首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biofuel ethanol is currently being produced in large quantities from corn in the US and from wheat in the EU and further capacity expansion is expected. Relying on the so-called 1st generation technology, only the starch contained in the edible portion of the crops (ears/grains) is subjected to fermentation. Following life cycle calculations reveals minute levels of fossil fuel replacement placing doubt on its renewability and an imbalance on the domestic animal feed markets are immerging due to the by-product distiller grains. Additional utilization of the lignocellulosic and protein components of the by-product through new developments has the potential to alleviate both setbacks. A cradle-to-factory gate analysis was performed on a variety of bioethanol production layouts incorporating the newest technological developments to determine the maximum fossil fuel reduction potential. Expanding to include lignocellulose pretreatment for ethanol production with protein separation for amine-based chemical production can increase the fossil fuel mitigation potential by seven- to ninefold for US-corn and five- to eightfold for EU-wheat bioethanol facilities.  相似文献   

2.
Despite the well‐recognized merits of simultaneous saccharification and co‐fermentation (SSCF) on relieving sugar product inhibition on cellulase activity, a practical concomitance difficulty of xylose with inhibitors in the pretreated lignocellulose feedstock prohibits the essential application of SSCF for cellulosic ethanol fermentation. To maximize the SSCF potentials for cellulosic ethanol production, a dry biorefining approach was proposed starting from dry acid pretreatment, disk milling, and biodetoxification of lignocellulose feedstock. The successful SSCF of the inhibitor free and xylose conserved lignocellulose feedstock after dry biorefining reached a record high ethanol titer at moderate cellulase usage and minimum wastewater generation. For wheat straw, 101.4 g/L of ethanol (equivalent to 12.8% in volumetric percentage) was produced with the overall yield of 74.8% from cellulose and xylose, in which the xylose conversion was 73.9%, at the moderate cellulase usage of 15 mg protein per gram cellulose. For corn stover, 85.1 g/L of ethanol (equivalent to 10.8% in volumetric percentage) is produced with the overall conversion of 84.7% from cellulose and xylose, in which the xylose conversion was 87.7%, at the minimum cellulase usage of 10 mg protein per gram cellulose. Most significantly, the SSCF operation achieved the high conversion efficiency by generating the minimum amount of wastewater. Both the fermentation efficiency and the wastewater generation in the current dry biorefining for cellulosic ethanol production are very close to that of corn ethanol production, indicating that the technical gap between cellulosic ethanol and corn ethanol has been gradually filled by the advancing biorefining technology.  相似文献   

3.
Biotechnological processes for conversion of corn into ethanol   总被引:2,自引:0,他引:2  
Ethanol has been utilized as a fuel source in the United States since the turn of the century. However, it has repeatedly faced significant commercial viability obstacles relative to petroleum. Renewed interest exists in ethanol as a fuel source today owing to its positive impact on rural America, the environment and United States energy security. Today, most fuel ethanol is produced by either the dry grind or the wet mill process. Current technologies allow for 2.5 gallons (wet mill process) to 2.8 gallons (dry grind process) of ethanol (1 gallon = 3.785 l) per bushel of corn. Valuable co-products, distillers dried grains with solubles (dry grind) and corn gluten meal and feed (wet mill), are also generated in the production of ethanol. While current supplies are generated from both processes, the majority of the growth in the industry is from dry grind plant construction in rural communities across the corn belt. While fuel ethanol production is an energy-efficient process today, additional research is occurring to improve its long-term economic viability. Three of the most significant areas of research are in the production of hybrids with a higher starch content or a higher extractable starch content, in the conversion of the corn kernel fiber fraction to ethanol, and in the identification and development of new and higher-value co-products.  相似文献   

4.
A modification of the conventional dry grind process for producing ethanol from yellow dent corn is considered with respect to its economic value. Process modifications include recycling distillers' grains, after being pretreated and hydrolyzed, with the ground corn and water to go through fermentation again and increase ethanol yields from the corn starch. A dry grind financial model, which has been validated against other financial models in the industry, is utilized to determine the financial impact of the process changes. The hypothesis was that the enhanced process would yield higher revenues through additional ethanol sales, and higher valued dried distillers' grains (DDGS), due to its higher protein content, to mitigate the drop in DDGS yields. A 32% increase in net present value (NPV) for the overall operation is expected when applying the process modifications to a 100million gallon ethanol plant, and an enzyme cost of $0.20 for each additional gallon of ethanol produced. However, there may be no value added to the enhanced dried distillers' grains (eDDGS), even in light of its higher protein levels, as current pricing is expected to be more sensitive to the amino acid profile than the total protein level, and the eDDGS has lower lysine levels, a key amino acid. Thus, there is a decrease in revenue from eDDGS due to the combination of no price change and loss of DDGS yield to ethanol. The financial improvements are a result of the increased revenue from higher ethanol yields outpacing the sum of all added costs, which include higher capital costs, larger loan payments, increased operating costs, and decreased revenues from dried distillers' grains.  相似文献   

