首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes encoding the serologically cross-reactive HLA-B51 and HLA-Bw52 molecules were isolated and the exons sequenced. HLA-B51 genes obtained from Caucasian and Oriental individuals were identical. HLA-Bw52 differs from HLA-B51 by four nucleotide substitutions in exon 2 encoding the alpha 1 domain. These comprise one isolated silent substitution in codon 23 and a cluster of three coding substitutions in codons 63 and 67. Amino acid substitutions of N----E at position 63 and F----S at position 67 are the only differences between HLA-B51 and HLA-Bw52 and these residues are postulated to form HLA-B51 specific epitopes. HLA-B51 could have been formed from HLA-Bw52 by the combination of a genetic exchange with HLA-B8 and a point mutation. Similarity of HLA-B51 and HLA-Bw52 with HLA-Bw58 suggest they also share a common ancestor.  相似文献   

2.

Background and aims

HLA class I alleles, in particular HLA-B*57, constitute the most consistent host factor determining outcomes in untreated HCV- and HIV-infection. In this prospective cohort study, we analysed the impact of HLA class I alleles on all-cause mortality in patients with HIV-, HCV- and HIV/HCV- co-infection receiving HAART.

Methods

In 2003 HLA-A and B alleles were determined and patients were prospectively followed in 3-month intervals until 2013 or death. HLA-A and B alleles were determined by strand-specific oligonucleotide hybridisation and PCR in 468 Caucasian patients with HCV- (n=120), HIV- (n=186) and HIV/HCV-infection (n=162). All patients with HIV-infection were on HAART. In each patient group, HLA class I-associated survival was analysed by Kaplan-Meier method and Cox regression analysis.

Results

At recruitment the proportion of patients carrying a HLA-B*57 allele differed between HIV- (12.9%) and HCV-infection (4.2%). Kaplan Meier analysis revealed significantly increased mortality in HLA-B*57-positive patients with HIV-infection (p=0.032) and HIV/HCV-co-infection (p=0.004), which was apparently linked to non-viral infections. Cox logistic regression analysis confirmed HLA-B*57 (p=0.001), serum gamma-glutamyltranspeptidase (p=0.003), serum bilirubin (p=0.022) and CD4 counts (p=0.041) as independent predictors of death in HIV-infected patients.

Conclusion

Differences in the prevalence of HLA-B*57 at study entry between HIV- and HCV- infected patients may reflect immune selection in the absence of antiviral therapy. When patients were treated with HAART, however, HLA-B*57 was associated with increased mortality and risk to die from bacterial infections and sepsis, suggesting an ambiguous role of HLA-B*57 for survival in HIV/HCV infection depending on the circumstances.  相似文献   

3.
Knowledge about the magnitude of individual polymorphism is a critical part in understanding the complexity of comprehensive mismatching. HLA-B*44:09 differs from the highly frequent HLA-B*44:02 allele by amino acid exchanges at residues 77, 80, 81, 82 and 83. We aimed to identify the magnitude of these mismatches on the features of HLA-B*44:09 bound peptides since residues 77, 80 and 81 comprise part of the F pocket which determines sequence specificity at the pΩ position of the peptide. Using soluble HLA technology we determined >200 individual (nonduplicate) self-peptides from HLA-B*44:09 and compared their features with that of the published peptide features of HLA-B*44:02. Both alleles illustrate an anchor motif of E at p2. In contrast to the C-terminal peptide binding motif of B*44:02 (W, F, Y or L), B*44:09-derived peptides are restricted predominantly to L or F. The source of peptides for both alleles is identical (LCL 721.221 cells) allowing us to identify 23 shared peptides. The majority of these peptides however contained the restricted B*44:09 anchor motif of F or L at the pΩ position. Molecular modelling based on the B*44:02 structure highlights that the differences of the C-terminal peptide anchor between both alleles can be explained primarily by the B*44:02(81Ala)?>?B*44:09(81Leu) polymorphism which restricts the size of the amino acid that can be accommodated in the F pocket of B*44:09. These results highlight that every amino acid substitution has an impact of certain magnitude on the alleles function and demonstrate how surrounding residues orchestrate peptide specificity.  相似文献   

