首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As do human herpesvirus 6 variants A and B (HHV-6A and -6B), HHV-7 encodes a homolog of the alphaherpesvirus origin binding protein (OBP), which binds at sites in the origin of lytic replication (oriLyt) to initiate DNA replication. In this study, we sought to characterize the interaction of the HHV-7 OBP (OBP(H7)) with its cognate sites in the 600-bp HHV-7 oriLyt. We expressed the carboxyl-terminal domain of OBP(H7) and found that amino acids 484 to 787 of OBP(H7) were sufficient for DNA binding activity by electrophoretic mobility shift analysis. OBP(H7) has one high-affinity binding site (OBP-2) located on one flank of an AT-rich spacer element and a low-affinity site (OBP-1) on the other. This is in contrast to the HHV-6B OBP (OBP(H6B)), which binds with similar affinity to its two cognate OBP sites in the HHV-6B oriLyt. The minimal recognition element of the OBP-2 site was mapped to a 14-bp sequence. The OBP(H7) consensus recognition sequence of the 9-bp core, BRTYCWCCT (where B is a T, G, or C; R is a G or A; Y is a T or C; and W is a T or A), overlaps with the OBP(H6B) consensus YGWYCWCCY and establishes YCWCC as the roseolovirus OBP core recognition sequence. Heteroduplex analysis suggests that OBP(H7) interacts along one face of the DNA helix, with the major groove, as do OBP(H6B) and herpes simplex virus type 1 OBP. Together, these results illustrate both conserved and divergent DNA binding properties between OBP(H7) and OBP(H6B).  相似文献   

2.
The 4-oxo-dihydroquinolines (PNU-182171 and PNU-183792) are nonnucleoside inhibitors of herpesvirus polymerases (R. J. Brideau et al., Antiviral Res. 54:19-28, 2002; N. L. Oien et al., Antimicrob. Agents Chemother. 46:724-730, 2002). In cell culture these compounds inhibit herpes simplex virus type 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV), varicella-zoster virus (VZV), and human herpesvirus 8 (HHV-8) replication. HSV-1 and HSV-2 mutants resistant to these drugs were isolated and the resistance mutation was mapped to the DNA polymerase gene. Drug resistance correlated with a point mutation in conserved domain III that resulted in a V823A change in the HSV-1 or the equivalent amino acid in the HSV-2 DNA polymerase. Resistance of HCMV was also found to correlate with amino acid changes in conserved domain III (V823A+V824L). V823 is conserved in the DNA polymerases of six (HSV-1, HSV-2, HCMV, VZV, Epstein-Barr virus, and HHV-8) of the eight human herpesviruses; the HHV-6 and HHV-7 polymerases contain an alanine at this amino acid. In vitro polymerase assays demonstrated that HSV-1, HSV-2, HCMV, VZV, and HHV-8 polymerases were inhibited by PNU-183792, whereas the HHV-6 polymerase was not. Changing this amino acid from valine to alanine in the HSV-1, HCMV, and HHV-8 polymerases alters the polymerase activity so that it is less sensitive to drug inhibition. In contrast, changing the equivalent amino acid in the HHV-6 polymerase from alanine to valine alters polymerase activity so that PNU-183792 inhibits this enzyme. The HSV-1, HSV-2, and HCMV drug-resistant mutants were not altered in their susceptibilities to nucleoside analogs; in fact, some of the mutants were hypersensitive to several of the drugs. These results support a mechanism where PNU-183792 inhibits herpesviruses by interacting with a binding determinant on the viral DNA polymerase that is less important for the binding of nucleoside analogs and deoxynucleoside triphosphates.  相似文献   

3.
D Chen  P D Olivo 《Journal of virology》1994,68(6):3841-3849
The varicella-zoster virus (VZV) genome contains homologs to each of the seven herpes simplex virus (HSV) genes that are required for viral DNA synthesis. VZV gene 51 is homologous to HSV UL9, which encodes an origin of DNA replication binding protein (OBP). It was previously shown, by using a protein A fusion protein, that the product of gene 51 is a site-specific DNA-binding protein which binds to sequences within the VZV origin (Stow et al., Virology 177:570-577, 1990). In this report, gene 51 was expressed in an in vitro translation system. Rabbit antiserum raised against the carboxyl-terminal 20 amino acids was used to confirm expression of the full-length gene 51 protein, and site-specific DNA-binding activity was demonstrated in a gel retardation assay. The origin-binding domain was located within a 263-amino-acid region of the carboxyl terminus by using a series of deletion mutants. The affinity of binding of the VZV OBP to the three binding sites in the VZV origin was found to be similar. In addition, as with UL9, a CGC triplet within a 10-bp consensus sequence is critical to the interaction between the OBP and the origin. The HSV and VZV OBPs, therefore, appear to have virtually identical recognition sequences despite only 33% identity and 44% similarity in the primary structure of their site-specific DNA-binding domains.  相似文献   