5.
Distillers' grains (DG), a co-product of a dry grind ethanol process, is an excellent source of supplemental proteins in livestock feed. Studies have shown that, due to its high polymeric sugar contents and ease of hydrolysis, the distillers' grains have potential as an additional source of fermentable sugars for ethanol fermentation. The benefit of processing the distillers' grains to extract fermentable sugars lies in an increased ethanol yield without significant modification in the current dry grind technology. Three different potential configurations of process alternatives in which pretreated and hydrolyzed distillers' grains are recycled for an enhanced overall ethanol yield are proposed and discussed in this paper based on the liquid hot water (LHW) pretreatment of distillers' grains. Possible limitations of each proposed process are also discussed. This paper presents a compositional analysis of distillers' grains, as well as a simulation of the modified dry grind processes with recycle of distillers' grains. Simulated material balances for the modified dry grind processes are established based on the base case assumptions. These balances are compared to the conventional dry grind process in terms of ethanol yield, compositions of its co-products, and accumulation of fermentation inhibitors. Results show that 14% higher ethanol yield is achievable by processing and hydrolyzing the distillers' grains for additional fermentable sugars, as compared to the conventional dry grind process. Accumulation of fermentation by-products and inhibitory components in the proposed process is predicted to be 2-5 times higher than in the conventional dry grind process. The impact of fermentation inhibitors is reviewed and discussed. The final eDDGS (enhanced dried distillers' grains) from the modified processes has 30-40% greater protein content per mass than DDGS, and its potential as a value-added process is also analyzed. While the case studies used to illustrate the process simulation are based on LHW pretreated DG, the process simulation itself provides a framework for evaluation of the impact of other pretreatments.  相似文献   

6.
Increase in the demand for ethanol has resulted in growth in the dry grind (DG) ethanol industry. In DG processing, the whole corn kernel is fermented, resulting in two main coproducts, ethanol and distillers dried grains with solubles (DDGS). Marketing of DDGS is critical to the economic stability of DG plants. The composition of DDGS can vary considerably; this reduces market value. Factors that cause variation in composition need to be evaluated. The objective was to determine the relationship between composition of corn and composition of DDGS. Samples of corn and DDGS were obtained from a DG ethanol plant and analyzed for protein, fat, starch and other nutrients. Concentrations of protein, fiber and starch were similar to published data for corn but were higher for DDGS. Coefficients of variation for protein fat and fiber concentrations were similar for corn and DDGS. There were no significant correlations between concentrations of components in corn and those in DDGS. Variation in the composition of DDGS was not related to variation in corn composition and probably was due to variation in processing streams or processing techniques. This implies that reducing the variation in composition of DDG will require modification of processing strategies.  相似文献   

7.
We investigated the system expansion approach to net energy analysis for ethanol production from domestic corn grain. Production systems included in this study are ethanol production from corn dry milling and corn wet milling, corn grain production (the agricultural system), soybean products from soybean milling (i.e. soybean oil and soybean meal) and urea production to determine the net energy associated with ethanol derived from corn grain. These five product systems are mutually interdependent. That is, all these systems generate products which compete with or displace all other comparable products in the market place. The displacement ratios between products compare the equivalence of their marketplace functions. The net energy, including transportation to consumers, is 0.56 MJnet/MJ of ethanol from corn grain regardless of the ethanol production technology employed. Using ethanol as a liquid transportation fuel could reduce domestic use of fossil fuels, particularly petroleum. Sensitivity analyses show that the choice of allocation procedures has the greatest impact on fuel ethanol net energy. Process energy associated with wet milling, dry milling and the corn agricultural process also significantly influences the net energy due to the wide ranges of available process energy values. The system expansion approach can completely eliminate allocation procedures in the foreground system of ethanol production from corn grain.  相似文献   

