首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant degree of cell damage is observed during suspension cell culture with air sparging. Protective agents can be added to the culture medium to protect the cells from damage. It has been observed that cells tend to adhere to air-medium interfaces and cell damage is mainly due to this cell-bubble interaction; protective additives have been found to prevent this cell adhesion to the bubble surfaces. In this article, it is demonstrated that the interfacial tension between the air and medium is related to the effectiveness of the protective additives to prevent adhesion of cells to this interface. Five different types of additives (Pluronic F-68, Methocels, dextran, Polyvinyl alcohol, and polyethylene glycols) were studied in an effort to determine their protective characteristics. Liquid-vapor interfacial tensions of the culture medium, with and without the additives, were measured by two different techniques (maximum bubble pressure method and Wilhelmy plate method). In addition, visualization techniques showed that in the presence of certain protective additives cells do not adhere to the bubble surface. Results obtained from these experiments indicate that the additives which rapidly lower the liquid-vapor interfacial tension of the culture medium also prevent adhesion of cells to the bubble surface. Experiments have also been conducted to determine the number of cells killed due to bubble rupture, and it was observed that this number is related to the amount of cells adhering to the bubble surface. (c) 1995 John Wiley & Sons, Inc.This article is a US Government Work and, as such, is in the public domain in the United States of America.  相似文献   

2.
Pluronic F-68 (PF-68) is routinely used as a shear-protection additive in mammalian cell cultures. However, most previous studies of its shear protection mechanisms have typically been qualitative in nature and have not covered a wide range of PF-68 and cell concentrations. In this study, interactions between air bubbles along with the associated cell damage were investigated using the novel adenovirus-producing cell line PER.C6, a human embryonic retinoblast transfected with the adenovirus type 5 E1 gene. A wide range of PF-68 and cell concentrations (approximately 3 orders of magnitude) were used in these studies. At low PF-68 concentrations (0.001 g/L), cells had a very high affinity for bubbles, indicated by a more than 10-fold increase in cell concentration in the foam layer liquid versus the bulk liquid. At high PF-68 concentrations ( approximately 3 g/L), however, the cell concentration in the foam layer liquid was only approximately 40% of that in the bulk cell suspension. The number of cells associated with each bubble decreased from approximately 1000 cells at 0.001 g/L PF-68 to approximately 120 cells at 3 g/L PF-68. Despite the lower cell affinity for bubbles at a high PF-68 concentration, at high cell concentrations (10(7) cells/mL and 1 g/L PF-68) significant cell entrapment occurred in the foam layer, on the order of 1000 cells/bubble. For the cells carried by the bubbles, quantitative cell damage data revealed that the probability of cell death from bubble rupture was independent of bulk cell concentration but was affected by PF-68 concentration. These quantitative studies further indicated that even at a low PF-68 concentration of 0.03 g/L, approximately 30% of the attached cells were killed during the bubble rupture process. At the same time, at low PF-68 concentration (<0.1 g/L), significant cell death occurred prior to bubble rupture. On average, a bubble disrupted more cells in the bulk liquid and/or foam layer than during rupture. For both mechanisms, the number of cells damaged by each bubble increased with decreasing PF-68 concentration and increasing bulk cell concentration.  相似文献   

3.
W. S. Tan  Y. L. Chen 《Cytotechnology》1994,15(1-3):321-328
Previous work by the authors and others has shown that suspended animal cell damage in bioreactors is caused by cell-bubble interactions, regardless whether the bubbles are from bubble entrainment or direct gas sparging. As approach to measure the adsorptivity of animal cells to bubbles, a modified batch foam fractionation technique has been developed in this work and proven to be applicable. By using this technique, the number of cells adsorbed per unit bubble surface area and the adsorption coefficients have been measured to quantify hybridoma cell-bubble interactions, and the prevetive effects of serum and Pluronic F68 on these interactions. It was demonstrated quantitatively that the hybridoma cells adhere to bubbles spontaneously and significant numbers exist in the foam, and that both the serum and Pluronic F68 provide strong prevention to these cell-bubble interactions. The results obtained provide criteria for bioreactor operation and medium formulation to prevent cell-bubble interactions and cell damage in the culture processes.Abbreviations NBCS new born calf serum - SFM serum-free medium  相似文献   

