and fusion events involved in vesicular trafficking and organelle dynamics in the early stages of the secretory pathway. 相似文献
12.
Cadherins are synthesized with a proregion that lies between a short amino-terminal signal sequence and the first extracellular domain. Following synthesis, the proregion is cleaved, an event that is mandatory for the mature cadherin to function in adhesion. The authors have previously reported that catenins coimmunoprecipate with pro-N-cadherin, and that the N-cadherin/catenin complex forms in the Golgi/endoplasmic reticulum. It is clear that N- and E-cadherin confer significantly different characteristics on cells, and it is possible that N- and E-cadherin/catenin complex formation is equally different. To investigate this, the authors generated an antibody against the proregion of E-cadherin and have used it to examine the assembly of the E-cadherin/catenin complex. 相似文献
13.
We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP-tagged, myc-tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected. 相似文献
14.
Cholera toxin (CT) follows a glycolipid-dependent entry pathway from the plasma membrane through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER) where it is retro-translocated into the cytosol to induce toxicity. Whether access to the Golgi apparatus is necessary for transport to the ER is not known. Exo2 is a small chemical that rapidly blocks anterograde traffic from the ER to the Golgi and selectively disrupts the Golgi apparatus but not the TGN. Here we use Exo2 to determine the role of the Golgi apparatus in CT trafficking. We find that under the condition of complete Golgi ablation by Exo2, CT reaches the TGN and moves efficiently into the ER without loss in toxicity. We propose that even in the absence of Exo2 the glycolipid pathway that carries the toxin from plasma membrane into the ER bypasses the Golgi apparatus entirely. 相似文献
15.
Models of Golgi apparatus biogenesis and maintenance are focused on two possibilities: one is self-assembly from the endoplasmic reticulum, and the other is nucleation by a stable template. Here, we asked in three different experimental situations whether assembly of the Golgi apparatus might be dynamically nucleated. During microtubule depolymerization, the integral membrane protein p27 and the peripheral Golgi protein GM130, appeared in newly formed, scattered Golgi elements before three different Golgi apparatus cisternal enzymes, whereas GRASP55, a medial peripheral Golgi protein, showed, if anything, a tendency to accumulate in scattered Golgi elements later than a cisternal enzyme. During Golgi formation after brefeldin A washout, endoplasmic reticulum exit of Golgi resident enzymes could be completely separated from that of p27 and GM130. p27 and GM130 accumulation was onto newly organized perinuclear structures, not brefeldin A remnants, and preceded that of a cisternal enzyme. Reassembly was completely sensitive to guanosine 5'-diphosphate-restricted Sar1p. When cells were microinjected with Sar1pWT DNA to reverse a guanosine 5'-diphosphate-restricted Sar1p endoplasmic reticulum-exit block phenotype, GM130 and p27 collected perinuclearly with little to no exit of a cisternal enzyme from the endoplasmic reticulum. The overall data strongly indicate that the assembly of the Golgi apparatus can be nucleated dynamically by GM130/p27 associated structures. We define dynamic nucleation as the first step in a staged organelle assembly process in which new component association forms a microscopically visible structure onto which other components add later, e.g. Golgi cisternae. 相似文献
16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that can trigger apoptosis in many types of human cancer cells via engagement of its two pro-apoptotic receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). TRAIL can also activate several other signaling pathways such as activation of stress kinases, canonical NF-κB signaling and necroptosis. Though both receptors are ubiquitously expressed, their relative participation in TRAIL-induced signaling is still largely unknown. To analyze TRAIL receptor-specific signaling, we prepared Strep-tagged, trimerized variants of recombinant human TRAIL with high affinity for either DR4 or DR5 receptor. Using these receptor-specific ligands, we examined the contribution of individual pro-apoptotic receptors to TRAIL-induced signaling pathways. We found that in TRAIL-resistant colorectal HT-29 cells but not in pancreatic PANC-1 cancer cells, DISC formation and initial caspase-8 processing proceeds comparably via both DR4- and DR5-activated signaling. TRAIL-induced apoptosis, enhanced by the inhibitor of the Bcl-2 family ABT-737, or by the translation inhibitor homoharringtonine, proceeded in both cell lines predominantly via the DR5 receptor. ShRNA-mediated downregulation of DR4 or DR5 receptors in HT-29 cells also pointed to a stronger contribution of DR5 in TRAIL-induced apoptosis. In contrast to apoptosis, necroptotic signaling was activated similarly by both DR4- or DR5-specific ligands. Activation of auxiliary signaling pathways involving NF-κB or stress kinases proceeded under apoptotic conditions mainly in a DR5-dependent manner, while these signaling pathways were during necroptosis similarly activated by either of these ligands. Our study provides the first systematic insight into DR4 ?/DR5-specific signaling in colorectal and pancreatic cancer cells. 相似文献
17.
Endoplasmic reticulum (ER)-derived compartments are found in many plant species. Although it has been assumed that aggregation induces formation of the ER-derived compartments in plant seed cells, the effect of aggregation on the trafficking from the ER to the Golgi has not yet been elucidated. In this study, we used an aggregated type of red fluorescent protein (DsRED) to investigate the effect of aggregation on sorting in seed cells. DsRED fused to the Golgi sorting determinant was found mainly in large globular structures derived from the ER where ER-resident proteins were excluded. These results indicate that aggregation of the Golgi protein blocks transport from the ER to the Golgi. 相似文献
19.
The early Golgi t-SNARE (target-membrane-associated soluble-N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 5 is thought to specify the docking site for both COPI and COPII coated vesicles originating from the endoplasmic reticulum (ER) and COPI vesicles on the retrograde pathway. We now show that there are two forms of syntaxin 5 that appear to be generated from the same mRNA by alternative initiation of translation. The short form (35 kDa) corresponds to the published sequence. The long form (42 kDa) has an N-terminal cytoplasmic extension containing a predicted type II ER retrieval signal. When grafted onto a reporter molecule, this signal localized the construct to the ER. Biochemical fractionation and immunofluorescence microscopy showed that there was less of the long form in the Golgi apparatus and more in peripheral punctate structures, some of which colocalized with markers of the intermediate compartment. The predicted absence of the long form in budding yeast points to a function unique to higher organisms. 相似文献
20.
Mutations in the preproinsulin protein that affect processing of preproinsulin to proinsulin or lead to misfolding of proinsulin are associated with diabetes. We examined the subcellular localization and secretion of 13 neonatal diabetes-associated human proinsulin proteins (A24D, G32R, G32S, L35P, C43G, G47V, F48C, G84R, R89C, G90C, C96Y, S101C and Y108C) in rat INS-1 insulinoma cells. These mutant proinsulin proteins accumulate in the endoplasmic reticulum (ER) and are poorly secreted except for G84R and in contrast to wild-type and hyperproinsulinemia-associated mutant proteins (H34D and R89H) which were sorted to secretory granules and efficiently secreted. We also examined the effect of C96Y mutant proinsulin on the synthesis and secretion of wild-type insulin and observed a dominant-negative effect of the mutant proinsulin on the synthesis and secretion of wild-type insulin due to induction of the unfolded protein response and resulting attenuation of overall translation. 相似文献
|