4.
To study the HLA-B7 and HLA-B27 antigenic determinants, hybrid genes between these two alleles were constructed by in vivo recombination in Escherichia coli. After transfection of these genes into P815 (high transfection efficiency recipient) murine cells, the bindings of Bw6, HLA-B7, and HLA-B27 allele-specific mAb were studied, as well as that of human anti-HLA-B7 and anti-HLA-B27 monospecific alloantisera. Most of the HLA-B7 antigenic determinants were assigned to the first external domain of the molecule. Four different epitopic areas could be defined: the Bw6 epitope was associated with residues 82 and 83; the BB7.1 epitope to amino acids 63, 67, and 70; the MB40.2 and MB40.3 epitope to amino acid sequence 177-180, and human alloantisera identified as an epitope associated with residue 9. HLA-B27 antigenicity studied by TM-1 mAb was found to involve residues 77 and 80 in the alpha-1 domain. Results obtained with human monospecific alloantisera allowed the definition of an additional allospecific site associated with the NH2 terminal part on the alpha-1 domain of HLA-B27. Epitope mapping fits with data obtained by sequence comparisons and is discussed with reference to the crystallographic three-dimensional structure of the HLA-A2 molecule.  相似文献   

5.
Genetic variation within the HLA-B locus has the strongest impact on HIV disease progression of any polymorphisms within the human genome. However, identifying the exact mechanism involved is complicated by several factors. HLA-Bw4 alleles provide ligands for NK cells and for CD8 T cells, and strong linkage disequilibrium between HLA class I alleles complicates the discrimination of individual HLA allelic effects from those of other HLA and non-HLA alleles on the same haplotype. Here, we exploit an experiment of nature involving two recently diverged HLA alleles, HLA-B*42:01 and HLA-B*42:02, which differ by only a single amino acid. Crucially, they occur primarily on identical HLA class I haplotypes and, as Bw6 alleles, do not act as NK cell ligands and are therefore largely unconfounded by other genetic factors. We show that in an outbred cohort (n = 2,093) of HIV C-clade-infected individuals, a single amino acid change at position 9 of the HLA-B molecule critically affects peptide binding and significantly alters the cytotoxic T lymphocyte (CTL) epitopes targeted, measured directly ex vivo by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay (P = 2 × 10−10) and functionally through CTL escape mutation (P = 2 × 10−8). HLA-B*42:01, which presents multiple Gag epitopes, is associated with a 0.52 log10 lower viral-load set point than HLA-B*42:02 (P = 0.02), which presents no p24 Gag epitopes. The magnitude of this effect from a single amino acid difference in the HLA-A*30:01/B*42/Cw*17:01 haplotype is equivalent to 75% of that of HLA-B*57:03, the most protective HLA class I allele in this population. This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of a particular HIV-specific CTL on disease control.  相似文献   

6.
Position 45 represents a highly polymorphic residue within HLA class I alleles, which contacts the p2 position of bound peptides in 85% of the peptide–HLA structures analyzed, while the neighboring residues 41 and 46 are not involved in peptide binding. To investigate the influence of residue 45 at the functional level, we sequenced peptides eluted from recombinant HLA-B*44:0841Ala/45Met/46Ala molecules and compared their features with known peptides from B*44:0241Thr/45Lys/46Glu. While HLA-B*44:02 has an anchor motif of E at the p2 anchor position, HLA-B*44:08 exhibits Q and L as anchor motif. The 45Met/Lys polymorphism contributes to the alteration in the peptide-binding motif and provides further evidence that mismatches at position 45 should be considered as nonpermissive in a transplantation setting.  相似文献   