4.
The surfactant Pluronic F-68 (PF-68) is widely used in large-scale mammalian cell culture to protect cells from shear stress that arises from agitation and gas sparging. Several studies suggested that PF-68 is incorporated into the cell plasma membrane and could enter the cells, but without providing any direct evidence. The current study has examined this question for two cell types, one of pharmaceutical interest (CHO cells) and the other of biomedical interest (chondrocytes or cartilage cells). A fluorescent derivative of PF-68 was synthesized to detect and localize internalized Pluronic with culture time. PF-68 uptake by the cells was quantified and characterized. We clearly demonstrate that PF-68 enters the cells, and possibly accumulates in the endocytic pathway. CHO cells showed an average uptake of 11.7 +/- 6.7 (SEM) microg PF-68/10(6) cells while the uptake of chondrocytes was 56.0 +/- 10.9 (SEM) microg PF-68/10(6) cells, independently of the initial PF-68 concentration (between 0.01 and 0.2%, w/v) and of cell concentration (from 1 x 10(6) to 4 x 10(6) cells/mL). These uptake values were identical for both static and agitated culture conditions. Finally, we found that CHO cells are able to eliminate intracellular fluorescent PF-68 but chondrocytes are not. These results show that the uptake of PF-68 by the cells can severely affect PF-68 concentration in the culture medium and thus shear protection effect.  相似文献   

5.
The control of glycosylation to satisfy regulatory requirements and quality consistency of recombinant proteins produced by different processes has become an important issue. With two N-glycosylation sites, γ-interferon (IFN-γ) can be seen as a prototype of a recombinant therapeutic glycoprotein for this purpose. The effect of the nonionic surfactant Pluronic F-68 (PF-68) on cell growth and death was investigated, as well as production and glycosylation of recombinant IFN-γ produced by a CHO cell line that was maintained in a rich protein-free medium in the absence or presence of low agitation. Under these conditions, a dose-dependent effect of PF-68 (0-0.1%) was shown not only to significantly enhance growth but also to reduce cell lysis. Interestingly, supplementing the culture medium with PF-68 led to increased IFN-γ production as a result of both higher cell densities and a higher specific production rate of IFN-γ. If cells were grown with agitation, lack of PF-68 in the culture medium decreased the fraction of the fully glycosylated IFN-γ glycoform (2N) from 80% to 65-70% during the initial period. This effect appeared to be due to a lag phase in cell growth observed during this period. Finally, a global kinetic study of CHO cell metabolism indicated higher efficiency in the utilization of the two major carbon substrates when cultures were supplemented with PF-68. Therefore, these results highlight the importance of understanding how media surfactant can affect cell growth as well as cell death and the product quality of a recombinant glycoprotein expressed in CHO cell cultures.  相似文献   

6.
Perfusion culture is often performed with micro-sparger to fulfill the high oxygen demand from the densified cells. Protective additive Pluronic F-68 (PF-68) is widely used to mitigate the adverse effect in cell viability from micro-sparging. In this study, different PF-68 retention ratio in alternating tangential filtration (ATF) columns was found to be crucial for cell performance of different perfusion culture modes. The PF-68 in the perfusion medium was found retained inside the bioreactor when exchanged through ATF hollow fibers with a small pore size (50 kD). The accumulated PF-68 could provide sufficient protection for cells under micro-sparging. On the other hand, with large-pore-size (0.2 μm) hollow fibers, PF-68 could pass through the ATF filtration membranes with little retention, and consequently led to compromised cell growth. To overcome the defect, a PF-68 feeding strategy was designed and successfully verified on promoting cell growth with different Chinese hamster ovary (CHO) cell lines. With PF-68 feeding, enhancements were observed in both viable cell densities (20%–30%) and productivity (~30%). A threshold PF-68 concentration of 5 g/L for high-density cell culture (up to 100 × 106 cells/mL) was also proposed and verified. The additional PF-68 feeding was not observed to affect product qualities. By designing the PF-68 concentration of perfusion medium to or higher than the threshold level, a similar cell growth enhancement was also achieved. This study systematically investigated the protecting role of PF-68 in intensified CHO cell cultures, shedding a light on the optimization of perfusion cultures through the control of protective additives.  相似文献   