4.
5.
Initiation of herpes simplex virus type 1 (HSV-1) DNA replication during productive infection of fibroblasts and epithelial cells requires attachment of the origin binding protein (OBP), one of seven essential virus-encoded DNA replication proteins, to specific sequences within the two viral origins, oriL and oriS. Whether initiation of DNA replication during reactivation of HSV-1 from neuronal latency also requires OBP is not known. A truncated protein, consisting of the C-terminal 487 amino acids of OBP, termed OBPC, is the product of the HSV UL8.5 gene and binds to origin sequences, although OBPC's role in HSV DNA replication is not yet clear. To characterize protein-DNA complex formation at oriS in cells of neural and nonneural lineage, we used nuclear extracts of HSV-infected nerve growth factor-differentiated PC12 and Vero cells, respectively, as the source of protein in gel shift assays. In both cell types, three complexes (complexes A, B, and C) which contain either OBP or OBPC were shown to bind specifically to a probe which contains the highest-affinity OBP binding site in oriS, site 1. Complex A was shown to contain OBPC exclusively, whereas complexes B and C contained OBP and likely other cellular proteins. By fine-mapping the binding sites of these three complexes, we identified single nucleotides which, when mutated, eliminated formation of all three complexes, or complexes B and C, but not A. In transient DNA replication assays, both mutations significantly impaired oriS-dependent DNA replication, demonstrating that formation of OBP-containing complexes B and C is required for efficient initiation of oriS-dependent DNA replication, whereas formation of the OBPC-containing complex A is insufficient for efficient initiation.  相似文献   

6.
7.
8.
The herpes simplex virus replicon consists of cis-acting sequences, oriS and oriL, and the origin binding protein (OBP) encoded by the UL9 gene. Here we identify essential structural features in the initiator protein OBP and the replicator sequence oriS, and we relate the appearance of these motifs to the evolutionary history of the alphaherpesvirus replicon. Our results reveal two conserved sequence elements in herpes simplex virus type 1, OBP; the RVKNL motif, common to and specific for all alphaherpesviruses, is required for DNA binding, and the WP XXXGAXXFXX L motif, found in a subset of alphaherpesviruses, is required for specific binding to the single strand DNA-binding protein ICP8. A 121-amino acid minimal DNA binding domain containing conserved residues is not soluble and does not bind DNA. Additional sequences present 220 amino acids upstream from the RVKNL motif are needed for solubility and function. We also examine the binding sites for OBP in origins of DNA replication and how they are arranged. NMR and DNA melting experiments demonstrate that origin sequences derived from many, but not all, alphaherpesviruses can adopt stable boxI/boxIII hairpin conformations. Our results reveal a stepwise evolutionary history of the herpes simplex virus replicon and suggest that replicon divergence contributed to the formation of major branches of the herpesvirus family.Herpesviruses have been found in animal species ranging from molluscs to man. According to the International Committee on Taxonomy of Viruses, the order of Herpesvirales consists of three families as follows: Alloherpesviridae, Herpesviridae, and Malacoherpesviridae (1). The subfamilies Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae are found within the family of Herpesviridae. The events leading to establishment of a new virus species are poorly understood, but in the case of herpesviruses it is commonly assumed that viruses co-evolve with their hosts (2). Herpesviruses have thus become well adapted to their hosts and may reside in a latent state in the host for a lifetime with little or no overt signs of infection. Upon reactivation, the infectious virus will be released. The viruses remain faithful to their hosts, and infections across species borders are rare but may under specific circumstances give rise to fatal disease.Replication of herpes simplex virus type 1 (HSV-1),2 requires a cis-acting DNA sequence, the replicator, termed oriS or oriL, an initiator protein, OBP or UL9 protein, and a replisome composed of DNA polymerase, helicase-primase, and a single strand DNA-binding protein referred to as ICP8 or UL29 protein (3). OBP assisted by ICP8 can in an ATP-dependent reaction unwind double-stranded oriS (4, 5). The resulting single-stranded DNA adopts a hairpin conformation, which is stably bound by OBP (6, 7). The herpesvirus replisome once assembled on DNA is capable of synthesizing leading and lagging strands processively in a coordinated fashion (8). DNA replication is likely to start on circular molecules produced by the action of DNA ligase IV/XRCC4 and proceed in a θ-type manner (9, 10). Later, a rolling circle mode of replication dominates giving rise to characteristic head-to-tail concatemers. The initiator protein OBP appears to be strictly required only during the first few hours of the infectious cycle (11, 12).The HSV-1 origin binding protein was first isolated using an assay monitoring specific binding to HSV-1 oriS (13). A minimal DNA-binding site was identified using footprinting techniques as well as binding studies with double-stranded oligonucleotides (14). For alphaherpesviruses the high affinity binding site is always TTCGCAC, with a minor exception for CHV1 also referred to as monkey B virus (3 The C-terminal 317 amino acids of alphaherpesvirus OBP can be isolated as a soluble protein, which remains capable of high affinity binding to the sequence TTCGCAC (15). The C-terminal domain of HSV-1 OBP, here referred to as ΔOBP, binds as a monomer to the major groove in the DNA and makes contacts with base pairs as well as the deoxyribose-phosphate backbone (16, 17). ΔOBP binds DNA specifically with an estimated Kd of 0.3 nm, a value that is highly influenced by the composition of the assay buffer (16). At high protein concentrations ΔOBP form aggregates, which, still in a sequence-specific manner, binds DNA (16). A number of studies have attempted to define amino acids involved in DNA binding (1821). In addition, sequence comparisons between alphaherpesviruses and roseoloviruses have helped to identify amino acids in OBP potentially involved in DNA binding as well as corresponding recognition sequences in origins of DNA replication (2225). However, a comprehensive and quantitative study of evolutionarily conserved amino acids required for DNA binding is still lacking.