7.
Several HLA class I alleles have been associated with slow human immunodeficiency virus (HIV) disease progression, supporting the important role HLA class I-restricted cytotoxic T lymphocytes (CTL) play in controlling HIV infection. HLA-B63, the serological marker for the closely related HLA-B*1516 and HLA-B*1517 alleles, shares the epitope binding motif of HLA-B57 and HLA-B58, two alleles that have been associated with slow HIV disease progression. We investigated whether HIV-infected individuals who express HLA-B63 generate CTL responses that are comparable in breadth and specificity to those of HLA-B57/58-positive subjects and whether HLA-B63-positive individuals would also present with lower viral set points than the general population. The data show that HLA-B63-positive individuals indeed mounted responses to previously identified HLA-B57-restricted epitopes as well as towards novel, HLA-B63-restricted CTL targets that, in turn, can be presented by HLA-B57 and HLA-B58. HLA-B63-positive subjects generated these responses early in acute HIV infection and were able to control HIV replication in the absence of antiretroviral treatment with a median viral load of 3,280 RNA copies/ml. The data support an important role of the presented epitope in mediating relative control of HIV replication and help to better define immune correlates of controlled HIV infection.  相似文献   

8.
A single amino acid exchange between the major histocompatibility complex molecules HLA-B(*)2705 and HLA-B(*)2709 (Asp-116/His) is responsible for the emergence of distinct HLA-B27-restricted T cell repertoires in individuals harboring either of these two subtypes and could correlate with their differential association with the autoimmune disease ankylosing spondylitis. By using fluorescence depolarization and pK(a) calculations, we investigated to what extent electrostatic interactions contribute to shape antigenic differences between these HLA molecules complexed with viral, self, and non-natural peptide ligands. In addition to the established main anchor of peptides binding to HLA-B27, arginine at position 2 (pArg-2), and the secondary anchors at the peptide termini, at least two further determinants contribute to stable peptide accommodation. 1) The interaction of Asp-116 with arginine at peptide position 5, as found in pLMP2 (RRRWRRLTV; viral) and pVIPR (RRKWRRWHL; self), and with lysine in pOmega, as found in gag (KRWIILGLNK; viral), additionally stabilizes the B(*)2705 complexes by approximately 5 and approximately 27 kJ/mol, respectively, in comparison with B(*)2709. 2) The protonation state of the key residues Glu-45 and Glu-63 in the B-pocket, which accommodates pArg-2, affects peptide binding strength in a peptide- and subtype-dependent manner. In B(*)2705/pLMP2, protonation of Glu-45/Glu-63 reduces the interaction energy of pArg-2 by approximately 24 kJ/mol as compared with B(*)2705/pVIPR. B(*)2705/pVIPR is stabilized by a deprotonated Glu-45/Glu-63 pair, evoked by allosteric interactions with pHis-8. The mutual electrostatic interactions of peptide and HLA molecule, including peptide- and subtype-dependent protonation of key residues, modulate complex stability and antigenic features of the respective HLA-B27 subtype.  相似文献   

9.
Gilbert's syndrome is a common hereditary chronic or recurrent, mild unconjugated hyperbilirubinemia. Polymorphisms in the bilirubin uridine diphosphate glucuronosyl transferase gene (UGT1A1) causing a decreased enzyme activity are associated with susceptibility to the syndrome. Homozygosity for TA(7) allele of the A(TA)(n)TAA promoter polymorphism is found in the majority of Caucasian patients. We sought to investigate the role of three UGT1A1 polymorphisms (A[TA](n)TAA, -3279T-->G, and G71R) in the susceptibility to Gilbert's syndrome in 53 Italian pediatric subjects compared to 83 unaffected controls. Carriage of two TA(n) risk alleles (TA(7) and TA(8)) and -3279G homozygosity were similarly associated with hyperbilirubinemia (odds ratio [OR] = 11.59, 95% confidence interval [CI] = 4.80-27.98; p < 0.001, and OR = 11.51, 95% CI = 5.06-26.19; p < 0.001, respectively). Homozygosity for both TA7 and -3279G was associated with the highest relative risk estimate (OR = 19.23, 95% CI = 7.34-50.4; p < 0.001), but a significant association was found also for TA7 heterozygosity combined with -3279G/G genotype (OR = 7.98, 95% CI = 2.54-25.06; p < 0.001). The G71R variant was found only in two controls. Our results demonstrate that genotyping of both UGT1A1 A(TA)(n)TAA and -3279T-->G polymorphisms best defines genetic susceptibility to Gilbert's syndrome in Caucasian pediatric patients, and the TA7 heterozygous genotype combined with homozygosity for the -3279G allele can also be associated with pediatric mild hyperbilirubinemia.  相似文献   