7.
The ability of a silicone antifoam to retard foaming in a liquor prepared from potatoes is enhanced by the addition of ethoxylated nonionic surfactants. The enhancement is non-linear for surfactant concentration, with all 12 surfactants tested possessing a concentration at which foam heights strongly diminish, referred to as the surfactant critical antifoaming concentration (SCAFC). SCAFCs vary between surfactants, with lower values indicating better mass efficiency of antifoaming enhancement. SCAFCs decrease with degree of ethoxylation and decrease with the hydrophilic–lipophilic balance for ethoxylated nonionic surfactants. Surfactant addition produces a mixed water-surface layer containing surfactant and surface-active components in the potato medium. Surface tension reduction does not correlate well with antifoam performance enhancement. A model is proposed where surfactant adsorption promotes desorption of surface-active potato medium components from the water surface. At the SCAFC, desorption is not complete, yet the rate of bubble rupture is sufficiently enhanced to provide excellent foam control. Electronic Publication  相似文献   

8.
A series of 23 neutral, anionic, and zwitterionic surfactants were tested at a concentration of 0.1% wt/vol for their influence on attachment of a Mycobacterium sp. to cellulose acetate (CA) and polyamide (PA) reverse osmosis (RO) membranes. Four cell attachment bioassays were used: (1) semiconcurrent addition of surfactant and bacteria to RO coupons (standard assay); (2) surfactant pretreatment of RO membranes (membrane pretreatment assay); (3) surfactant treatment of adsorbed cells (detachment assay); and (4) surfactant pretreatment of mycobacteria (cell pretreatment assay). Seventeen surfactants inhibited attachment to PA membranes, whereas 15 inhibited attachment to CA in standard assays and, in 13 cases, the same surfactant inhibited attachment to both PA and CA. Despite greater cell attachment to PA than CA, surfactants were typically more effective in the former membrane system. More surfactants were effective in impairing cell attachment than in promoting detachment and a number enhanced attachment in membrane pretreatment assays, suggesting surface modification of RO membranes. Cell pretreatment inhibited attachment to CA membranes, suggesting the bacterial surface was also a target for detergent activity. Multivariate regression and cluster analyses indicated that critical micellar concentration (CMC) was positively correlated with Mycobacterium attachment in CA and PA standard assays. Surfactant dipole moment and octanol/water partitioning (LogP) also contributed to detergent activity in the PA system, whereas dipole moment, molecular topology (i.e., connectivity indices), and charge properties influenced activity in the CA system. Influential variables in membrane pretreatment assays included the LogP, topology indices, and charge properties, whereas CMC played a diminished role. Surfactant dipole moment was most influential in CA membrane detachment assays. Increasing system ionic strength by LiBr addition strengthened inhibition of cell attachment to CA membranes by dodecylbenzene sulfonic acid (DBSA) and promoted DBSA adsorption to CA surfaces as indicated by attenuated total reflection Fourier-transform infrared spectrometry. Results indicate that inhibition of bacterial attachment to RO membranes may be maximized by manipulating surfactant molecular structure to optimize surface adsorption behavior.  相似文献   