TABLE 1

Functionally significant sequence motifs for herpes simplex virus replicon evolutionOrigins of DNA replication have been identified from sequence analysis. For roseoloviruses the sequences for two slightly different binding sites for OBP have been listed (31). The number and orientation of OBP-binding sites in relation to an AT-rich spacer sequence are schematically presented by symbols > and <. Note that since a virus often has more than one origin of replication they may exist as variants. This is indicated by symbols within parentheses. The conserved amino acids within the ICP8-binding motif are shown in boldface type. Sources and nomenclature for DNA sequences have been presented in Footnote 3.Open in a separate windowThe single strand DNA-binding protein, ICP8 encoded by the UL29 gene, is involved in initiation of DNA replication, and it also participates in the elongation phase at the replication fork (4, 5, 26). ICP8 forms a specific complex with OBP (26, 27). Studies with deletion mutants have demonstrated that important sequences are found close to the C terminus of OBP, but amino acids directly participating in the high affinity interaction have not been identified. The interaction is biologically significant, because deletion of the extreme C terminus enhances the helicase activity of OBP but reduces origin-dependent DNA synthesis (26).The HSV-1 oriS contains three copies of the binding site for OBP; two binding sites, box I and box II, are high affinity sites, and the third binding site, box III, has a very low affinity for OBP (14) (Fig. 1). All sites are required for efficient replication, and in a competitive situation there is a strong selection for the most efficient replicator sequence (28). Box III and box I are arranged in a palindrome, which becomes rearranged upon activation to form an alternative conformation, most likely a hairpin (4, 6, 7). Point mutations that prevent formation of a hairpin reduce replication, and compensatory mutations restore complementary base pairing as well as the ability to replicate (7).Open in a separate windowFIGURE 1.Schematic presentation of the herpes simplex virus replicon. Upper part, HSV-1 oriS. The linear genome contains three homologous replication origins, two copies of oriS and one copy oriL, and encodes seven replication proteins. Middle part, HSV-1 OBP. OBP or UL9 protein is a superfamily II DNA helicase as well as a sequence-specific DNA-binding protein. Here the helicase domain is represented by two connected ellipsoids, and the C-terminal DNA binding is drawn as a circle. The OBP-binding sites in oriS are shown. The OBP dimer binds two double-stranded DNA box I oligonucleotides but only one hairpin with a single-stranded tail (48). The figure is intended to demonstrate conformational changes affecting the DNA binding domain, referred to as ΔOBP, during activation of oriS. Lower part, DNA binding domain ΔOBP. A schematic presentation of the following three motifs discussed in this publication: the F553 XX KYL motif required for proper folding of the DNA binding domain, the R756VKNL motif necessary for DNA binding, and the W839PXXXGAXXFXXL motif involved in binding to ICP8.To learn more about the mechanism of virus evolution, we have examined the evolutionary history of some functionally significant features of the HSV-1 replicon and related them to a sequence-based evolutionary tree. The results indicate that replicon divergence, characterized by the stepwise appearance of the DNA-binding RVKNL motif, the WPXXXGAXXFXXL ICP8-binding motif, and the boxIII–boxI palindrome, may have played important roles in establishing major branches of the alphaherpesvirus tree.  相似文献   