10.
The class I protein HLA-B27 confers susceptibility to inflammatory arthritis in humans and when overexpressed in rodents for reasons that remain unclear. We demonstrated previously that HLA-B27 heavy chains (HC) undergo endoplasmic reticulum (ER)-associated degradation. We report here that HLA-B27 HC also forms two types of aberrant disulfide-linked complexes (dimers) during the folding and assembly process that can be distinguished by conformation-sensitive antibodies W6/32 and HC10. HC10-reactive dimers form immediately after HC synthesis in the ER and constitute at least 25% of the HC pool, whereas W6/32-reactive dimers appear several hours later and represent less than 10% of the folded HC. HC10-reactive dimers accumulate in the absence of tapasin or beta(2)-microglobulin, whereas W6/32-reactive dimers are not detected. Efficient formation of W6/32-reactive dimers appears to depend on the transporter associated with antigen processing, tapasin, and beta(2)-microglobulin. The unpaired Cys(67) and residues at the base of the B pocket that dramatically impair HLA-B27 HC folding are critical for the formation of HC10-reactive ER dimers. Although certain other alleles also form dimers late in the assembly pathway, ER dimerization of HLA-B27 may be unique. These results demonstrate that residues comprising the HLA-B27 B pocket result in aberrant HC folding and disulfide bond formation, and thus confer unusual properties on this molecule that are unrelated to peptide selection per se, yet may be important in disease pathogenesis.  相似文献   

11.
The results of the first Russian study of polymorphisms of tuberculosis (TB) susceptibility genes SLC11A1, VDR, IL12B, IL1B, IL1RN in Tuvinians from Tuva Republic and Russians from Tomsk city are presented. In Tuvinians, as compared with Russians, the significantly higher prevalence of potentially disease-associated alleles of the genes studied was shown: SLC11A1*543N (0.139 and 0.043, respectively, p = 4.6E-5), IL12B*1188C (0.378 and 0.174, respectively, p = 1.1E-8), VDR*b (0.825 and 0.532, respectively, p = 3.2E-16), IL1B*(+3953A1) (0.865 and 0.806, respectively, p = 0.035). However, no one of these alleles was associated with TB in Tuvinians, whereas, in Russians TB patients, in comparison with the controls, there was a higher prevalence of the following markers: IL1RN*A2 (0.258 and 0.186, respectively, p = 0.024), SLC11A1*274T (0.251 and 0.164, respectively, p = 0.009), IL12B*1188C (0.240 and 0.174, respectively, p = 0.044), ILIB*(+3953A2) (0.259 and 0.194, respectively, p = 0.044). Distinct patterns of linkage disequilibrium between pairs of the polymorphisms studied in Tuvinians and Russians were shown. At whole, the data obtained demonstrate the ethnic specificity of the distribution and pathogenetic significance of the alleles of the TB susceptibility genes.  相似文献   