9.
We describe a method by which the degree of bubble saturation can be determined by measuring the velocity of single bubbles at different heights from the bubble source in pure water containing increasing concentrations of surfactants. The highest rising velocities were measured in pure water. Addition of surfactants caused a concentration-dependent and height-dependent decrease in bubble velocity; thus, bubbles are covered with surfactants as they rise, and the distance traveled until saturation is reached decreases with increased concentration of surfactant. Pluronic F68 is a potent effector of bubble saturation, 500 times more active than serum. At Pluronic F68 concentrations of 0.1% (w/v), bubbles are saturated essentially at their source. The effect of bubble saturation on the interactions between animal cells and gas bubbles was investigated by using light microscopy and a micromanipulator. In the absence of surfactants, bubbles had a killing effect on cells; hybridoma cells and Chinese hamster ovary (CHO) cells were ruptured when coming into contact with a bubble. Bubbles only partially covered by surfactants adsorbed the cells. The adsorbed cells were not damaged and they also could survive subsequent detachment. Saturated bubbles, on the other hand, did not show any interactions with cells. It is concluded that the protective effect of serum and Pluronic F68 in sparged cultivation systems is based on covering the medium-bubble interface with surfaceactive components and that cell death occurs either after contact of cells with an uncovered bubble or by adsorption of cells through partially saturated bubbles and subsequent transport of cells into the foam region. (c) 1994 John Wiley & Sons, Inc.  相似文献   

10.
To investigate the mechanisms of cell protection provided by medium additives against animal cell injury in sparged bioreactors, we have analyzed the effect of various additives on the cell-to-bubble attachment process using CHO cells in suspension. Cell-to-bubble attachment was examined using three experimental techniques: (1) cell-bubble induction time analysis (cell-to-bubble attachment times); (2) forming thin liquid films and observing the movement and location of cells in the thin films; and (3) foam flotation experiments. The induction times we measured for the various additives are as follows: no additive (50 to 500 ms), polyvinyl pyrrolidone (PVP: 20 to 500 ms), polyethylene glycol (PEG: 200 to 1000 ms), 3% serum (500 to 1000 ms), polyvinyl alcohol (PVA: 2 to 10 s), Pluronic F68 (5 to 20 s), and Methocel (20 to 60 s). In the thin film formation experiments, cells in medium with either F68, PVA, or Methocel quickly flowed out of draining thin liquid films and entered the plateau border. When using media with no additive or with serum, the flow of cells out of the thin liquid film and film drainage were slower than for media containing Pluronic F68. PVA, or Methocel. With PVP and PEG, the thin film drainage was much slower and cells remained trapped in the film. For the foam flotation experiments, a separation factor (ratio of cell concentration in the foam catch to that in the bubble column) was determined for the various additives. In the order of increasing separation factors (i.e., increasing cell attachment to bubbles), the additives are as follows: Methocel, PVA, Pluronic F68, 3% serum, serum-free medium with no additives, PEG, and PVP. Based on the results of these three different cell-to-bubble attachment experiments, we have classified the cell-protecting additives into three groups: (1) Pluronic F68, PVA, and Methocel (reduced cell-to-bubble attachment); (2) PEG and PVP (high or increased cell-to-bubble attachment); and (3) FBS (reduced cell attachment butslower drainage films compared with F68, PVA, and Methocel with some cell entrapment in those films). These phenomena are discussed in relation to the interfacial properties of the media reported in a companion Study (this issue). (c) 1995 John Wiley & Sons Inc.  相似文献   