8.
DDGS and wet distillers' grains are the major co-products of the dry grind ethanol facilities. As they are mainly used as animal feed, a typical compositional analysis of the DDGS and wet distillers' grains mainly focuses on defining the feedstock's nutritional characteristics. With an increasing demand for fuel ethanol, the DDGS and wet distillers' grains are viewed as a potential bridge feedstock for ethanol production from other cellulosic biomass. The introduction of DDGS or wet distillers' grains as an additional feed to the existing dry grind plants for increased ethanol yield requires a different approach to the compositional analysis of the material. Rather than focusing on its nutritional value, this new approach aims at determining more detailed chemical composition, especially on polymeric sugars such as cellulose, starch and xylan, which release fermentable sugars upon enzymatic hydrolysis. In this paper we present a detailed and complete compositional analysis procedure suggested for DDGS and wet distillers' grains, as well as the resulting compositions completed by three different research groups. Polymeric sugars, crude protein, crude oil and ash contents of DDGS and wet distillers' grains were accurately and reproducibly determined by the compositional analysis procedure described in this paper.  相似文献   

9.
With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.Mention of brand or firm names does not constitute an endorsement by University of Illinois or USDA above others of similar nature not mentioned  相似文献   

10.
Distillers' grains are a co-product of ethanol production. In China, only a small portion of distillers' grains have been used to feed the livestock because the amount was so huge. Nowadays, it has been reported that the distillers' grains have the potential for fuel ethanol production because they are composed of lignocelluloses and residual starch. In order to effectively convert distillers' grains to fuel ethanol and other valuable production, sodium hydroxide pretreatment, step-by-step enzymatic hydrolysis, and simultaneous saccharification and fermentation (SSF) were investigated. The residual starch was first recycled from wet distillers' grains (WDG) with glucoamylase to obtain glucose-rich liquid. The total sugar concentration was 21.3 g/L, and 111.9% theoretical starch was hydrolyzed. Then the removed-starch dry distillers' grains (RDDG) were pretreated with NaOH under optimal conditions and the pretreated dry distillers' grains (PDDG) were used for xylanase hydrolysis. The xylose concentration was 19.4 g/L and 68.6% theoretical xylose was hydrolyzed. The cellulose-enriched dry distillers' grains (CDDG) obtained from xylanase hydrolysis were used in SSF for ethanol production. The ethanol concentration was 42.1 g/L and the ethanol productivity was 28.7 g/100 g CDDG. After the experiment, approximately 80.6% of the fermentable sugars in WDG was converted to ethanol.  相似文献   

11.
Fractionation of distiller’s grains into value added products may serve to improve the economic viability of dry grind corn ethanol facilities in the wake of variable corn and ethanol prices. This research is aimed at creating a high protein, high lysine product from the grain using alkaline protein extractions in conjunction with hydrolysis of the remaining fiber to sugars which are then fermented to ethanol. Alkaline extractions improved the lysine content in protein products, although protein solubility did not exceed 45% of the total protein. In addition, oligomeric carbohydrates, starch, and other water solubles were also extracted, leading to a low purity protein product. Resulting sugar yields following ammonia fiber expansion (AFEX) pretreatment were also lower for extracted distiller’s grains. From these experiments, it does not appear likely that alkaline extraction is a useful tool for fractionation of distiller’s grains. However, pretreatment and hydrolysis can be an effective tool for further fractionation of protein.  相似文献   

12.
Sweet corn is a widely distributed crop that generates agricultural waste without significant commercial value. In this study, we show that sweet corn varieties produce large amounts of residual biomass (10 t ha?1) with high content of soluble sugars (25% of dry matter) in a short growing season (3 months). The potential ethanol production from structural and soluble sugars extracted from sweet corn stover reached up to 4400 l ha?1 in the most productive hybrids, 33% of which (1500 l ha?1) were obtained by direct fermentation of free sugars. We found wide genetic variation for biomass yield and soluble sugars content suggesting that those traits can be included as complementary traits in sweet corn breeding programs. Dual‐purpose sweet corn hybrids can have an added value for the farmers contributing to energy generation without affecting food supply or the environment.  相似文献   