12.
Different HLA class I alleles display a distinctive dependence on tapasin for surface expression and Ag presentation. In this study, we show that the tapasin dependence of HLA class I alleles correlates to the nature of the amino acid residues present at the naturally polymorphic position 114. The tapasin dependence of HLA class I alleles bearing different residues at position 114 decreases in the order of acidity, with high tapasin dependence for acidic amino acids (aspartic acid and glutamic acid), moderate dependence for neutral amino acids (asparagine and glutamine), and low dependence for basic amino acids (histidine and arginine). A glutamic acid to histidine substitution at position 114 allows the otherwise tapasin-dependent HLA-B4402 alleles to load high-affinity peptides independently of tapasin and to have surface expression levels comparable to the levels seen in the presence of tapasin. The opposite substitution, histidine to glutamic acid at position 114, is sufficient to change the HLA-B2705 allele from the tapasin-independent to the tapasin-dependent phenotype. Furthermore, analysis of point mutants at position 114 reveals that tapasin plays a principal role in transforming the peptide-binding groove into a high-affinity, peptide-receptive conformation. The natural polymorphisms in HLA class I H chains that selectively affect tapasin-dependent peptide loading provide insights into the functional interaction of tapasin with MHC class I molecules.  相似文献   

13.
Datta R  Choudhury P  Ghosh A  Datta B 《Biochemistry》2003,42(18):5453-5460
Eukaryotic initiation factor 2- (eIF2-) associated glycoprotein p67 blocks eIF2alpha phosphorylation by kinases, and its N-terminal 1-97 amino acid segment can induce efficient translation. To investigate whether glycosylation at the serine/threonine clusters at this region is important in protein synthesis, we selected (27)TSST(30) and (60)SGTS(63) clusters for further analysis. By site-directed mutagenesis, (27)TSST(30) and (60)SGTS(63) clusters were substituted with (27)AAGA(30) and (60)AGAA(63) amino acid residues in full-length p67, and their EGFP fusions were constitutively expressed in rat tumor hepatoma cells (KRC-7). The (60)AGAA(63) mutant blocked eIF2alpha phosphorylation less than either wild-type p67 or the (27)AAGA(30) mutant. The (60)AGAA(63) mutant also showed a low level of protein synthesis rate, a lower level of glycosylation, increased turnover rate, and weaker binding to eIF2alpha. These results suggest that glycosylation within the (60)SGTS(63) sequence of p67 plays an important role in its stability and thus its regulation of protein synthesis by modulating the phosphorylation of the alpha-subunit of eIF2.  相似文献   

14.
Several new HLA-B (B8, B51, Bw62)- and HLA-C (Cw6, Cw7)-specific genes were isolated either as genomic cosmid or cDNA clones to study the diversity of HLA antigens. The allele specificities were identified by sequence analysis in comparison with published HLA-B and -C sequences, by transfection experiments, and Southern and northern blot analysis using oligonucleotide probes. Comparison of the classical HLA-A, -B, and -C sequences reveals that allele-specific substitutions seem to be rare events. HLA-B51 codes only for one allelespecific residue: arginine at position 81 located on the 1 helix, pointing toward the antigen binding site. HLA-B8 contains an acidic substitution in amino acid position 9 on the first central sheet which might affect antigen binding capacity, perhaps in combination with the rare replacement at position 67 (F) on the ul helix. HLA-B8 shows greatest homology to HLA-Bw42, -Bw41, -B7, and-Bw60 antigens, all of which lack the conserved restriction sites Pst I at position 180 and Sac I at position 131. Both sites associated with amino acid replacements seem to be genetic markers of an evolutionary split of the HLA-B alleles, which is also observed in the leader sequences. HLA-Cw7 shows 98% sequence identity to the JY328 gene. In general, the HLA-C alleles display lower levels of variability in the highly polymorphic regions of the 1 and 2 domains, and have more distinct patterns of locus-specific residues in the transmembrane and cytoplasmic domains. Thus we propose a more recent origin for the HLA-C locus.  相似文献   