9.
The integrase (IN) protein of human immunodeficiency virus type 1 (HIV-1) catalyzes site-specific cleavage of 2 bases from the viral long terminal repeat (LTR) sequence yet it binds DNA with little DNA sequence specificity. We have previously demonstrated that the C-terminal half of IN (amino acids 154-288) possesses a DNA binding domain. In order to further characterize this region, a series of clones expressing truncated forms of IN as N-terminal fusion proteins in E.coli were constructed and analyzed by Southwestern blotting. Proteins containing amino acids 1-263, 1-248 and 170-288 retained the ability to bind DNA, whereas a protein containing amino acids 1-180 showed no detectable DNA binding. This defines a DNA binding domain contained within amino acids 180-248. This region contains an arrangement of 9 lysine and arginine residues each separated by 2-4 amino acids (KxxxKxxxKxxxxRxxxRxxRxxxxKxxxKxxxK), spanning amino acids 211-244, which is conserved in all HIV-1 isolates. A clone expressing full-length IN with a C-terminal fusion of 16 amino acids was able to bind DNA comparably to a cloned protein with a free C-terminus, and an IN-specific monoclonal antibody which recognizes an epitope contained within amino acids 264-279 was unable to block DNA binding, supporting the evidence that a region necessary for binding lies upstream of amino acid 264.  相似文献   

10.
L K Thorner  D A Lim    M R Botchan 《Journal of virology》1993,67(10):6000-6014
The E1 protein of bovine papillomavirus type 1 is a multifunctional enzyme required for papillomaviral DNA replication. It assists in the initiation of replication both as a site-specific DNA-binding protein and as a DNA helicase. Previous work has indicated that at limiting E1 concentrations, the E2 protein is required for efficient E1 binding to the replication origin. In this study, we have defined the domain of the E1 protein required for site-specific DNA binding. Experiments with a series of truncated proteins have shown that the first amino-terminal 299 amino acids contain the DNA-binding domain; however, the coterminal M protein, which is homologous to E1 for the first 129 amino acids, does not bind origin DNA. A series of small internal deletions and substitution mutations in the DNA-binding domain of E1 show that specific basic residues in this region of the protein, which are conserved in all E1 proteins of the papillomavirus family, likely play a direct role in binding DNA and that a flanking conserved hydrophobic subdomain is also important for DNA binding. A region of E1 that interacts with E2 for cooperative DNA binding is also retained in carboxy-terminal truncated proteins, and we show that the ability of full-length E1 to complex with E2 is sensitive to cold. The E1 substitution mutant proteins were expressed from mammalian expression vectors to ascertain whether site-specific DNA binding by E1 is required for transient DNA replication in the cell. These E1 proteins display a range of mutant phenotypes, consistent with the suggestion that site-specific binding by E1 is important. Interestingly, one E1 mutant which is defective for origin binding but can be rescued for such activity by E2 supports significant replication in the cell.  相似文献   

11.
DNA sequences which have structural features suggestive of their functioning as an origin of lytic-phase DNA replication were previously identified in both human herpesvirus 6B strain Z29 [HHV-6B (Z29)] and in HHV-6A (U1102). Plasmid constructs containing the putative HHV-6B (Z29) oriLyt element were replicated after transfection into permissive T cells, when trans-acting factors were provided by HHV-6B (R-1) infection. By using this assay, the HHV-6B (Z29) oriLyt was mapped to a minimal region of approximately 400 bp which lies upstream of the gene that is homologous to herpes simplex virus UL29, a region that carries an origin in other betaherpesviruses and in some alphaherpesviruses.  相似文献   