13.
The corn based dry grind process is the most widely used method in the US for fuel ethanol production. Fermentation of corn to ethanol produces whole stillage after ethanol is removed by distillation. It is centrifuged to separate thin stillage from wet grains. Thin stillage contains 5–10% solids. To concentrate solids of thin stillage, it requires evaporation of large amounts of water and maintenance of evaporators. Evaporator maintenance requires excess evaporator capacity at the facility, increasing capital expenses, requiring plant slowdowns or shut downs and results in revenue losses. Membrane filtration is one method that could lead to improved value of thin stillage and may offer an alternative to evaporation. Fractionation of thin stillage using ultrafiltration was conducted to evaluate membranes as an alternative to evaporators in the ethanol industry. Two regenerated cellulose membranes with molecular weight cut offs of 10 and 100 kDa were evaluated. Total solids (suspended and soluble) contents recovered through membrane separation process were similar to those from commercial evaporators. Permeate flux decline of thin stillage using a resistance in series model was determined. Each of the four components of total resistance was evaluated experimentally. Effects of operating variables such as transmembrane pressure and temperature on permeate flux rate and resistances were determined and optimum conditions for maximum flux rates were evaluated. Model equations were developed to evaluate the resistance components that are responsible for fouling and to predict total flux decline with respect to time. Modeling results were in agreement with experimental results (R 2 > 0.98).  相似文献   

14.
The amount of corn stover that can be sustainably collected is estimated to be 80-100 million dry tonnes/yr (t/yr), a majority of which would be available to ethanol plants in the near term as only a small portion is currently used for other applications. Potential long-term demand for corn stover by non-fermentative applications in the United States is estimated to be about 20 million dry t/yr, assuming that corn stover-based products replace 50% of both hardwood pulp and wood-based particleboard, and that 50% of all furfural production is from corncobs. Hence, 60-80 million dry t/yr of corn stover should be available to fermentative routes. To achieve an ethanol production potential of 11 billion L (3 billion gal) per year (a target level for a non-niche feedstock), about 40% of the harvestable corn stover is needed. This amount should be available as long as the diversion of corn stover to non-ethanol fermentative products remains limited.  相似文献   

15.
Distillers dried grains with solubles (DDGS) and corn gluten feed (CGF) are major coproducts of ethanol production from corn dry grind and wet milling facilities, respectively. These coproducts contain important nutrients, nevertheless, high levels of phosphorus (P). About 50-80% of the P in these products is in an organically bound form known as phytate. The phytate P in these products cannot be digested by nonruminant animals. Consequently, large quantities of phytate are deposited into the soil with the animal wastes which potentially could cause P pollution in soil and underground water resources. As regulations on the concentration of P material in ethanol production coproducts become more restrictive, measures need to be taken for effective extraction of phytate P from the coproducts to make these processes more environmentally compatible. Proper marketing of coproducts is critical to the overall economy of ethanol production facilities. In this study, distribution of P compounds in different streams of dry grind and wet milling operations was determined. In the dry grind process, the highest P concentration was found to be in the condensed distillers solubles (CDS) at about 1.34 wt.% (db). About 59% of P in this stream was in phosphates form. The highest concentration of P in the wet milling process was found in the light steep water at about 3.4 wt.% (db). In this stream, about 22% of P was attributed to phosphates.  相似文献   

16.
The dry milling ethanol industry produces distiller's grains as major co-products, which are composed of unhydrolyzed and unfermented polymeric sugars. Utilization of the distiller's grains as an additional source of fermentable sugars has the potential to increase overall ethanol yields in current dry grind processes. In this study, controlled pH liquid hot water pretreatment (LHW) and ammonia fiber expansion (AFEX) treatment have been applied to enhance enzymatic digestibility of the distiller's grains. Both pretreatment methods significantly increased the hydrolysis rate of distiller's dried grains with solubles (DDGS) over unpretreated material, resulting in 90% cellulose conversion to glucose within 24h of hydrolysis at an enzyme loading of 15FPU cellulase and 40 IU beta-glucosidase per gram of glucan and a solids loading of 5% DDGS. Hydrolysis of the pretreated wet distiller's grains at 13-15% (wt of dry distiller's grains per wt of total mixture) solids loading at the same enzyme reduced cellulose conversion to 70% and increased conversion time to 72h for both LHW and AFEX pretreatments. However, when the cellulase was supplemented with xylanase and feruloyl esterase, the pretreated wet distiller's grains at 15% or 20% solids (w/w) gave 80% glucose and 50% xylose yields. The rationale for supplementation of cellulases with non-cellulolytic enzymes is given by Dien et al., later in this journal volume. Fermentation of the hydrolyzed wet distiller's grains by glucose fermenting Saccharomyces cerevisiae ATCC 4124 strain resulted in 100% theoretical ethanol yields for both LHW and AFEX pretreated wet distiller's grains. The solids remaining after fermentation had significantly higher protein content and are representative of a protein-enhanced wet DG that would result in enhanced DDGS. Enhanced DDGS refers to the solid product of a modified dry grind process in which the distiller's grains are recycled and processed further to extract the unutilized polymeric sugars. Compositional changes of the laboratory generated enhanced DDGS are also presented and discussed.  相似文献   