11.
Interfacial properties of cell culture media with cell-protecting additives   总被引:1,自引:0,他引:1  
In an effort to identify key rheological properties that contribute to cell protection against shear damage, we have measured surface shear and dilatationai viscosities, dynamic surface tension, foaminess, and foam stability for media containing cell-protecting additives. In a companion article,(18) we found that cell-to-bubble attachment was decreased in media containing Methocel, Pluronic F68, or polyvinyl alcohol (PVA). In medium containing polyethylene glycol (PEG) or potyvinyl-pyrrolidone (PVP), attachment was increased. PEG, PVP, serum (FBS), and serum albumin (BSA) increased the surface viscosity of the air/medium surface (thus, producing a more rigid interface), whereas F68 and PVA lowered it greatly. Foaming experiments showed that Methocel, PEG, PVA, and F68 decreased the foam half-life while FBS, BSA, and PVP were foam stabilizers. Interestingly, the foam stability of CHO cell suspensions decreased significantly for cell concentrations higher than ca. 2 x 10(6) cells/mL. Nonviable CHO cells reduced foam stability further. Dynamic surface tension values of the media tested were found significantly differentfrom their static surface tension values. The interfacial properties measured and the results presented in the companion study suggest that the additives that lower dynamic surface tension the most (Methocel, F68, and PVA) correlate well with reduced cell-to-bubble attachment, and thus, cell protection. Reduced dynamic surface tension with these additives implies faster surfactant adsorption, mobile interfaces, lower surface viscosity, and foam destabilization. Because PEG and PVP resulted in increased cell-to-bubble attachment and had different interfacial properties, a different mechanism (compared with Methocel, PVP, and F68) is apparently responsible for their protective effect. Finally, cell protection offered by FBS and BSA is attributed to the foam stabilization properties provided by these additives. (c) 1995 John Wiley & Sons Inc.  相似文献   

12.
Phospholipid films can be preserved in vitro when adsorbed to a solidifiable hypophase. Suspensions of natural surfactant, lipid extract surfactants, and artificial surfactants were added to a sodium alginate solution and filled into a captive bubble surfactometer (CBS). Surfactant film was formed by adsorption to the bubble of the CBS for functional tests. There were no discernible differences in adsorption, film compressibility or minimal surface tension on quasi-static or dynamic compression for films formed in the presence or absence of alginate in the subphase of the bubble. The hypophase-film complex was solidified by adding calcium ions to the suspension with the alginate. The preparations were stained with osmium tetroxide and uranyl acetate for transmission electron microscopy. The most noteworthy findings are: (1) Surfactants do adsorb to the surface of the bubble and form osmiophilic lining layers. Pure DPPC films could not be visualized. (2) A distinct structure of a particular surfactant film depends on the composition and the concentration of surfactant in the bulk phase, and on whether or not the films are compressed after their formation. The films appear heterogeneous, and frequent vesicular and multi-lamellar film segments are seen associated with the interfacial films. These features are seen already upon film formation by adsorption, but multi-lamellar segments are more frequent after film compression. (3) The rate of film formation, its compressibility, and the minimum surface tension achieved on film compression appear to be related to the film structure formed on adsorption, which in turn is related to the concentration of the surfactant suspension from which the film is formed. The osmiophilic surface associated surfactant material seen is likely important for the surface properties and the mechanical stability of the surfactant film at the air-fluid interface.  相似文献   

13.
Therapeutic monoclonal antibodies (mAbs) are biologics produced using mammalian cells and represent an important class of biotherapeutics. Aggregation in mAbs is a major challenge that can be mitigated by rigorous and reproducible upstream and downstream approaches. The impact of frequently used surfactants, like polysorbate 20, polysorbate 80, poloxamer 188, and 2-hydroxypropyl-beta-cyclodextrin, on aggregation of mAbs during cell culture was investigated in this study. Their impact on cell proliferation, viability, and mAb titer was also investigated. Polysorbate 20 and polysorbate 80 at the concentration of 0.01 g/L and poloxamer 188 at the concentration of 5 g/L were found to be effective in reducing aggregate formation in cell culture medium, without affecting the cell growth or viability. Furthermore, their presence in culture media resulted in increased cell proliferation as compared to the control group. Addition of these surfactants at the specified concentrations increased monomer production while decreasing high molecular weight species in the medium. After mAbs were separated, using protein “A” chromatography, flasks with surfactant exhibited improved antibody stability, when analyzed by DLS. Thus, while producing aggregation-prone mAbs via mammalian cell culture, these excipients may be employed as cell culture medium supplements to enhance the quality and yield of functional mAbs.  相似文献   