15.
We investigated the effect of HLA class I alleles on clinical parameters for HIV-1 disease progression in the Japanese population, where two strongly protective alleles, HLA-B*57 and HLA-B*27, are virtually nonexistent. HLA-B alleles showed a dominant role, primarily through HLA-B*67:01 and the HLA-B*52:01-C*12:02 haplotype. Neither a rare-allele nor a heterozygote advantage was found, suggesting that the effect of HLA alleles in the Japanese population is either different from those observed in Africans and Caucasians or undetectable due to limited power.  相似文献   

16.
There are six known HLA-B alleles that share the HLA-B27 allospecificity, yet differ by one to six amino acid substitutions. Each of these B27 alleles can be readily assigned by one of the six representative IEF patterns. Two unrelated individuals, LH and HS, express B27 Ag that appear to be identical by IEF, but an HLA-B27 alloreactive CTL clone I-73 was found to react differently with these cells, suggesting these B27 molecules are not identical. We sequenced polymerase chain reaction-amplified B27 cDNA clones obtained from HS and compared its deduced amino acid sequence (B27-HS) with the B27 sequence of LH (B27-LH) which was previously designated the B*2701 allele. B27-HS and B27-LH differ by eight amino acids; three in alpha 1 domain and five in alpha 2 domain. These amino acid substitutions of B27-HS altered T cell recognition but not the B27 serologic epitope or IEF pattern. B27-HS differs from the six known B27 alleles by five to eight amino acid substitutions, and thus it represents the seventh allele of the HLA-B27 Ag family. This novel B27 allele might have been derived from a gene conversion event. Previously, two amino acid residues at positions 70 and 97 were suggested to be specific for B27 Ag family. B27-HS now reveals that Lys at position 70 is specific for B27 but Asn at position 97 is not. We propose that the region around position 70 might be crucial in determining the B27 serologic epitope and possibly in peptide Ag binding. This study also demonstrates that class I molecules of the same Ag specificity sharing an indistinguishable IEF pattern are not necessarily identical, and indicates that only the definitive determination of primary structure would identify all the class I alleles that are functionally relevant in regard to alloreactivity, T cell restriction, and disease association.  相似文献   

17.
HLA-B27 gene frequencies and allelic polymorphism were studied in two Siberian ethnic groups: Russians from Novosibirsk (western Siberia) and Tuvinians from Kyzyl (southern Siberia). The HLA-B27 frequencies were determined by means of serologic typing of HLA antigens in 198 Tuvinians and 288 Russians. Molecular typing was performed via hybridization of oligonucleotide probes with amplified DNAs obtained from 30 HLA-B27-positive Russians and 11 HLA-B27-positive Tuvinians. The HLA-B27 gene frequencies in Tuvinians and Russians were 5.5 and 10.4%, respectively. Molecular variants of the HLA-B27 gene were studied in Tuvinians for the first time. The proportions of the HLA-B2705 and HLA-B2704 alleles were found to be 64 and 36%, respectively, in the population studied. The presence of the HLA-B2704 allele indicates a Mongoloid origin of Tuvinians. In the Russian population of Novosibirsk, the HLA-B2704 allele was not found, whereas the proportions of the HLA-B2705 and HLA-B2702 alleles were 76.2 and 23.8%, respectively, which is characteristic of Caucasoid populations.  相似文献   

18.
MICB is a member of the MIC (MHC class I chain-related gene) family. Sixteen MICB alleles have been described; however, the functional relevance and population distribution of MICB alleles or their potential association to disease has not yet been evaluated. In this study, we have developed a PCR system using sequence-specific primers (PCR-SSP) that allows unambiguous amplification of all MICB alleles. This approach has been applied to type 100 healthy unrelated individuals from the Spanish population. The extent of polymorphism in this population is lower than that initially expected, and only nine alleles were detected. The alleles MICB01021 (46%), MICB0103101 (13.5%), MICB0104 (13.5%) and MICB0106 (12.5%) were found to be the most frequent alleles. HLA-B and MICA transmembrane polymorphism typing were also performed in this population. Our data showed that MICB is in linkage disequilibrium with MICA and even with HLA-B. Thus, the linkage disequilibrium with MICA and HLA-B suggests that MICB is a potential candidate for those diseases classically associated with HLA class I alleles.  相似文献   

19.