17.
Liu K  Han J 《Bioresource technology》2011,102(3):3110-3118
For determining variation in mineral composition and phosphorus (P) profile among streams of dry-grind ethanol production, samples of ground corn, intermediate streams, and distillers dried grains with solubles (DDGS) were obtained from three commercial plants. Most attributes (dry matter concentrations) increased significantly from corn to cooked slurry but fermentation caused most significant increase in all attributes. During centrifugation, more minerals went into thin stillage than wet grains, making minerals most concentrated in the former. Mineral increase in DDGS over corn was about 3 fold, except for Na, S, Ca, and Fe. The first three had much higher fold of increase, presumably due to exogenous addition. During fermentation, phytate P and inorganic P had 2.54 and 10.37 fold of increase over corn, respectively, while relative to total P, % phytate P decreased and % inorganic P increased significantly. These observations suggest that phytate underwent some degradation, presumably due to activity of yeast phytase.  相似文献   

18.
Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L + SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190 °C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180 °C).  相似文献   

19.
中国小麦燃料乙醇的能量收益   总被引:1,自引:0,他引:1  
李胜  路明  杜凤光 《生态学报》2007,27(9):3794-3800
分析了燃料乙醇能量收益问题提出的背景,国外有关燃料乙醇能量收益研究的最新进展及国内研究现状,采用全生命周期分析方法,计算了小麦燃料乙醇净能量值和能量产投比,对中国小麦燃料乙醇的能量收益进行了评价。主要结论有:如不考虑副产品能量价值,旧工艺和新工艺的NEV分别为-17022MJ/t燃料乙醇和-11778MJ/t燃料乙醇,R值分别是0.64和0.72;如考虑副产品能量价值,旧工艺和新工艺的NEV值分别为2271MJ/t燃料乙醇和11249MJ/t燃料乙醇,R值分别是1.05和1.27,从能源经济性角度看,旧工艺和新工艺的能量收益已是正效益,且新工艺的能量收益显著提高;与美国玉米燃料乙醇生产相比,如考虑副产品能量价值,新工艺和美国玉米燃料乙醇的NEV分别为11249MJ/t燃料乙醇和7457MJ/t燃料乙醇,R值分别是1.27和1.34。由于小麦转化率要低于玉米,因而小麦燃料乙醇的R值会低于玉米燃料乙醇。中国小麦燃料乙醇生产(新工艺)NEV大于美国玉米燃料乙醇的原因在于:中国小麦燃料乙醇副产品综合利用水平(23027MJ/t燃料乙醇)已明显优于美国玉米燃料乙醇(5078MJ/t燃料乙醇)。  相似文献   

20.
This study conducts a life cycle assessment of a simulated dry mill corn ethanol facility in California’s Central Valley retrofitted to also produce ethanol from corn stover, a cellulosic feedstock. The assessment examines three facility designs, all producing corn ethanol and wet distiller’s grains and solubles as a co-product: a baseline facility with no cellulosic retrofit, a facility retrofitted with a small capacity for stover feedstock, and a facility retrofitted for a large capacity of stover feedstock. Corn grain is supplied by rail from the Midwest, while stover is sourced from in-state farms and delivered by truck. Two stover feedstock supply scenarios are considered, testing harvest rates at 25 or 40 % of stover mass. Allocation is required to separate impacts attributable to co-products. Additional scenarios are explored to assess the effect of co-product allocation methods on life cycle assessment results for the two fuel products, corn ethanol and stover ethanol. The assessment tracks greenhouse gas (GHG) emissions, energy consumption, criteria air pollutants, and direct water consumption. The GHG intensity of corn ethanol produced from the three facility designs range between 61.3 and 68.9 g CO2e/MJ, which includes 19.8 g CO2e/MJ from indirect land use change for Midwestern corn grain. The GHG intensity of cellulosic ethanol varies from 44.1 to 109.2 g CO2e/MJ, and 14.6 to 32.1 g CO2e/MJ in the low and high stover capacity cases, respectively. Total energy input ranges between 0.60 and 0.71 MJ/MJ for corn ethanol and 0.13 to 2.29 MJ/MJ for stover ethanol. This variability is the result of the stover supply scenarios (a function of harvest rate) and co-product allocation decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号