14.
Two low-molecular-weight hydrophobic proteins with nominal molecular weights Mr = 15,000 and Mr = 3,500 have been isolated from the lipid extracts of bovine pulmonary surfactant by several methods, including (a) dialysis plus silicic acid chromatography, (b) elution from Waters SEP-PAK silica cartridges with a variety of solvent mixtures, and (c) ultrafiltration. As detailed in the text, these proteins have been designated surfactant-associated protein-BC (SP-BC) (15 kDa: nonreduced), and SP-C (3.5 kDa). The biophysical activities of reconstituted surfactant containing these proteins and the phospholipids present in lung surfactant have been compared with the biophysical activities of bovine lipid extract surfactant on a pulsating bubble surfactometer using a phospholipid concentration of 10 mg/ml. At this concentration, unmodified lipid extract surfactant reduces the surface tension of the pulsating bubble to near 0 within 10 pulsations at 20 cycles per min. Similar biophysical properties were observed with modified lipid extract surfactant in which the relative concentration of hydrophobic protein had been reduced from 1 to 0.4% (W/W) of the phospholipids by addition of dipalmitoylphosphatidylcholine (DPPC) or DPPC plus phosphatidylglycerol. Reconstituted surfactants, which contained partially delipidated SP-BC (15 kDa: nonreduced) obtained by method (a) at a relative concentration of 0.1%, were also capable of reducing the surface tension to near 0 mN/m. Preparations of SP-BC (15 kDa: nonreduced) obtained by method (b), which had been subjected to very low pH levels during isolation and were extensively delipidated, exhibited full biophysical activity only at higher protein concentrations and with prolonged pulsation. Extensively delipidated samples of SP-BC obtained by method (c) exhibited impaired biophysical activities, even when prepared with neutral organic solvents. Reconstituted surfactant samples containing SP-C (3.5 kDa) obtained by any of the methods listed above were only able to reduce the surface tension at minimum bubble radius to approx. 20 mN/m. The biophysical activity of SP-C (3.5 kDa) was not significantly affected by low pH or extensive delipidation. Reconstituted samples containing mixtures of SP-BC (15 kDa: nonreduced) and SP-C (3.5 kDa) were more effective than samples containing either protein alone. Furthermore, with samples containing both hydrophobic proteins the final surface tensions at maximum bubble radius were attained within a few bubble pulsations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Pluronic F68 is one of the most used shear protecting additives in cell culture cultivations. It is well known from literature that such surface‐active surfactants lower the surface tension at the gas‐liquid interface, which influences the mass transfer. In this study, the effect of Pluronic F68 on oxygen mass transfer in aqueous solutions was examined. Therefore, the gassing in/gassing out method and bubble size measurements were used. At low concentrations of 0.02 g/L, a 50% reduction on mass transfer was observed for all tested spargers and working conditions. An explanation of the observed effects by means of Higbie's penetration or Dankwerts surface renewal theory was applied. It could be demonstrated that the suppressed movement of the bubble surface layer is the main cause for the significant drop down of the kLa‐values. For Pluronic F68 concentrations above 0.1 g/L, it was observed that it comes to changes in bubble appearance and bubble size strongly dependent on the sparger type. By using the bubble size measurement data, it could be shown that only small changes in mass transfer coefficient (kL) take place above the critical micelle concentration. Further changes on overall mass transfer at higher Pluronic F68 concentrations are mainly based on increasing of gas holdup and, more importantly, by increasing of the surface area available for mass transfer. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1278–1288, 2013  相似文献   

16.
Microbial cells are more readily rendered nonviable by the combined action of air sparging and mechanical agitation than by either action along. A. bubble breakup/coalescence model that incorporates the cell-bubble encounter rate, bubble breakup rate, and death probability is proposed to describe cell inactivation in the presence of bubbles maintained through the joint action of agitation and air, which is continually fed into the impeller stream region via passive vortex entrainment from the surface above or via active sparging from below. Experimental results obtained from a fragile algal (Ochromonas malhamensis) culture are consistent with the model prediction. In particular, the specific cell death rate is linearly related to the specific bubble interfacial surface area. It is shown that cells exhibit sparging-sensitive characteristics when agitation is mild, but become sensitive to surface vortexing when agitation turns vigorous enough to introduce air entrainment. Experimental data obtained from different stirrer sizes are in good agreement with the model (c) 1992 John Wiley & Sons, Inc.  相似文献   