12.
Human herpesvirus 7 (HHV-7) DNA sequences colinear with the HHV-6 lytic-phase origin of DNA replication (oriLyt) were amplified by PCR. Plasmid constructs containing these sequences were replicated in HHV-7-infected cord blood mononuclear cells but not in HHV-6-infected cells. In contrast, plasmids bearing HHV-6 oriLyt were replicated in both HHV-6- and HHV-7-infected cells. Finally, the minimal HHV-7 DNA element necessary for replicator activity was mapped to a 600-bp region which contains two sites with high homology to the consensus binding site for the HHV-6 origin binding protein. At least one of these binding sites was shown to be essential for replicator function of HHV-7 oriLyt.  相似文献   

13.
Cellular protein interactions with herpes simplex virus type 1 oriS.   总被引:12,自引:0,他引:12       下载免费PDF全文
The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains an AT-rich region and three highly homologous sequences, sites I, II, and III, identified as binding sites for the HSV-1 origin-binding protein (OBP). In the present study, interactions between specific oriS DNA sequences and proteins in uninfected cell extracts were characterized. The formation of one predominant protein-DNA complex, M, was demonstrated in gel shift assays following incubation of uninfected cell extracts with site I DNA. The cellular protein(s) that comprises complex M has been designated origin factor I (OF-I). The OF-I binding site was shown to partially overlap the OBP binding site within site I. Complexes with mobilities indistinguishable from that of complex M also formed with site II and III DNAs in gel shift assays. oriS-containing plasmid DNA mutated in the OF-I binding site exhibited reduced replication efficiency in transient assays, demonstrating a role for this site in oriS function. The OF-I binding site is highly homologous to binding sites for the cellular CCAAT DNA-binding proteins. The binding site for the CCAAT protein CP2 was found to compete for OF-I binding to site I DNA. These studies support a model involving the participation of cellular proteins in the initiation of HSV-1 DNA synthesis at oriS.  相似文献   

14.
A previously identified human herpesvirus 6B (HHV-6B) origin of DNA replication contains two binding sites for the origin-binding protein (OBPH6B). We have investigated the functional significance of these sites by determining the replication efficiencies of mutated origin sequences, using a transient replication assay. The results indicate that both sites are required for DNA replication. In addition, we have tested the functional consequences of linear sequence amplifications in the origin. The data show that tandemized origin elements are more efficiently replicated than single-copy origins. Finally, we have determined the extent of interstrain origin sequence variation that exists among HHV-6 isolates by cloning, sequencing, and analyzing origins from a number of virus isolates, including examples of both HHV-6A and HHV-6B.  相似文献   

15.
16.
Human herpesvirus 6 is a T lymphotropic herpesvirus, long classified into variants A and B (HHV-6A and HHV-6B) based on differences in sequence and pathogenicity. Recently, however, HHV-6A and HHV-6B were reclassified as different species. Here, we isolated a neutralizing monoclonal antibody (Mab) named AgQ 1-1 that was specific for HHV-6A glycoprotein Q1 (AgQ1), and we showed that amino acid residues 494 to 497 of AgQ1 were critical for its recognition by this Mab. This region was also essential for AgQ1''s complex formation with gH, gL, and gQ2, which might be important for viral binding to the cellular receptor, CD46. In addition, amino acid residues 494 to 497 are essential for viral replication. Interestingly, this sequence corresponds to the domain on HHV-6B gQ1 that is critical for recognition by an HHV-6B-specific neutralizing Mab. Within this domain, only Q at position 496 of HHV-6A is distinct from the HHV-6B sequence; however, the mutant AgQ1(Q496E) was still clearly recognized by the Mab AgQ 1-1. Surprisingly, replacement of the adjacent amino acid, in mutant AgQ1(C495A), resulted in poor recognition by Mab AgQ 1-1, and AgQ1(C495A) could not form the gH/gL/gQ1/gQ2 complex. Furthermore, the binding ability of mutant AgQ1(L494A) with CD46 decreased, although it could form the gH/gL/gQ1/gQ2 complex and it showed clear reactivity to Mab AgQ 1-1. These data indicated that amino acid residues 494 to 497 of AgQ1 were critical for the recognition by Mab AgQ 1-1 and essential for AgQ1''s functional conformation.  相似文献   