Aim of the Study

Association of two HLA class I variants with HIV-1 pretreatment viremia, CD4+ T cell count at the care-entry and CD4+ T cell nadir.

Methods

414 HIV-positive Caucasians (30% women) aged 19-73 years were genotyped for HLA-C -35 (rs9264942) and HLA-B*5701 variants. HIV-1 viral load, as well as CD4+ T cell count at care-entry and nadir, were compared across alleles, genotypes and haplotypes.

Results

HLA-C -35 C/C genotype was found in 17.6% patients, C/T genotype in 48.1%, and T/T genotype in 34.3% patients. HLA-B*5701 variant was present in 5.8% of studied population. HIV plasma viremia in the group with C allele was significantly lower (p=0.0002) compared to T/T group [mean:4.66 log (SD:1.03) vs. 5.07 (SD:0.85) log HIV-RNA copies/ml, respectively], while CD4+ T cell count at baseline was notably higher among C allele carriers compared to T/T homozygotes [median: 318 (IQR:127-537) cells/μl vs. median: 203 (IQR:55-410) cells/μl, respectively] (p=0.0007). Moreover, CD4+ T cell nadir among patients with C allele [median: 205 (IQR:83.5-390) cells/μl] was significantly higher compared to T/T group [median: 133 (IQR:46-328) cells/μl] (p=0.006). Among cases with HLA-B*5701 allele, significantly lower pretreatment viremia and higher baseline CD4+ T cell count were found (mean: 4.08 [SD: 1.2] vs. mean: 4.84 [SD:0.97] log HIV-RNA copies/ml, p=0.003 and 431 vs. 270 cells/μl, p=0.04, respectively) compared to HLA-B*5701 negative individuals. The lowest viremia (mean: 3.85 log [SD:1.3]) HIV-RNA copies/ml and the highest baseline and nadir CD4+ T cell [median: 476 (IQR:304-682) vs. median: 361 (IQR: 205-574) cells/μl, respectively) were found in individuals with HLA-B*5701(+)/HLA-C –35 C/C haplotype.

Conclusions

HLA-C -35 C and HLA-B*5701 allele exert a favorable effect on the immunological (higher baseline and nadir CD4+ T cell count) and virologic (lower pretreatment HIV viral load) variables. This protective effect is additive for the compound HLA-B*5701(+)/HLA-C -35 C/C haplotype.  相似文献   

20.
Human major histocompatibility complex class I (MHC I) – or human leukocyte antigen (HLA) – proteins present intracellularly processed peptides to cytotoxic T lymphocytes in the adaptive immune response to pathogens. A high level of polymorphism in human MHC I proteins defines the peptide-binding specificity of thousands of different MHC alleles. However, polymorphism as well as the peptide ligand can also affect the global dynamics of the complex. In this study, we conducted classical molecular dynamics simulations of two HLA alleles, the ankylosing spondylitis (AS) associated/tapasin-dependent HLA-B*27:05 and nondisease-associated/tapasin-independent HLA-B*27:09, both in peptide-free forms as well as complex with four different peptides ligands. Our results indicate that in peptide-free form, the single amino acid substitution distinguishing the two alleles (D116H), leads to a weaker dynamic coupling of residues in the tapasin-dependent HLA-B*27:05. In peptide-bound form, several residues of the binding-groove, mostly in A and B pockets, show hinge-like behavior in the global motion of the MHC. Moreover, allele-dependent changes are shown in residue interactions, affecting the B-pocket as well as the beta-2-microglobulin (β2m)-facing residues of the HLA chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号