17.
Surfactant monolayers at the interface between oil and water has been simulated using dissipative particle dynamics (DPD) technique. With a simple coarse-grained model, how variations in structure of surfactants influence their ability to reduce the interfacial tension has been investigated. The result shows that strong hydrophilic head groups are beneficial to make surfactant molecules more stretched and ordered, and help to enhance the efficiency of surfactant at the interface, it is beneficial to decrease interfacial tension if the hydrophobic chains of the surfactant and the oil have similar structure, and phenyl has a positive effect on interfacial efficiency. The results are in agreement with experimental and other theoretical work on surfactants.  相似文献   

18.
Bursting bubbles are thought to be the dominant cause of cell death in sparged animal or insect cell cultures. Cells that die during the bubble burst can come from three sources: cells suspended near the bubble; cells trapped in the bubble lamella; and cells that attached to the rising bubble. This article examines cell attachment to rising bubbles using a model in which cell attachment depends on cell radius, bubble radius, and cell–bubble attachment time. For bubble columns over 1 m in height and without protective additives, the model predicts significant attachment for 0.5‐ to 3‐mm radius bubbles, but no significant attachment in the presence of protective additives. For bubble columns over 10 cm in height, and without protective additives, the model predicts significant attachment for 50‐ to 100‐μm radius bubbles, but not all protective additives prevent attachment for these bubbles. The model is consistent with three sets of published data and with our experimental results. Using hybridoma cells, serum‐free medium with antifoam, and 1.60 ± 0.05 mm (standard error) radius bubbles, we measured death rates consistent with cell attachment to rising bubbles, as predicted by the model. With 1.40 ± 0.05 mm (SE) radius bubbles and either 0.1% w/v Pluronic‐F68 or 0.1% w/v methylcellulose added to the medium, we measured death rates consistent with no significant cell attachment to rising bubbles, as predicted by the model. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 62: 468–478, 1999.  相似文献   

19.
添加表面活性剂改善丁醇萃取发酵性能   总被引:1,自引:0,他引:1  
研究了各种表面活性剂对丁醇萃取发酵的影响。丁醇发酵中有大量H2、CO2气体生成,生成的气泡携带发酵溶剂产物(丁醇、丙酮)进入萃取液相,促进了水相中发酵毒性产物向萃取液相的移动。研究发现,表面活性剂可以降低气-液膜的表面张力,促使大气泡破碎,从而使发酵产气以较小气泡的形式穿过萃取液相。添加表面活性剂可以强化发酵溶剂产物从水相到萃取相的移除速度,缩短发酵产物在油水两相中达到平衡的时间。有利于提高发酵生产强度。以地沟生物柴油为萃取剂,吐温-80的添加量为质量分数0.140%时,与对照相比(无表面活性剂的萃取发酵),相同发酵时间内萃取相中丁醇体积分数提高了21.2%.总溶剂生产强唐也提高了16.5%.  相似文献   

20.
动物细胞在鼓泡式生物反应器中的死亡速率   总被引:1,自引:1,他引:0  
通过实验测定,证明生物反应器中细胞死亡速率与气体鼓泡速率成正比而与反应器体积成反比。实验发现气泡大小对细胞死亡速率具有两种作用,一种作用在于影响气泡表面积生成速率;另一种作用则在于影响细胞在气泡表面的吸附程度,其最佳直径为5mm左右。血清和Pluronic F68能显著降低细胞死亡速率,当Pluronic F68浓度达到0.1%时,kd趋于零。所有这些实验结果均与前文提出的生物反应器设计模型具有很好的一致性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号