17.
D W Martin  S P Deb  J S Klauer    S Deb 《Journal of virology》1991,65(8):4359-4369
The herpes simplex virus type 1 (HSV-1) OriS region resides within a 90-bp sequence that contains two binding sites for the origin-binding protein (OBP), designated sites I and II. A third presumptive OBP-binding site (III) within OriS has strong sequence similarity to sites I and II, but no sequence-specific OBP binding has yet been demonstrated at this site. We have generated mutations in sites I, II, and III and determined their replication efficiencies in a transient in vivo assay in the presence of a helper virus. Mutations in any one of the sites reduced DNA replication significantly. To study the role of OriS sequence elements in site I and the presumptive site III in DNA replication, we have also generated a series of mutations that span from site I across the presumptive binding site III. These mutants were tested for their ability to replicate and for the ability to bind OBP by using gel shift analyses. The results indicate that mutations across site I drastically reduce DNA replication. Triple-base-pair substitution mutations that fall within the crucial OBP-binding domain, 5'-YGYTCGCACT-3' (where Y represents C or T), show a reduced level of OBP binding and DNA replication. Substitution mutations in site I that are outside this crucial binding sequence show a more detrimental effect on DNA replication than on OBP binding. This suggests that these sequences are required for initiation of DNA replication but are not critical for OBP binding. Mutations across the presumptive OBP-binding site III also resulted in a loss in efficiency of DNA replication. These mutations influenced OBP binding to OriS in gel shift assays, even though the mutated sequences are not contained within known OBP-binding sites. Replacement of the wild-type site III with a perfect OBP-binding site I results in a drastic reduction of DNA replication. Thus, our DNA replication assays and in vitro DNA-binding studies suggest that the binding of the origin sequence by OBP is not the only determining factor for initiation of DNA replication in vivo.  相似文献   

18.
Herpesvirus capsids are regular icosahedrons with a diameter of a 125 nm and are made up of 162 capsomeres arranged on a T = 16 lattice. The capsomeres (VP5) interact with the triplex structure, which is a unique structural feature of herpesvirus capsid shells. The triplex is a heterotrimeric complex; one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent capsomeres. VP19C interacts with VP23 and with the major capsid protein VP5 and is required for the nuclear localization of VP23. Mutation of VP19C results in the abrogation of capsid shell synthesis. Analysis of the sequence of VP19C showed the N-terminus of VP19C is very basic and glycine rich. It was hypothesized that this domain could potentially bind to DNA. In this study an electrophoretic mobility shift assay (EMSA) and a DNA condensation assay were performed to demonstrate that VP19C can bind DNA. Purified VP19C was able to bind to both a DNA fragment of HSV-1 origin as well as a bacterial plasmid sequence indicating that this activity is non-specific. Ultra-structural imaging of the nucleo-protein complexes revealed that VP19C condensed the DNA and forms toroidal DNA structures. Both the DNA binding and condensing properties of VP19C were mapped to the N-terminal 72 amino acids of the protein. Mutational studies revealed that the positively charged arginine residues in this N-terminal domain are required for this binding. This DNA binding activity, which resides in a non-conserved region of the protein could be required for stabilization of HSV-1 DNA association in the capsid shell.  相似文献   

19.
An analysis of all known human herpesviruses has not previously been reported on sperm from normal donors. Using an array-based detection method, we determined the cross-sectional frequency of human herpesviruses in semen from 198 Danish sperm donors. Fifty-five of the donors had at least one ejaculate that was positive for one or more human herpesvirus. Of these 27.3% (n = 15) had a double herpesvirus infection. If corrected for the presence of multiple ejaculates from some donors, the adjusted frequency of herpesviruses in semen was 27.2% with HSV-1 in 0.4%; HSV-2 in 0.1%; EBV in 6.3%; HCMV in 2.7%; HHV-6A/B in 13.5%; HHV-7 in 4.2%, whereas none of the samples had detectable VZV or HHV-8. Subsequently, we examined longitudinally data on ejaculates from 11 herpesvirus-positive donors. Serial analyses revealed that a donor who tested positive for herpesvirus at one time point did not necessarily remain positive over time. For the most frequently found herpesvirus, HHV-6A/B, we examined its association with sperm. For HHV-6A/B PCR-positive semen samples, HHV-6A/B could be detected on the sperm by flow cytometry. Conversely, PCR-negative semen samples were negative by flow cytometry. HHV-6B was shown to associate with sperm within minutes in a concentration dependent manner. Confocal microscopy demonstrated that HHV-6B associated with the sperm head, but only to sperm with an intact acrosome. Taken together, our data suggest that HHV-6A/B could be transported to the uterus via binding to the sperm acrosome. Moreover, we find a 10 times higher frequency of HHV-7 in semen from healthy individuals than previously detected. Further research is required to determine the potential risk of using herpesvirus-positive donor semen. Longitudinally analyses of ejaculate series indicate that implementation of quarantine for a donor shown to shed a herpesvirus is not a tenable solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号